I have the following interfaces
public interface IPrice
{
int Price { get; }
}
public interface IGear : IPrice
{
GearUpgrade Upgrades { get; }
}
and the following classes
public class GearUpgrade : IPrice
{
public int Price
{
get { return price; }
set { price = value; }
}
}
public class ArmorUpgrade : GearUpgrade
{
}
public class ShieldUpgrade : GearUpgrade
{
}
public class WeaponUpgrade : GearUpgrade
{
}
So when I try to implement an IGear like this...
public class Armor : IGear
{
private int price = 0;
public int Price { get => price; }
private ArmorUpgrade upgrades;
public ArmorUpgrade Upgrades
{
get { return upgrades; }
set { upgrades = value; }
}
}
I get the following error:
'Armor' does not implement interface member 'IGear.Upgrades'. 'Armor.Upgrades' cannot implement 'IGear.Upgrades' because it does not have the matching return type of 'GearUpgrade'.
I figured that if Upgrades is from a subclass of GearUpgrade, the interface should be fulfilled, but apparently it is not... Did I make a false assumption?
In order to implement the interface, the method signatures have to match exactly: C# doesn't apply covariance and contravariance implicitly.
Here's a simple fix to allow Armor to implement the IGear interface without messing with the class:
public class Armor : IGear
{
private int price = 0;
public int Price { get => price; }
private ArmorUpgrade upgrades;
public ArmorUpgrade Upgrades
{
get { return upgrades; }
set { upgrades = value; }
}
GearUpgrade IGear.Upgrades => this.Upgrades;
}
Related
I have the following code:
public interface BaseInterface
{
int ID { get; }
}
public interface SpecialInterface1 : BaseInterface
{
int price { get; }
}
public interface SpecialInterface1 : BaseInterface
{
int xyz { get; }
}
public class Implementation1 : SpecialInterface
{
int price { get; }
int ID { get; internal set; }
}
public class Implementation2 : SpecialInterface
{
int xyz { get; }
int ID { get; internal set; }
}
Now in a Management class I want to add the objects that implement BaseInterface into a List.
I know that I can use as or is to cast the interface to an implementation, but in my project, I have about 10 special interfaces with an implementation each so I would have to write a really big if statements.
public void Add(BaseInterface u, int id)
{
if (u is Implementation1)
{
((Implementation1)u).ID = id;
Units.Add(u);
}
if (u is Implementation2)
{
((Implementation2)u).ID = id;
Units.Add(u);
}
}
My goal is that the id is not changeable outside the implementation and I would provide only the interfaces outside my dll so none can change the id.
A solution would be to add an extra interface. This eliminates the internal setter in your implementation.
internal interface IChangeID
{
void SetID(int id);
}
public interface IBaseInterface
{
int ID { get; }
}
public class Implementation : IBaseInterface,
IChangeID
{
public void SetID(int id) { ID = id; }
public int ID { get; private set; }
}
Only the real implementations should implement IChangeID. Returning IBaseInterface or ISpecialInterface will hide the setter, because those interfaces do not inherit from IChangeID.
This would change your add into:
public void Add(BaseInterface u, int id)
{
((IChangeID)u).SetID(id);
Units.Add(u);
}
If you do want to return the concrete types, not interfaces. You could implement the given interface explicit. This will hide the set method even from the concrete implementation.
public class Implementation : IBaseInterface,
IChangeID
{
void IChangeID.SetID(int id) { ID = id; }
public int ID { get; private set; }
}
var obj = new Implementation();
obj.SetID() // This WILL NOT Compile
If you don't want to modify the interfaces and implementations, you could use C# 7's pattern matching to access the implementation type without casting. It requires 3 lines per implementation type but avoids modifying the classes:
public void Add(BaseInterface u, int id)
{
switch(u)
{
case Implementation1 u1:
u1.ID = id;
break;
case Implementation2 u1:
u1.ID = id;
break;
default :
throw new ArgumentException("Unexpected implementation!");
}
Units.Add(u);
}
The obvious disadvantage is that the code will have to be modified if a new implementation is added.
