How to work generically with overridden method parameters - c#

I need to replace 229 occurrences of an older CSLA data access class, the first step is to place really clean shim code with the least amount of testable changes. I almost got there and was trying to do this without having to decorate all BusinessClass descendants with an interface as a way to force Fetch_Data.
Each class descending from BusinessBase will implement it's own Fetch_Data by overriding. I have most of it working, however, you can't override a method using a parameter descending from a class that is used in the virtual version, the method signature is different and the compiler will not allow it.
Any hints on how to make the chain below work without interfaces, specifically how to work generically with the criteria below?
public class BusinessLayerBaseNoCSLA<T>
{
public virtual void Fetch_Data(BaseParameters parameters){ throw new NotWellConfiguredException();
}
Extending BusinessLayerBase:
public class Vehicle : BusinessLayerBaseNoCSLA<Vehicle>
{
public int VehicleId { get; set; }
public override void Fetch_Data(GetVehicleParameters parameters)//<--This line has a red squiggly because of the signature difference, no suitable method found to override.
{
//I could cast like var p = (GetVehicleParameters)BaseParameters; here but something smells bad about that
GetVehicleParameters p = parameters;
...
VehicleId = p.VehicleId;
}
}
DataPortal is using static to avoid newing up and calling Fetch, condenses to one line of code.
public static class DataPortal
{
public static T FetchData<T>(object criteria) where T : BusinessLayerBaseNoCSLA<T>, new()
{
var result = new T();
result.Fetch_Data((BaseParameters)criteria);
return result;
}
}
Desired usage
var Vehicle = DataPortal.FetchData<Vehicle>(new GetVehicleParameters({ VehicleId =1 });

If you want specifically typed parameters to your Fetch_Data(BaseParameters parameters) method, you could introduce the fetch parameters as a generic type to your base class.
BusinessLayerBaseNoCSLA would become:
public class BusinessLayerBaseNoCSLA<TObject, TParameters>
where TObject : BusinessLayerBaseNoCSLA<TObject, TParameters> // optional
where TParameters : BaseParameters
{
public virtual void Fetch_Data(TParameters parameters)
{
throw new NotWellConfiguredException();
}
}
Vehicle would be defined as:
public class Vehicle : BusinessLayerBaseNoCSLA<Vehicle, GetVehicleParameters>
{
public int VehicleId { get; set; }
public override void Fetch_Data(GetVehicleParameters parameters)
{
//I could cast like var p = (GetVehicleParameters)BaseParameters; here but something smells bad about that
// Note: No need to cast 'parameters' here!
GetVehicleParameters p = parameters;
VehicleId = p.VehicleId;
}
}
DataPortal is re-defined as:
public static class DataPortal
{
public static TObject FetchData<TObject, TParameters>(TParameters criteria)
where TObject : BusinessLayerBaseNoCSLA<TObject, TParameters>, new()
where TParameters : BaseParameters
{
var result = new TObject();
//result.Fetch_Data((BaseParameters)criteria);
// Note: no need to cast criteria!
result.Fetch_Data(criteria);
return result;
}
}
Usage:
Vehicle vehicle = DataPortal.FetchData<Vehicle, GetVehicleParameters>(new GetVehicleParameters() { VehicleId = 1 });
// Note: we need to explicitly call the FetchData<,> with the correct types

Related

My child class's method not get called when initialised as Base

Think my understanding about OO is wrong.
Say I have these classes
public class BaseValidator{
public Result Validate(BaseRequest r){
xxxx
}
}
public class BaseRequest{
}
Then in my child class, I have this:
Public class ChildValidator : BaseValidator{
public Result Validate(ChildRequest r){
xxxx,
base.Validate(r);
}
}
public class ChildRequest: BaseRequest{
}
When using the classes:
BaseValidator cr = new ChildValidator();
ChildRequest r = new ChildRequest();
cr.Validate(r);
I thought this will call ChildValidator's Validate method, but turned out it calls BaseValidator's method.
What is the right way to do this? I want to pass my ChildValidator to another method, which takes BaseValidator as a parameter.
You are currently casting ChildValidator to BaseValidator, as such you are calling BaseValidator.Validate(BaseRequest) which at present has a different signature to ChildValidator.Validate(ChildRequest). You can pass an instance of ChildRequest to either method without issue because it inherits from BaseRequest.
Without this cast you would call ChildValidator.Validate() as you are expecting:
ChildValidator cr = new ChildValidator();
ChildRequest r = new ChildRequest();
cr.Validate(r); // Calls ChildValidator.Validate() method
If you want the ChildValidator.Validate() method to always be called then you would need to use a virtual / override method. You can't do that as your classes are currently written because you are accepting different parameter types (BaseRequest and ChildRequest).
