This is an enhancement on my previous question on specification pattern - How to combine conditions dynamically?.
I am trying to make the OnSaleSpecificationForBook method a generic one. The reason being the AudioCD logic also needs a similar specification and both Book and AudioCD implements ISellingItem interface.
Specification
public class OnSaleSpecificationForBook : Specification<Book>
{
public override bool IsSatisfiedBy(Book product)
{
return product.IsOnSale;
}
}
I tried to create a generic method as listed below but it throws following error:
The type or namespace name 'T' could not be found
Code with compilation error
public class OnSaleSpecification : Specification<T>
{
public override bool IsSatisfiedBy(T item)
{
return item.IsOnSale;
}
}
QUESTIONS
What is the reason for this error?
How can we make this method generic?
Note: I am using .Net 4.0. However I would like to know if there is any difference needed when compared with .Net 2.0
Abstractions
public interface ISellingItem
{
bool IsOnSale { get; set; }
double Price { get; set; }
}
public abstract class Specification<T>
{
public abstract bool IsSatisfiedBy(T obj);
}
Client
class Program
{
static void Main(string[] args)
{
List<Book> list = new List<Book>();
Book p1 = new Book(false, 99);
Book p2 = new Book(true, 99);
Book p3 = new Book(true, 101);
list.Add(p1);
list.Add(p2);
list.Add(p3);
var specification = new OnSaleSpecificationForBook();
List<Book> selectedList =
ProductFilterHelper.GetProductsUisngDynamicFilters(list, specification);
}
}
public static class ProductFilterHelper
{
public static List<Book> GetProductsUisngDynamicFilters(List<Book> productList, Specification<Book> productSpecification)
{
return productList.Where(p => productSpecification.IsSatisfiedBy(p))
.ToList();
}
}
Entities
public class Book : ISellingItem
{
public bool IsOnSale { get; set; }
public double Price { get; set; }
public Book(bool isOnSale, double price)
{
this.Price = price;
this.IsOnSale = isOnSale;
}
}
public class AudioCD : ISellingItem
{
public bool IsOnSale { get; set; }
public double Price { get; set; }
public AudioCD(bool isOnSale, double price)
{
this.Price = price;
this.IsOnSale = isOnSale;
}
}
You need to specify what the generic parameter's type is implementing before the compiler will know that it is an ISellingItem. You can do this with a where T: ISellingItem clause:
public class OnSaleSpecification<T> : Specification<T> where T : ISellingItem
{
public override bool IsSatisfiedBy(T item)
{
return item.IsOnSale;
}
}
Your class OnSaleSpecification need to define the generic parameter T and constrain it to an ISellingItem
public class OnSaleSpecification<T> : Specification<T> where T : ISellingItem
{
public override bool IsSatisfiedBy(T item)
{
return item.IsOnSale;
}
}
Related
I have the following code:
public interface BaseInterface
{
int ID { get; }
}
public interface SpecialInterface1 : BaseInterface
{
int price { get; }
}
public interface SpecialInterface1 : BaseInterface
{
int xyz { get; }
}
public class Implementation1 : SpecialInterface
{
int price { get; }
int ID { get; internal set; }
}
public class Implementation2 : SpecialInterface
{
int xyz { get; }
int ID { get; internal set; }
}
Now in a Management class I want to add the objects that implement BaseInterface into a List.
I know that I can use as or is to cast the interface to an implementation, but in my project, I have about 10 special interfaces with an implementation each so I would have to write a really big if statements.
public void Add(BaseInterface u, int id)
{
if (u is Implementation1)
{
((Implementation1)u).ID = id;
Units.Add(u);
}
if (u is Implementation2)
{
((Implementation2)u).ID = id;
Units.Add(u);
}
}
My goal is that the id is not changeable outside the implementation and I would provide only the interfaces outside my dll so none can change the id.