Another option is to use dynamic, losing type safety. This will fail at runtime if some implementation doesn't have a setter (eg because it was replaced by constructor initialization)
public void Add(BaseInterface u, int id)
{
dynamic x =u;
x.ID=id;
Units.Add(x);
}
While I like this answer the best,
I recommend making the ID a required parameter of all the implementation's constructors, and then to use a factory pattern to generate any instance you require. This makes any instance without the ID set throw an exception at compile time rather than runtime reducing the probability of exceptions.
Here is a simple example that gets you what you want without an additional interface. Should you choose you can combine my answer with #Iqon's answer.
public interface IInterface
{
int ID { get; }
}
internal class InternalImplementation: IInterface {
public InternalImplementation(int ID) { this.ID = ID; }
public int ID { get; set; }
}
public class MyImplementationFactoryService {
public IInterface Create() {
int id = 1 // Or however you get your ID, possibly from a DB query?
return new InternalImplementation(id);
}
public IInterface Create(type|enum createtype) {
// return type based on typeof or enum
}
}
In case you want to use reflection to set property, code below may help
public interface IBaseInterface
{
int ID { get; }
}
public class Impl1 : IBaseInterface
{
public int ID { get; internal set; }
public int Price {get; set;}
}
public class Impl2 : IBaseInterface
{
public int ID { get { return 0;} }
public int Subscription {get; set;}
}
public class Program
{
public static void Main(string[] args)
{
IBaseInterface obj1 = new Impl1();
SetProperty(obj1, "ID", 100);
Console.WriteLine("Object1 Id is {0}", obj1.ID);
IBaseInterface obj2 = new Impl2();
SetProperty(obj2, "ID", 500);
Console.WriteLine("Object2 Id is {0}", obj2.ID);
}
private static void SetProperty(IBaseInterface obj, string propertyName, object id){
if(obj.GetType().GetProperty(propertyName).CanWrite) {
obj.GetType().GetProperty(propertyName).SetValue(obj, id);
Console.WriteLine("CanWrite property '{0}' : {1}" , propertyName, obj.GetType().GetProperty(propertyName).CanWrite);
}
}
}
Output
CanWrite property 'ID' : True
Object1 Id is 100
Object2 Id is 0
I am stuck on interfaces and inheritance. If I implement two classes who both have an interface each, how would I be able to add the properties of Class A and B together? For instance I wanted to associate firstitem with the seconditem.
public interface IAlpha
{
[WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.Bare, RequestFormat = WebMessageFormat.Xml, ResponseFormat = WebMessageFormat.Xml, UriTemplate = "/AddBravoToAlpha/{firstitem}/{seconditem}")]
void AddBravoToAlpha(int firstitem, int seconditem);
}
public interface IBravo
{
// what goes in here?
}
public Class Alpha
{
public Alpha()
{
AlphaAdd = new List<Bravo>();
}
int Firstitem { get; set }
public List<Bravo> AlphaAdd { get; set; }
}
public Class Bravo
{
public Bravo()
{
BravoAdd = new List<Alpha>(); //not sure if Bravo can access Alpha (derived class)
}
int Seconditem { get; set }
Guid Indexer { get; set }
public List<Alpha> BravoAdd { get; set; }
}
public Class BravoDoesAlpha : IBravo, IAlpha //????
{
List<Alpha> alpha = new List<Alpha>();
List<Bravo> bravo = new List<Bravo>();
public void AddBravoToAlpha(int firstitem, int seconditem)
{
var result = alpha.Where(n => String.Equals(n.Firstitem, firstitem)).FirstOrDefault();
var result1 = bravo.Where(n => String.Equals(n.Seconditem, seconditem)).FirstOrDefault();
if (result != null)
{
result.BravoAdd.Add(new Alpha() { Firstitem = firstitem });
}
if (result1 != null)
{
result1.AlphaAdd.Add(new Bravo() { Seconditem = seconditem });
}
}
}
Okay, so the question you are being asked is basically one about how to do a certain kind of refactoring known as "extracting" an interface.
This is one of the more easy refactorings to do and to understand if you understand interfaces vs. types.