Interfaces
You could utilise interfaces to help you out in this case, as shown below:
public interface IValidator {
bool Validate(IRequest r);
}
public class BaseValidator : IValidator {
public virtual bool Validate(IRequest r) {
return true;
}
}
public class ChildValidator : BaseValidator {
public override bool Validate(IRequest r) {
return base.Validate(r);
}
}
public interface IRequest { }
public class ChildRequest : BaseRequest { }
public class BaseRequest : IRequest { }
With the above classes / interfaces the original calls would work as follows:
BaseValidator cr = new ChildValidator(); // cast to BaseValidator
ChildRequest r = new ChildRequest();
cr.Validate(r); // Still calls ChildValidator.Validate() method
Generic Class
Alternatively, and as Jon Skeet pointed towards, you may want to look at implementing a generic Validator class. That could perhaps look something like the below:
public class Validator<T> where T : BaseRequest {
public bool Validate(T r) {
return true;
}
}
public class BaseRequest { }
public class ChildRequest : BaseRequest { }
You can use that as below:
var validator = new Validator<ChildRequest>();
ChildRequest request = new ChildRequest();
validator.Validate(r);
The best method for you will depend on the rest of your implementation and what the methods are doing.

How do you return a class that inherits a base class with a generic response? [duplicate]

I have the following classes
public abstract class BaseViewPresenter { }
public abstract class BaseView<T> : UserControl
where T : BaseViewPresenter { }
public class LoginPresenter : BaseViewPresenter { }
public partial class LoginView : BaseView<LoginPresenter> { }
I have a method that looks like this (simplified)
public BaseView<BaseViewPresenter> Resolve(BaseViewPresenter model)
{
var type = model.GetType();
var viewType = _dataTemplates[type];
// Correctly creates BaseView object
var control = Activator.CreateInstance(viewType);
// Fails to cast as BaseView<BaseViewPresenter> so returns null
return control as BaseView<BaseViewPresenter>;
}
When I call this using an instances of LoginPresenter
var login = new LoginPresenter();
var ctl = Resolve(login);
The line Activator.CreateInstance(viewType) correctly resolves into a new instances of my LoginView, however control as BaseView<BaseViewPresenter> can't do the cast correctly so returns null.
Is there a way to correctly cast the control into BaseView<BaseViewPresenter> without using specific type generics?
Since LoginView inherits from BaseView<LoginPresenter>, and LoginPresenter inherits from BaseViewPresenter, I would assume there's a way to convert LoginView to BaseView<BaseViewPresenter>.
I am stuck with using .Net 3.5
This is a very frequently asked question. Let's rename your types:
abstract class Fruit { } // was BaseViewPresenter
abstract class FruitBowl<T> where T : Fruit // was BaseView
class Apple : Fruit { } // was LoginPresenter
class BowlOfApples : FruitBowl<Apple> { } // was LoginView
Your question now is:
I have a BowlOfApples, which inherits from FruitBowl<Apple>. Why can I not use it as a FruitBowl<Fruit>? An apple is a fruit, so a bowl of apples is a bowl of fruit.
No, it isn't. You can put a banana in a bowl of fruit, but you can't put a banana in a bowl of apples, and therefore a bowl of apples is not a bowl of fruit. (And by similar argument, a bowl of fruit is not a bowl of apples either.) Since the operations you can legally perform on the two types are different, they cannot be compatible.
Here is a photo of StackOverflow legend Jon Skeet demonstrating this fact:
The feature you want is called generic contravariance, and it is supported only on interfaces and delegate types when the compiler can prove that the variance is safe, and when the varying type is a reference type. For example, you can use an IEnumerable<Apple> in a context where IEnumerable<Fruit> is needed because the compiler can verify that there is no way that you can put a Banana into a sequence of fruit.
Do a search on "C# covariance and contravariance" on this site or on the web and you'll find many more details about how this feature works. In particular, my series of articles on how we designed and implemented this feature in C# 4 starts here: http://blogs.msdn.com/b/ericlippert/archive/2007/10/16/covariance-and-contravariance-in-c-part-one.aspx
I accepted Eric's answer since it provides a great explanation of why what I wanted wasn't possible, but I also thought I'd share my solution in case anyone else runs into this same problem.
I removed the generic type parameter from my original BaseView class, and created a 2nd version of the BaseView class that included the generic type parameter and specifics for it.