A solution would be to add an extra interface. This eliminates the internal setter in your implementation.
internal interface IChangeID
{
void SetID(int id);
}
public interface IBaseInterface
{
int ID { get; }
}
public class Implementation : IBaseInterface,
IChangeID
{
public void SetID(int id) { ID = id; }
public int ID { get; private set; }
}
Only the real implementations should implement IChangeID. Returning IBaseInterface or ISpecialInterface will hide the setter, because those interfaces do not inherit from IChangeID.
This would change your add into:
public void Add(BaseInterface u, int id)
{
((IChangeID)u).SetID(id);
Units.Add(u);
}
If you do want to return the concrete types, not interfaces. You could implement the given interface explicit. This will hide the set method even from the concrete implementation.
public class Implementation : IBaseInterface,
IChangeID
{
void IChangeID.SetID(int id) { ID = id; }
public int ID { get; private set; }
}
var obj = new Implementation();
obj.SetID() // This WILL NOT Compile
If you don't want to modify the interfaces and implementations, you could use C# 7's pattern matching to access the implementation type without casting. It requires 3 lines per implementation type but avoids modifying the classes:
public void Add(BaseInterface u, int id)
{
switch(u)
{
case Implementation1 u1:
u1.ID = id;
break;
case Implementation2 u1:
u1.ID = id;
break;
default :
throw new ArgumentException("Unexpected implementation!");
}
Units.Add(u);
}
The obvious disadvantage is that the code will have to be modified if a new implementation is added.
Another option is to use dynamic, losing type safety. This will fail at runtime if some implementation doesn't have a setter (eg because it was replaced by constructor initialization)
public void Add(BaseInterface u, int id)
{
dynamic x =u;
x.ID=id;
Units.Add(x);
}
While I like this answer the best,
I recommend making the ID a required parameter of all the implementation's constructors, and then to use a factory pattern to generate any instance you require. This makes any instance without the ID set throw an exception at compile time rather than runtime reducing the probability of exceptions.
Here is a simple example that gets you what you want without an additional interface. Should you choose you can combine my answer with #Iqon's answer.
public interface IInterface
{
int ID { get; }
}
internal class InternalImplementation: IInterface {
public InternalImplementation(int ID) { this.ID = ID; }
public int ID { get; set; }
}
public class MyImplementationFactoryService {
public IInterface Create() {
int id = 1 // Or however you get your ID, possibly from a DB query?
return new InternalImplementation(id);
}
public IInterface Create(type|enum createtype) {
// return type based on typeof or enum
}
}
In case you want to use reflection to set property, code below may help
public interface IBaseInterface
{
int ID { get; }
}
public class Impl1 : IBaseInterface
{
public int ID { get; internal set; }
public int Price {get; set;}
}
public class Impl2 : IBaseInterface
{
public int ID { get { return 0;} }
public int Subscription {get; set;}
}
public class Program
{
public static void Main(string[] args)
{
IBaseInterface obj1 = new Impl1();
SetProperty(obj1, "ID", 100);
Console.WriteLine("Object1 Id is {0}", obj1.ID);
IBaseInterface obj2 = new Impl2();
SetProperty(obj2, "ID", 500);
Console.WriteLine("Object2 Id is {0}", obj2.ID);
}
private static void SetProperty(IBaseInterface obj, string propertyName, object id){
if(obj.GetType().GetProperty(propertyName).CanWrite) {
obj.GetType().GetProperty(propertyName).SetValue(obj, id);
Console.WriteLine("CanWrite property '{0}' : {1}" , propertyName, obj.GetType().GetProperty(propertyName).CanWrite);
}
}
}
Output
CanWrite property 'ID' : True
Object1 Id is 100
Object2 Id is 0
I am stuck on interfaces and inheritance. If I implement two classes who both have an interface each, how would I be able to add the properties of Class A and B together? For instance I wanted to associate firstitem with the seconditem.
public interface IAlpha
{
[WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.Bare, RequestFormat = WebMessageFormat.Xml, ResponseFormat = WebMessageFormat.Xml, UriTemplate = "/AddBravoToAlpha/{firstitem}/{seconditem}")]
void AddBravoToAlpha(int firstitem, int seconditem);
}
public interface IBravo
{
// what goes in here?