All interfaces are types, but not all types are interfaces.
Now let's assume we are dealing in a world with two families of types: classes and interfaces (as in your example).
Instead of working your example directly, I will work a different but clearer example that does not use Alpha, Bravo, Charlie, Epsilon, etc. because this kind of stuff makes it harder to see the meaning.
First, here's the before:
public class Dog
{
public void Bark() { Console.WriteLine("Woof!"); }
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
}
public class DoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
}
To extract the interface of a class, simply, well, extract all the public members of the class to an interface.
public interface IDog
{
void Bark();
int NumberOfDogLegs { get; }
int NumberOfDogFriends { get; set; }
}
public interface IDoorBell
{
void Chime();
}
Now to really make use of OOP, you can find a way to abstract IDog and IDoorBell. What do they have in common? Well, the obvious one is they both make a noise. So we make a new interface, public interface IMakeANoise and say that IDog and IDoorBell both implement it.
public interface IMakeANoise
{
void MakeNoise();
}
public interface IDog : IMakeANoise
{
void Bark();
int NumberOfDogLegs { get; }
int NumberOfDogFriends { get; set; }
}
public interface IDoorBell : IMakeANoise
{
void Chime();
}
And now we have a new method to implement on Dog and DoorBell.
public class Dog : IDog
{
public void Bark() { Console.WriteLine("Woof!"); }
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
public void IMakeANoise() { Bark(); }
}
public class DoorBell : IDoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
public void IMakeANoise() { Chime(); }
}
Now let's say we are actually writing a video game and Dog and DoorBell are both things that we can show on the screen. Well, this makes them a lot bigger because we will need to provide more information like their coordinates, their states, etc.
In this case, Dog and DoorBell may be very different to us but are similar enough to potentially merit sharing a base class. (Really, this is a stretch, but it does get the point across.)
Without adding all those new interfaces and their implementations, let's just do the "sharing a base class" refactoring for what we already have.
public class RenderableThing : IMakeANoise, IDoAThousandOtherThings
{
protected virtual string MyNoiseToMake { get { return ""; } }
public virtual void MakeANoise()
{
Console.WriteLine(MyNoiseToMake);
}
}
public class Dog : RenderableThing, IDog
{
protected override string MyNoiseToMake { get { return "Woof!"; } }
public void Bark() { MakeANoise(); } // see what we did there?
// Notice that I am not declaring the method MakeANoise because it is inherited and I am using it by overriding MyNoiseToMake
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
}
public class DoorBell : RenderableThing, IDoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
public override void MakeANoise()
{
Chime(); Chime(); Chime(); //I'll do it my own way!
}
}
You may wonder, what's the point? So we can do this...
IMakeANoise dogNoiseMaker = new Dog();
IMakeANoise doorBellNoiseMaker = new DoorBell();
IList<IMakeANoise> listOfNoiseMakers = new List<IMakeANoise>();
listOfNoiseMakers.Add(dogNoiseMaker);
listOfNoiseMakers.Add(doorBellNoiseMaker);
foreach (IMakeANoise noiseMaker in listOfNoiseMakers)
{
noiseMaker.MakeANoise();
}
// This will output
// Woof!
// Ding!
// Ding!
// Ding!
I'm going to take a shot in the dark and venture a guess that you don't quite understand what interfaces and inheritance is. I'll start off by explaining what interfaces are:
Interfaces contain only the definitions of methods, properties, events or indexers that an inheriting class must implement.
For example:
interface IExample
{
void HelloWorld();
}
class ExampleClass : IExample
{
public void HelloWorld()
{
Console.WriteLine("Hello world.");
}
}
Now for Inheritance; when you derive a class from a base class the derived class will inherit all members of the base class except for the constructors. Note: Depending on the accessibility of the members in the base class it's children may or may not be able to access the parents members.
public class Animal
{
public string Name { get; set; }
public Animal(string name)
{
Name = name;
}
public void Talk()
{
Console.WriteLine("{0} is talking", Name);
}
}
public class Cat : Animal
{
public Cat(string name) : base(name) { }
}
public class Dog : Animal
{
public string FurColor { get; set; }
public Dog(string name, string furColor) : base(name)
{
FurColor = furColor;
}
public void Greeting()
{
Console.WriteLine("{0} has {1} fur.", Name, FurColor);
}
}
class Program
{
static void Main(string[] args)
{
var cat = new Cat("Rex");
cat.Talk();
var dog = new Dog("Beanie", "Red");
dog.Talk();
}
}
This is an enhancement on my previous question on specification pattern - How to combine conditions dynamically?.