The first version is used by my .Resolve() method or other code that doesn't care about the specific types, and the second version is used by any code that does care, such as the implentation of a BaseView
Here's an example of how my code ended up looking
// base classes
public abstract class BaseViewPresenter { }
public abstract class BaseView : UserControl
{
public BaseViewPresenter Presenter { get; set; }
}
public abstract class BaseView<T> : BaseView
where T : BaseViewPresenter
{
public new T Presenter
{
get { return base.Presenter as T; }
set { base.Presenter = value; }
}
}
// specific classes
public class LoginPresenter : BaseViewPresenter { }
public partial class LoginView : BaseView<LoginPresenter>
{
// Can now call things like Presenter.LoginPresenterMethod()
}
// updated .Resolve method used for obtaining UI object
public BaseView Resolve(BaseViewPresenter presenter)
{
var type = model.GetType();
var viewType = _dataTemplates[type];
BaseView view = Activator.CreateInstance(viewType) as BaseView;
view.Presenter = presenter;
return view;
}
You're expecting to treat the type as being covariant with respect to the generic argument. Classes can never be covariant; you'd need to use an interface rather than (or in addition to) an abstract class to make it covariant with respect to T. You'd also need to be using C# 4.0.
My usual solution to this problem is to create an intermediary class that has access to the type-parametric class's methods through delegates. Fields can also be accessed through getters/setters.
The general pattern goes:
public abstract class Super {}
public abstract class MyAbstractType<T> where T : Super {
public MyGeneralType AsGeneralType() {
return MyGeneralType.Create(this);
}
// Depending on the context, an implicit cast operator might make things
// look nicer, though it might be too subtle to some tastes.
public static implicit operator MyGeneralType(MyAbstractType<T> t) {
return MyGeneralType.Create(t);
}
public int field;
public void MyMethod1() {}
public void MyMethod2(int argument) {}
public abstract bool MyMethod3(string argument);
}
public delegate T Getter<T>();
public delegate void Setter<T>(T value);
public delegate void MyMethod1Del();
public delegate void MyMethod2Del(int argument);
public delegate bool MyMethod3Del(string argument);
public class MyGeneralType {
public Getter<int> FieldGetter;
public Setter<int> FieldSetter;
public MyMethod1Del MyMethod1;
public MyMethod2Del MyMethod2;
public MyMethod3Del MyMethod3;
public static MyGeneralType Create<T>(MyAbstractType<T> t) where T : Super {
var g = new MyGeneralType();
g.FieldGetter = delegate { return t.field; };
g.FieldSetter = value => { t.field = value; };
g.MyMethod1 = t.MyMethod1;
g.MyMethod2 = t.MyMethod2;
g.MyMethod3 = t.MyMethod3;
return g;
}
public int field {
get { return FieldGetter(); }
set { FieldSetter(value); }
}
}
The above exemplifies getting all the methods and fields but normally I only need a few of them. This is a general solution to the problem and one could feasibly write a tool to generate these intermediary classes automatically, which I might at some point.
Try it here: https://dotnetfiddle.net/tLkmgR
Note that this is enough for all my cases, but you can be extra hacky with this:
public abstract class MyAbstractType<T> where T : Super {
// ... Same everything else ...
// data fields must become abstract getters/setters, unfortunate
public abstract int field {
get;
set;
}
public static implicit operator MyAbstractType<Super>(MyAbstractType<T> t) {
return MyGeneralType.Create(t);
}
}
public class MyGeneralType : MyAbstractType<Super> {
// ... same constructors and setter/getter
// fields but only keep method fields
// that contain the method references for
// implementations of abstract classes,
// and rename them not to clash with the
// actual method names ...
public MyMethod3Del myMethod3Ref;
// Implement abstract methods by calling the corresponding
// method references.
public override bool MyMethod3(string argument) {
return myMethod3Ref(argument);
}
// Same getters/setters but with override keyword
public override int field {
get { return FieldGetter(); }
set { FieldSetter(value); }
}
}
And there you go, now you can literally cast a MyAbstractType<Sub> where Sub : Super to a MyAbstractType<Super>, although it's no longer the same object anymore, but it does retain the same methods and data, it's sort of a complex pointer.