}
public Class Alpha
{
public Alpha()
{
AlphaAdd = new List<Bravo>();
}
int Firstitem { get; set }
public List<Bravo> AlphaAdd { get; set; }
}
public Class Bravo
{
public Bravo()
{
BravoAdd = new List<Alpha>(); //not sure if Bravo can access Alpha (derived class)
}
int Seconditem { get; set }
Guid Indexer { get; set }
public List<Alpha> BravoAdd { get; set; }
}
public Class BravoDoesAlpha : IBravo, IAlpha //????
{
List<Alpha> alpha = new List<Alpha>();
List<Bravo> bravo = new List<Bravo>();
public void AddBravoToAlpha(int firstitem, int seconditem)
{
var result = alpha.Where(n => String.Equals(n.Firstitem, firstitem)).FirstOrDefault();
var result1 = bravo.Where(n => String.Equals(n.Seconditem, seconditem)).FirstOrDefault();
if (result != null)
{
result.BravoAdd.Add(new Alpha() { Firstitem = firstitem });
}
if (result1 != null)
{
result1.AlphaAdd.Add(new Bravo() { Seconditem = seconditem });
}
}
}
Okay, so the question you are being asked is basically one about how to do a certain kind of refactoring known as "extracting" an interface.
This is one of the more easy refactorings to do and to understand if you understand interfaces vs. types.
All interfaces are types, but not all types are interfaces.
Now let's assume we are dealing in a world with two families of types: classes and interfaces (as in your example).
Instead of working your example directly, I will work a different but clearer example that does not use Alpha, Bravo, Charlie, Epsilon, etc. because this kind of stuff makes it harder to see the meaning.
First, here's the before:
public class Dog
{
public void Bark() { Console.WriteLine("Woof!"); }
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
}
public class DoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
}
To extract the interface of a class, simply, well, extract all the public members of the class to an interface.
public interface IDog
{
void Bark();
int NumberOfDogLegs { get; }
int NumberOfDogFriends { get; set; }
}
public interface IDoorBell
{
void Chime();
}
Now to really make use of OOP, you can find a way to abstract IDog and IDoorBell. What do they have in common? Well, the obvious one is they both make a noise. So we make a new interface, public interface IMakeANoise and say that IDog and IDoorBell both implement it.
public interface IMakeANoise
{
void MakeNoise();
}
public interface IDog : IMakeANoise
{
void Bark();
int NumberOfDogLegs { get; }
int NumberOfDogFriends { get; set; }
}
public interface IDoorBell : IMakeANoise
{
void Chime();
}
And now we have a new method to implement on Dog and DoorBell.
public class Dog : IDog
{
public void Bark() { Console.WriteLine("Woof!"); }
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
public void IMakeANoise() { Bark(); }
}
public class DoorBell : IDoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
public void IMakeANoise() { Chime(); }
}
Now let's say we are actually writing a video game and Dog and DoorBell are both things that we can show on the screen. Well, this makes them a lot bigger because we will need to provide more information like their coordinates, their states, etc.
In this case, Dog and DoorBell may be very different to us but are similar enough to potentially merit sharing a base class. (Really, this is a stretch, but it does get the point across.)
Without adding all those new interfaces and their implementations, let's just do the "sharing a base class" refactoring for what we already have.
public class RenderableThing : IMakeANoise, IDoAThousandOtherThings
{
protected virtual string MyNoiseToMake { get { return ""; } }
public virtual void MakeANoise()
{
Console.WriteLine(MyNoiseToMake);
}
}
public class Dog : RenderableThing, IDog
{
protected override string MyNoiseToMake { get { return "Woof!"; } }
public void Bark() { MakeANoise(); } // see what we did there?