I am trying to make the OnSaleSpecificationForBook method a generic one. The reason being the AudioCD logic also needs a similar specification and both Book and AudioCD implements ISellingItem interface.
Specification
public class OnSaleSpecificationForBook : Specification<Book>
{
public override bool IsSatisfiedBy(Book product)
{
return product.IsOnSale;
}
}
I tried to create a generic method as listed below but it throws following error:
The type or namespace name 'T' could not be found
Code with compilation error
public class OnSaleSpecification : Specification<T>
{
public override bool IsSatisfiedBy(T item)
{
return item.IsOnSale;
}
}
QUESTIONS
What is the reason for this error?
How can we make this method generic?
Note: I am using .Net 4.0. However I would like to know if there is any difference needed when compared with .Net 2.0
Abstractions
public interface ISellingItem
{
bool IsOnSale { get; set; }
double Price { get; set; }
}
public abstract class Specification<T>
{
public abstract bool IsSatisfiedBy(T obj);
}
Client
class Program
{
static void Main(string[] args)
{
List<Book> list = new List<Book>();
Book p1 = new Book(false, 99);
Book p2 = new Book(true, 99);
Book p3 = new Book(true, 101);
list.Add(p1);
list.Add(p2);
list.Add(p3);
var specification = new OnSaleSpecificationForBook();
List<Book> selectedList =
ProductFilterHelper.GetProductsUisngDynamicFilters(list, specification);
}
}
public static class ProductFilterHelper
{
public static List<Book> GetProductsUisngDynamicFilters(List<Book> productList, Specification<Book> productSpecification)
{
return productList.Where(p => productSpecification.IsSatisfiedBy(p))
.ToList();
}
}
Entities
public class Book : ISellingItem
{
public bool IsOnSale { get; set; }
public double Price { get; set; }
public Book(bool isOnSale, double price)
{
this.Price = price;
this.IsOnSale = isOnSale;
}
}
public class AudioCD : ISellingItem
{
public bool IsOnSale { get; set; }
public double Price { get; set; }
public AudioCD(bool isOnSale, double price)
{
this.Price = price;
this.IsOnSale = isOnSale;
}
}
You need to specify what the generic parameter's type is implementing before the compiler will know that it is an ISellingItem. You can do this with a where T: ISellingItem clause:
public class OnSaleSpecification<T> : Specification<T> where T : ISellingItem
{
public override bool IsSatisfiedBy(T item)
{
return item.IsOnSale;
}
}
Your class OnSaleSpecification need to define the generic parameter T and constrain it to an ISellingItem
public class OnSaleSpecification<T> : Specification<T> where T : ISellingItem
{
public override bool IsSatisfiedBy(T item)
{
return item.IsOnSale;
}
}
how do i handle Enums without using switch or if statements in C#?
For Example
enum Pricemethod
{
Max,
Min,
Average
}
... and i have a class Article
public class Article
{
private List<Double> _pricehistorie;
public List<Double> Pricehistorie
{
get { return _pricehistorie; }
set { _pricehistorie = value; }
}
public Pricemethod Pricemethod { get; set; }
public double Price
{
get {
switch (Pricemethod)
{
case Pricemethod.Average: return Average();
case Pricemethod.Max: return Max();
case Pricemethod.Min: return Min();
}
}
}
}
i want to avoid the switch statement and make it generic.
For a specific Pricemethod call a specific Calculation and return it.
get { return CalculatedPrice(Pricemethod); }
Wich pattern is to use here and maybe someone have a good implementation idea.