public class Sub : Super {}
public class MySubType : MyAbstractType<Sub> {
public int _field;
public override int field {
get { return _field; }
set { _field = value; }
}
public override bool MyMethod3(string argument) {
Console.WriteLine("hello " + argument);
return argument == "world";
}
}
public class MainClass {
public static void Main() {
MyAbstractType<Sub> sub = new MyAbstractType<Sub>();
MyAbstractType<Super> super = sub;
super.MyMethod3("hello"); // calls sub.MyMethod3();
super.field = 10; // sets sub.field
}
}
This isn't as good in my opinion, the other version of MyGeneralType is a more straighforward layer over the concrete types, plus it doesn't require rewriting the data fields, but it does actually answer the question, technically. Try it here: https://dotnetfiddle.net/S3r3ke
Example
Using these abstract classes:
public abstract class Animal {
public string name;
public Animal(string name) {
this.name = name;
}
public abstract string Sound();
}
public abstract class AnimalHouse<T> where T : Animal {
List<T> animals;
public AnimalHouse(T[] animals) {
this.animals = animals.ToList();
}
public static implicit operator GeneralAnimalHouse(AnimalHouse<T> house) {
return GeneralAnimalHouse.Create(house);
}
public List<string> HouseSounds() {
return animals.Select(animal => animal.Sound()).ToList();
}
}
We make this "general" variant:
public delegate List<string> HouseSoundsDel();
public class GeneralAnimalHouse {
public HouseSoundsDel HouseSounds;
public static GeneralAnimalHouse Create<T>(AnimalHouse<T> house) where T : Animal {
var general = new GeneralAnimalHouse();
general.HouseSounds = house.HouseSounds;
return general;
}
}
And finally with these inheritors:
public class Dog : Animal {
public Dog(string name) : base(name) {}
public override string Sound() {
return name + ": woof";
}
}
public class Cat : Animal {
public Cat(string name) : base(name) {}
public override string Sound() {
return name + ": meow";
}
}
public class DogHouse : AnimalHouse<Dog> {
public DogHouse(params Dog[] dogs) : base(dogs) {}
}
public class CatHouse : AnimalHouse<Cat> {
public CatHouse(params Cat[] cats) : base(cats) {}
}
We use it like this:
public class AnimalCity {
List<GeneralAnimalHouse> houses;
public AnimalCity(params GeneralAnimalHouse[] houses) {
this.houses = houses.ToList();
}
public List<string> CitySounds() {
var random = new Random();
return houses.SelectMany(house => house.HouseSounds())
.OrderBy(x => random.Next())
.ToList();
}
}
public class MainClass {
public static void Main() {
var fluffy = new Cat("Fluffy");
var miu = new Cat("Miu");
var snuffles = new Cat("Snuffles");
var snoopy = new Dog("Snoopy");
var marley = new Dog("Marley");
var megan = new Dog("Megan");
var catHouse = new CatHouse(fluffy, miu, snuffles);
var dogHouse = new DogHouse(snoopy, marley, megan);
var animalCity = new AnimalCity(catHouse, dogHouse);
foreach (var sound in animalCity.CitySounds()) {
Console.WriteLine(sound);
}
}
}
Output:
Miu: meow
Snoopy: woof
Snuffles: meow
Fluffy: meow
Marley: woof
Megan: woof
Notes:
I added names so it's clear that the method references carry their owner's data with them, for those unfamiliar with delegates.
The required using statements for this code are System, System.Collections.Generic, and System.Linq.
You can try it here: https://dotnetfiddle.net/6qkHL3#
A version that makes GeneralAnimalHouse a subclass of AnimalHouse<Animal> can be found here: https://dotnetfiddle.net/XS0ljg

Shim and Generic Methods

I want to create a Shim for an Generic Method. But I have a bit a trouble with the Generic in that case.
Here is my example:
class BaseRepository <T> where T: Entity
{
public T[] FindAll()
{
return Method<T>.FindAll()
}
}
class ClassA : base<A>
{
}
class A : Entity
{
}
class ClassB : base<B>
{
}
class B : Entity
{
}
now I want to create a ShimMethod for ClassA and ClassB
ShimBaseRepository<A>.AllInstances.FindAll = (repo) => MethodA();
ShimBaseRepository<B>.AllInstances.FindAll = (repo) => MethodB();
public A MethodA()
{
//Make the Same as MethodB
}
public B MethodB()
{
//Make the Same as MethodA
}
But what if I have mor than 20 "Base" classes? I don't want to create a Delegate/method for every baseClass. I tried something like this:
List<Type> allEntityClasses = (from x in Assembly.GetAssembly(typeof(Entity)).GetTypes()
where !x.IsAbstract && !x.IsInterface
select x).ToList();
foreach(Type type in allEntityClasses=
{
ShimBaseRepository<type????>.AllInstances.FindAll = (repo) => Method();
}
public Entity????? Method()
{
}
In my Unittest I will use the following methods:
ClassA.FindAll()
ClassB.FindAll()
and not:
Base.FindAll()
Edit:
I use Microsoft Fakes,so I can't Change anything in the ShimClass. Here is the generated sourcecode from Shim.
public class ShimBaseRepository<T> : ShimBase<BaseRepository<T>> where T : Entity
{
public static class AllInstances
{
public static FakesDelegates.Func<BaseRepository<T>, T[]> FindAll { [ShimMethod("FindAll", 20)] set; }
}
}
My intention is, that I don't want to create a delegate for every entity, I just want to iterate through all my EntityClasses and create the delegate dynamically. But I have no Idea how I add my Type object in the
ShimBase<T>
Okay, let's discuss this a little.
First of all, here is a straight-forward solution with virtual method:
public class Base<T> where T : Entity
{
public virtual T[] FindAll()
{
return null;
}
}
Then just override FindAll in concrete classes
Or, if you can, make Base abstract and InnerFindAll abstract too.