// Notice that I am not declaring the method MakeANoise because it is inherited and I am using it by overriding MyNoiseToMake
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
}
public class DoorBell : RenderableThing, IDoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
public override void MakeANoise()
{
Chime(); Chime(); Chime(); //I'll do it my own way!
}
}
You may wonder, what's the point? So we can do this...
IMakeANoise dogNoiseMaker = new Dog();
IMakeANoise doorBellNoiseMaker = new DoorBell();
IList<IMakeANoise> listOfNoiseMakers = new List<IMakeANoise>();
listOfNoiseMakers.Add(dogNoiseMaker);
listOfNoiseMakers.Add(doorBellNoiseMaker);
foreach (IMakeANoise noiseMaker in listOfNoiseMakers)
{
noiseMaker.MakeANoise();
}
// This will output
// Woof!
// Ding!
// Ding!
// Ding!
I'm going to take a shot in the dark and venture a guess that you don't quite understand what interfaces and inheritance is. I'll start off by explaining what interfaces are:
Interfaces contain only the definitions of methods, properties, events or indexers that an inheriting class must implement.
For example:
interface IExample
{
void HelloWorld();
}
class ExampleClass : IExample
{
public void HelloWorld()
{
Console.WriteLine("Hello world.");
}
}
Now for Inheritance; when you derive a class from a base class the derived class will inherit all members of the base class except for the constructors. Note: Depending on the accessibility of the members in the base class it's children may or may not be able to access the parents members.
public class Animal
{
public string Name { get; set; }
public Animal(string name)
{
Name = name;
}
public void Talk()
{
Console.WriteLine("{0} is talking", Name);
}
}
public class Cat : Animal
{
public Cat(string name) : base(name) { }
}
public class Dog : Animal
{
public string FurColor { get; set; }
public Dog(string name, string furColor) : base(name)
{
FurColor = furColor;
}
public void Greeting()
{
Console.WriteLine("{0} has {1} fur.", Name, FurColor);
}
}
class Program
{
static void Main(string[] args)
{
var cat = new Cat("Rex");
cat.Talk();
var dog = new Dog("Beanie", "Red");
dog.Talk();
}
}
I have the following base class:
public class Base
{
public string LogicalName { get; set; }
public int NumberOfChars { get; set; }
public Base()
{
}
public Base(string logicalName, int numberOfChars)
{
LogicalName = logicalName;
NumberOfChars = numberOfChars;
}
}
and the following derived classes:
public class Derived1 : Base
{
public const string EntityLogicalName = "Name1";
public const int EntityNumberOfChars = 30;
public Derived1() : base(EntityLogicalName, EntityNumberOfChars)
{
}
}
public class Derived2 : Base
{
public const string EntityLogicalName = "Name2";
public const int EntityNumberOfChars = 50;
public Derived2()
: base(EntityLogicalName, EntityNumberOfChars)
{
}
}
and I also have this function that is provided by a service:
public IEnumerable<T> GetEntities<T>(string entityName, int numberOfChars) where T : Base
{
//Some code to get the entities
}
My problem is how can I call this function generically? I want to call it with something that looks like this:
public void TestEntities<T>() where T : Base
{
var entities = GetEntities<T>(T.EntityLogicalName, T.EntityNumberOfChars);
//some other code to test the entities
}
This of course doesn't work because at this point T is not known. How can I accomplish something similar to this? EntityLogicalName and EntityNumberOfChars are characteristics that all Base derived classes have and they never change for each derived class. Can I get them from the Base class without instantiating objects or some other way that I am not seeing?
Replace constants with getter abstract properties
public abstract class Base
{
public abstract string LogicalName { get; }
public abstract int NumberOfChars { get; }
public Base()
{
}
}
public class Derived1 : Base
{
public string LogicalName { get { return "Name1"; } }
public int NumberOfChars { get { return 30; } }
public Derived1() : base()
{
}
}
Also, you will be able to put some logic into overriden getter, e.g. :
...
public string LogicalName { get { return this.EntityMap.Name; } }
...