Searched already for state pattern, but i dont think this is the right one.
how do I handle enums without using switch or if statements in C#?
You don't. enums are just a pleasant syntax for writing const int.
Consider this pattern:
public abstract class PriceMethod
{
// Prevent inheritance from outside.
private PriceMethod() {}
public abstract decimal Invoke(IEnumerable<decimal> sequence);
public static PriceMethod Max = new MaxMethod();
private sealed class MaxMethod : PriceMethod
{
public override decimal Invoke(IEnumerable<decimal> sequence)
{
return sequence.Max();
}
}
// etc,
}
And now you can say
public decimal Price
{
get { return PriceMethod.Invoke(this.PriceHistory); }
}
And the user can say
myArticle.PriceMethod = PriceMethod.Max;
decimal price = myArticle.Price;
You could create an interface, and classes that implement it:
public interface IPriceMethod
{
double Calculate(IList<double> priceHistorie);
}
public class AveragePrice : IPriceMethod
{
public double Calculate(IList<double> priceHistorie)
{
return priceHistorie.Average();
}
}
// other classes
public class Article
{
private List<Double> _pricehistorie;
public List<Double> Pricehistorie
{
get { return _pricehistorie; }
set { _pricehistorie = value; }
}
public IPriceMethod Pricemethod { get; set; }
public double Price
{
get {
return Pricemethod.Calculate(Pricehistorie);
}
}
}
Edit: another way is using a Dictionary to map Funcs, so you don't have to create classes just for this (this code is based on code by Servy, who since deleted his answer):
public class Article
{
private static readonly Dictionary<Pricemethod, Func<IEnumerable<double>, double>>
priceMethods = new Dictionary<Pricemethod, Func<IEnumerable<double>, double>>
{
{Pricemethod.Max,ph => ph.Max()},
{Pricemethod.Min,ph => ph.Min()},
{Pricemethod.Average,ph => ph.Average()},
};
public Pricemethod Pricemethod { get; set; }
public List<Double> Pricehistory { get; set; }
public double Price
{
get
{
return priceMethods[Pricemethod](Pricehistory);
}
}
}
I'm wondering about what's the way to go, if I need to publicate data-interfaces but want to use them internal with extended calculated properties. To make it clearer:
// The public interface
public interface IData
{
int Property { get; }
}
// The internal interface
internal interface IExtendedData : IData
{
int ExtendedProperty { get; }
}
// The assumed implementation of someone using my interface
public class Data : IData
{
public Data(int a)
{
Property = a;
}
public int Property
{
get;
private set;
}
public override string ToString()
{
return Property.ToString();
}
}
// My implementation
internal class ExtendedData : IExtendedData
{
public ExtendedData(int a)
{
Property = a;
}
public int Property
{
get;
private set;
}
public int ExtendedProperty
{
get
{
return 2 * Property;
}
}
public override string ToString()
{
return Property.ToString() + ExtendedProperty.ToString();
}
}
// publicated by me, for the person who uses my dll
public static class Calculations
{
public static int DoSomeCalculation(IData data, int parameter)
{
// This probably don't work, but maybe shows what I want to do
IExtendedData tempData = (ExtendedData)data;
return tempData.ExtendedProperty * parameter;
}
}
I'm realy frustrated, cause I feel like missing some basical programing skills.
You could solve this problem by implementing ExtendedData as a Wrapper for a class implementing IData
internal class ExtendedData : IExtendedData
{
private IData data;
public ExtendedData(IData data)
{
this.data = data;
}
public int Property
{
get { return data.Property; }
private set { data.Property = value; }
}
public int ExtendedProperty
{
get
{
return 2 * Property;
}
}
}
and use this in DoSomeCalculation like
IExtendedData tempData = new ExtendedData(data);
ExtendedData could inherit from Data:
class ExtendedData : Data
{...}
And for creation of a Data object you add a factory like so:
public class DataFactory
{
public IData CreateData()
{
return new ExtendedData();
}
}
User have to create all its Data objects by this factory. You can ensure it by making Data's constructor internal.
In your DLL you can then cast to ExtendedData.