But, if you need to specify delegate in runtime (as i can see you have a specific Helper for it, but i can't get, why you invoke helper in Base and then you have some undefined in question AllInstances with a Func) this approach won't help. You'll need to implement Strategy pattern with some default strategy assigned in Base. Then you'll have 3 ways to "resolve" strategies in concrete classes:
Hardcode a strategy in constructor of concrete class
Inject strategy to concrete class constructor via DI container
Implement some kind of Mapper which'll return you appropriate Strategy for EntityType (T)
Also, i think you have some troubles with design. I don't see any reason you need to implement FindAll as a lambda injected to a static property of type Func<T> (yep, i think you can replace AllInstances.FindAll with just a static FindAll). So if i were you, i'd use abstract method..
EDIT
Now i got your problem and can give you only a rather ugly solution via reflection... I hoghly don't recomend you to use this since it's really rigour
public class Program
{
static void Main(string[] args)
{
List<Type> allEntityClasses = (from x in Assembly.GetAssembly(typeof(Entity))
.GetTypes().Where(t=>typeof(Entity).IsAssignableFrom(t))
where !x.IsAbstract && !x.IsInterface
select x).ToList();
foreach (var type in allEntityClasses)
{
var genericType = typeof(BaseGeneric<>).MakeGenericType(type);
var helper = new DelegateHelper();
var myLambda = helper.GetLambdaForType(type);
var allInst = genericType.GetProperty("AllInstances").GetValue(null);
if (allInst == null)
{
allInst = Activator.CreateInstance(genericType.GetProperty("AllInstances").PropertyType);
}
allInst.GetType().GetProperty("FindAll").SetValue(allInst,myLambda);
}
}
}
public static class BaseGeneric<T>
{
public static AllInstances<T> AllInstances { get; set; }
}
public class AllInstances<T>
{
public Func<T[]> FindAll { get; set; }
}
public class DelegateHelper
{
public Delegate GetLambdaForType(Type type)
{
var funcType = typeof(Func<>).MakeGenericType(type.MakeArrayType());
var methodInfo = typeof(DelegateHelper).GetMethods().FirstOrDefault(t => t.Name == "FunctionMethod")
.MakeGenericMethod(type);
var #delegate = methodInfo.CreateDelegate(funcType, this);
return #delegate;
}
public T[] FunctionMethod<T>()
{
return new T[10];
}
}
public class Entity
{
}
public class EntityFirst
{
}
public class EntitySecond
{
}

How to correctly cast a class to an abstract class when using type generics?

I have the following classes
public abstract class BaseViewPresenter { }
public abstract class BaseView<T> : UserControl
where T : BaseViewPresenter { }
public class LoginPresenter : BaseViewPresenter { }
public partial class LoginView : BaseView<LoginPresenter> { }
I have a method that looks like this (simplified)
public BaseView<BaseViewPresenter> Resolve(BaseViewPresenter model)
{
var type = model.GetType();
var viewType = _dataTemplates[type];
// Correctly creates BaseView object
var control = Activator.CreateInstance(viewType);
// Fails to cast as BaseView<BaseViewPresenter> so returns null
return control as BaseView<BaseViewPresenter>;
}
When I call this using an instances of LoginPresenter
var login = new LoginPresenter();
var ctl = Resolve(login);
The line Activator.CreateInstance(viewType) correctly resolves into a new instances of my LoginView, however control as BaseView<BaseViewPresenter> can't do the cast correctly so returns null.
Is there a way to correctly cast the control into BaseView<BaseViewPresenter> without using specific type generics?
Since LoginView inherits from BaseView<LoginPresenter>, and LoginPresenter inherits from BaseViewPresenter, I would assume there's a way to convert LoginView to BaseView<BaseViewPresenter>.
I am stuck with using .Net 3.5
This is a very frequently asked question. Let's rename your types:
abstract class Fruit { } // was BaseViewPresenter
abstract class FruitBowl<T> where T : Fruit // was BaseView
class Apple : Fruit { } // was LoginPresenter
class BowlOfApples : FruitBowl<Apple> { } // was LoginView
Your question now is:
I have a BowlOfApples, which inherits from FruitBowl<Apple>. Why can I not use it as a FruitBowl<Fruit>? An apple is a fruit, so a bowl of apples is a bowl of fruit.
No, it isn't. You can put a banana in a bowl of fruit, but you can't put a banana in a bowl of apples, and therefore a bowl of apples is not a bowl of fruit. (And by similar argument, a bowl of fruit is not a bowl of apples either.) Since the operations you can legally perform on the two types are different, they cannot be compatible.
Here is a photo of StackOverflow legend Jon Skeet demonstrating this fact:
The feature you want is called generic contravariance, and it is supported only on interfaces and delegate types when the compiler can prove that the variance is safe, and when the varying type is a reference type. For example, you can use an IEnumerable<Apple> in a context where IEnumerable<Fruit> is needed because the compiler can verify that there is no way that you can put a Banana into a sequence of fruit.
Do a search on "C# covariance and contravariance" on this site or on the web and you'll find many more details about how this feature works. In particular, my series of articles on how we designed and implemented this feature in C# 4 starts here: http://blogs.msdn.com/b/ericlippert/archive/2007/10/16/covariance-and-contravariance-in-c-part-one.aspx
I accepted Eric's answer since it provides a great explanation of why what I wanted wasn't possible, but I also thought I'd share my solution in case anyone else runs into this same problem.
I removed the generic type parameter from my original BaseView class, and created a 2nd version of the BaseView class that included the generic type parameter and specifics for it.
The first version is used by my .Resolve() method or other code that doesn't care about the specific types, and the second version is used by any code that does care, such as the implentation of a BaseView
Here's an example of how my code ended up looking
// base classes
public abstract class BaseViewPresenter { }
public abstract class BaseView : UserControl
{
public BaseViewPresenter Presenter { get; set; }
}
public abstract class BaseView<T> : BaseView
where T : BaseViewPresenter
{
public new T Presenter
{
get { return base.Presenter as T; }
set { base.Presenter = value; }
}
}
// specific classes
public class LoginPresenter : BaseViewPresenter { }
public partial class LoginView : BaseView<LoginPresenter>
{
// Can now call things like Presenter.LoginPresenterMethod()
}
// updated .Resolve method used for obtaining UI object
public BaseView Resolve(BaseViewPresenter presenter)
{
var type = model.GetType();
var viewType = _dataTemplates[type];
BaseView view = Activator.CreateInstance(viewType) as BaseView;
view.Presenter = presenter;
return view;
}
You're expecting to treat the type as being covariant with respect to the generic argument. Classes can never be covariant; you'd need to use an interface rather than (or in addition to) an abstract class to make it covariant with respect to T. You'd also need to be using C# 4.0.
My usual solution to this problem is to create an intermediary class that has access to the type-parametric class's methods through delegates. Fields can also be accessed through getters/setters.
The general pattern goes:
public abstract class Super {}
public abstract class MyAbstractType<T> where T : Super {
public MyGeneralType AsGeneralType() {
return MyGeneralType.Create(this);
}
// Depending on the context, an implicit cast operator might make things
// look nicer, though it might be too subtle to some tastes.
public static implicit operator MyGeneralType(MyAbstractType<T> t) {
return MyGeneralType.Create(t);
}
public int field;
public void MyMethod1() {}
public void MyMethod2(int argument) {}
public abstract bool MyMethod3(string argument);
}
public delegate T Getter<T>();
public delegate void Setter<T>(T value);
public delegate void MyMethod1Del();
public delegate void MyMethod2Del(int argument);
public delegate bool MyMethod3Del(string argument);
public class MyGeneralType {
public Getter<int> FieldGetter;
public Setter<int> FieldSetter;
public MyMethod1Del MyMethod1;
public MyMethod2Del MyMethod2;
public MyMethod3Del MyMethod3;
public static MyGeneralType Create<T>(MyAbstractType<T> t) where T : Super {
var g = new MyGeneralType();
g.FieldGetter = delegate { return t.field; };
g.FieldSetter = value => { t.field = value; };
g.MyMethod1 = t.MyMethod1;
g.MyMethod2 = t.MyMethod2;
g.MyMethod3 = t.MyMethod3;
return g;
}
public int field {
get { return FieldGetter(); }
set { FieldSetter(value); }
}
}
The above exemplifies getting all the methods and fields but normally I only need a few of them. This is a general solution to the problem and one could feasibly write a tool to generate these intermediary classes automatically, which I might at some point.
Try it here: https://dotnetfiddle.net/tLkmgR
Note that this is enough for all my cases, but you can be extra hacky with this:
public abstract class MyAbstractType<T> where T : Super {
// ... Same everything else ...
// data fields must become abstract getters/setters, unfortunate
public abstract int field {
get;
set;
}
public static implicit operator MyAbstractType<Super>(MyAbstractType<T> t) {
return MyGeneralType.Create(t);
}
}
public class MyGeneralType : MyAbstractType<Super> {
// ... same constructors and setter/getter
// fields but only keep method fields
// that contain the method references for
// implementations of abstract classes,
// and rename them not to clash with the
// actual method names ...
public MyMethod3Del myMethod3Ref;
// Implement abstract methods by calling the corresponding
// method references.
public override bool MyMethod3(string argument) {
return myMethod3Ref(argument);
}
// Same getters/setters but with override keyword
public override int field {
get { return FieldGetter(); }
set { FieldSetter(value); }
}
}
And there you go, now you can literally cast a MyAbstractType<Sub> where Sub : Super to a MyAbstractType<Super>, although it's no longer the same object anymore, but it does retain the same methods and data, it's sort of a complex pointer.
public class Sub : Super {}
public class MySubType : MyAbstractType<Sub> {
public int _field;
public override int field {
get { return _field; }
set { _field = value; }
}
public override bool MyMethod3(string argument) {
Console.WriteLine("hello " + argument);
return argument == "world";
}
}
public class MainClass {
public static void Main() {
MyAbstractType<Sub> sub = new MyAbstractType<Sub>();
MyAbstractType<Super> super = sub;
super.MyMethod3("hello"); // calls sub.MyMethod3();
super.field = 10; // sets sub.field
}
}
This isn't as good in my opinion, the other version of MyGeneralType is a more straighforward layer over the concrete types, plus it doesn't require rewriting the data fields, but it does actually answer the question, technically. Try it here: https://dotnetfiddle.net/S3r3ke
Example
Using these abstract classes:
public abstract class Animal {
public string name;
public Animal(string name) {
this.name = name;
}
public abstract string Sound();
}
public abstract class AnimalHouse<T> where T : Animal {
List<T> animals;
public AnimalHouse(T[] animals) {
this.animals = animals.ToList();
}
public static implicit operator GeneralAnimalHouse(AnimalHouse<T> house) {
return GeneralAnimalHouse.Create(house);
}
public List<string> HouseSounds() {
return animals.Select(animal => animal.Sound()).ToList();
}
}
We make this "general" variant:
public delegate List<string> HouseSoundsDel();
public class GeneralAnimalHouse {
public HouseSoundsDel HouseSounds;
public static GeneralAnimalHouse Create<T>(AnimalHouse<T> house) where T : Animal {
var general = new GeneralAnimalHouse();
general.HouseSounds = house.HouseSounds;
return general;
}
}
And finally with these inheritors:
public class Dog : Animal {
public Dog(string name) : base(name) {}
public override string Sound() {
return name + ": woof";
}
}
public class Cat : Animal {
public Cat(string name) : base(name) {}
public override string Sound() {
return name + ": meow";
}
}
public class DogHouse : AnimalHouse<Dog> {
public DogHouse(params Dog[] dogs) : base(dogs) {}
}
public class CatHouse : AnimalHouse<Cat> {
public CatHouse(params Cat[] cats) : base(cats) {}
}
We use it like this:
public class AnimalCity {
List<GeneralAnimalHouse> houses;
public AnimalCity(params GeneralAnimalHouse[] houses) {
this.houses = houses.ToList();
}
public List<string> CitySounds() {
var random = new Random();
return houses.SelectMany(house => house.HouseSounds())
.OrderBy(x => random.Next())
.ToList();
}
}
public class MainClass {
public static void Main() {
var fluffy = new Cat("Fluffy");
var miu = new Cat("Miu");
var snuffles = new Cat("Snuffles");
var snoopy = new Dog("Snoopy");
var marley = new Dog("Marley");
var megan = new Dog("Megan");
var catHouse = new CatHouse(fluffy, miu, snuffles);
var dogHouse = new DogHouse(snoopy, marley, megan);
var animalCity = new AnimalCity(catHouse, dogHouse);
foreach (var sound in animalCity.CitySounds()) {
Console.WriteLine(sound);
}
}
}
Output:
Miu: meow
Snoopy: woof
Snuffles: meow
Fluffy: meow
Marley: woof
Megan: woof
Notes:
I added names so it's clear that the method references carry their owner's data with them, for those unfamiliar with delegates.
The required using statements for this code are System, System.Collections.Generic, and System.Linq.
You can try it here: https://dotnetfiddle.net/6qkHL3#
A version that makes GeneralAnimalHouse a subclass of AnimalHouse<Animal> can be found here: https://dotnetfiddle.net/XS0ljg

How can I access a static property of type T in a generic class?

I am trying to accomplish the following scenario that the generic TestClassWrapper will be able to access static properties of classes it is made of (they will all derive from TestClass). Something like:
public class TestClass
{
public static int x = 5;
}
public class TestClassWrapper<T> where T : TestClass
{
public int test()
{
return T.x;
}
}
Gives the error:
'T' is a 'type parameter', which is not valid in the given context.
Any suggestions?
You can't, basically, at least not without reflection.
One option is to put a delegate in your constructor so that whoever creates an instance can specify how to get at it:
var wrapper = new TestClassWrapper<TestClass>(() => TestClass.x);
You could do it with reflection if necessary:
public class TestClassWrapper<T> where T : TestClass
{
private static readonly FieldInfo field = typeof(T).GetField("x");
public int test()
{
return (int) field.GetValue(null);
}
}
(Add appropriate binding flags if necessary.)
This isn't great, but at least you only need to look up the field once...
Surely you can just write this:
public int test()
{
return TestClass.x;
}
Even in a nontrivial example, you can't override a static field so will always call it from your known base class.
Why not just return TestClass.x?
Generics do not support anything related to static members, so that won't work. My advice would be: don't make it static. Assuming the field genuinely relates to the specific T, you could also use reflection:
return (int) typeof(T).GetField("x").GetValue(null);
but I don't recommend it.
Another solution is to simply not make it static, and work with the new() constraint on T to instantiate the object. Then you can work with an interface, and the wrapper can get the property out of any class that implements that interface:
public interface XExposer
{
Int32 X { get; }
}
public class TestClass : XExposer
{
public Int32 X { get { return 5;} }
}
public class XExposerWrapper<T> where T : XExposer, new()
{
public Int32 X
{
get { return new T().X; }
}
}
In fact, you can change that to public static Int32 X on the TestClassWrapper and simply get it out as Int32 fetchedX = XExposerWrapper<TestClass>.X;
Though since whatever code calls this will have to give the parameter T those same constraints, the wrapper class is pretty unnecessary at this point, since that calling code itself could also just execute new T().X and not bother with the wrapper.
Still, there are some interesting inheritance models where this kind of structure is useful. For example, an abstract class SuperClass<T> where T : SuperClass<T>, new() can both instantiate and return type T in its static functions, effectively allowing you to make inheritable static functions that adapt to the child classes (which would then need to be defined as class ChildClass : SuperClass<ChildClass>). By defining protected abstract functions / properties on the superclass, you can make functions that apply the same logic on any inherited object, but customized to that subclass according to its implementations of these abstracts. I use this for database classes where the table name and fetch query are implemented by the child class. Since the properties are protected, they are never exposed, either.
For example, on database classes, where the actual fetching logic is put in one central abstract class:
public abstract class DbClass<T> where T : DbClass<T>, new()
{
protected abstract String FetchQuery { get; }
protected abstract void Initialize(DatabaseRecord row);
public static T FetchObject(DatabaseSession dbSession, Int32 key)
{
T obj = new T();
DatabaseRecord record = dbSession.RetrieveRecord(obj.FetchQuery, key);
obj.Initialize(record);
return obj;
}
}
And the implementation:
public class User : DbClass<User>
{
public Int32 Key { get; private set;}
public String FirstName { get; set;}
public String LastName { get; set;}
protected override String FetchQuery
{ get { return "SELECT * FROM USER WHERE KEY = {0}";} }
protected override void Initialize(DatabaseRecord row)
{
this.Key = DbTools.SafeGetInt(row.GetField("KEY"));
this.FirstName = DbTools.SafeGetString(row.GetField("FIRST_NAME"));
this.LastName = DbTools.SafeGetString(row.GetField("LAST_NAME"));
}
}
This can be used as:
User usr = User.FetchObject(dbSession, userKey);
This is a rather simplified example, but as you see, this system allows a static function from the parent class to be called on the child class, to return an object of the child class.
T is a type, not parameter or variable so you cannot pick any value from any members. Here is a sample code.
public class UrlRecordService
{
public virtual void SaveSlug<T>(T entity) where T : ISlugSupport
{
if (entity == null)
throw new ArgumentNullException("entity");
int entityId = entity.Id;
string entityName = typeof(T).Name;
}
}
public interface ISlugSupport
{
int Id { get; set; }
}
cjk and Haris Hasan have the most-correct answers to the question as asked. However in this comment the OP implies that he is after something else not quite possible in C#: a way to define a contract for a static member in a derived class.
There isn't a way to strictly define this, but it is possible to set up a pattern that may be implied by a base class (or interface); e.g.:
public class TestClass
{
private static int x;
public virtual int StaticX => x;
}
or if not intended to be used directly
public abstract class AbstractTestClass
{
public abstract int StaticX {get;}
}
or (my preference in this contrived example)
public interface ITest
{
int StaticX {get;}
}
Elsewhere, this pattern of a StaticXxx member may be (loosely) associated with implementations that should back the member with static fields (as in TestClass above).
What's kind of fun is that this can be (re)exposed as static by the generic wrapper, because generic statics are isolated to each type used.
public class TestClassWrapper<T> where T : ITest, new()
{
private readonly static T testInstance = new T();
public static int test() => testInstance.x;
}
This uses a new() condition, but an associated static, generic factory pattern for creating ITest (or TestClass or AbstractTestClass) instances may also be used.
However this may not be feasible if you can't have long-lived instances of the class.
In this situation you assume that T is a subclass of TestClass. Subclasses of TestClass will not have the static int x.

Categories