UPDATE: The fact that you do not want to instantiate object from class but want to be able to get that string in a strongly typed manner can be handled in one more way. It is totally separate from answer above ( Since you can't override static props in c#). Consider the following code. We are adding one more class here, but LocatorInner can be a member of BaseClass. We are using this approach a lot in several existing apps.:
public class Locator
{
public static class LocatorInner<T> where T : BaseClass
{
public static string Name { get; set; }
}
public static string GetName<T>() where T : BaseClass
{
return LocatorInner<T>.Name;
}
public static void SetName<T>(string name) where T : BaseClass
{
LocatorInner<T>.Name = name;
}
}
public class BaseClass
{
}
public class DerivedClass: BaseClass
{
static DerivedClass()
{
Locator.LocatorInner<DerivedClass>.Name = "me";
}
}
public class TestClass<T> where T : BaseClass
{
public void Method()
{
var name = Locator.GetName<T>();
}
}
IMHO, I believe using constants here is a bad design decision.
You can either solve the issue using #vittore approach, but for me it sounds like you should use meta-programming with attributes if you're looking to get data from the T generic argument
For example, what about:
public class LogicalNameAttribute : Attribute
{
public LogicalNameAttribute(string name)
{
Name = name;
}
public string Name { get; private set; }
}
public class NumberOfCharsAttribute : Attribute
{
public NumberOfCharsAttribute (int number)
{
Number = number;
}
public string Number { get; private set; }
}
[LogicalName("Name1"), NumberOfChars(30)]
public class Derived1 : Base
{
public Derived1() : base()
{
}
}
Now your service method can extract attribute metadata as follows:
public void TestEntities<T>() where T : Base
{
LogicalNameAttribute logicalNameAttr = typeof(T).GetCustomAttribute<LogicalNameAttribute>();
NumberOfCharsAttribute numberOfCharsAttr = typeof(T).GetCustomAttribute<NumberOfCharsAttribute >();
Contract.Assert(logicalNameAttr != null);
Contract.Assert(numberOfCharsAttr != null);
string logicalName = logicalNameAttr.Name;
int numberOfChars = numberOfCharsAttr.Number;
// Other stuff
}
There's a performance penalty because you need to use reflection to get attributes applied to T, but you gain the flexibility of not forcing derived classes to provide this static info.
As #vittore mentioned, move the properties to base,pass the hard coded values from derived and in creation use just defautl(T)
public IEnumerable<T> GetEntities<T>(string entityName, int numberOfChars) where T : Base
{
yield return default(T); //Is its always class use new constraint and return new T();
}
I am building a simple type mapper similar to AutoMapper but with a more dynamic behaviour. The caller can decide to filter RecordStatus == RecordStatus.Deleted records when mapping from entity framework models.
Abstract mappers:
public interface IMapper<in TIn, out TOut>
{
TOut Map(TIn input);
}
public interface IRecordStatusFilterable
{
string RecordStatus { get; }
}
public abstract class RecordStatusFilterableMapperBase<TIn, TOut> : IMapper<TIn, TOut>
{
private readonly bool _filterDeletedRecords;
protected RecordStatusFilterableMapperBase(bool filterDeletedRecords)
{
_filterDeletedRecords = filterDeletedRecords;
}
protected bool FilterDeletedRecords
{
get { return _filterDeletedRecords; }
}
public abstract TOut Map(TIn input);
}
public class MultiLookupValuesMapper : RecordStatusFilterableMapperBase<IEnumerable<Lookup>, string>
{
private static readonly Func<Lookup, bool> _predicate =
filterable => filterable.RecordStatus == RecordStatus.Active;
protected MultiLookupValuesMapper(bool filterDeletedRecords) : base(filterDeletedRecords)
{
}
public override string Map(IEnumerable<Lookup> input)
{
var inputList = input as IList<Lookup> ?? input.ToList();
if (!inputList.Any())
{
return string.Empty;
}
if (FilterDeletedRecords)
{
inputList = (IList<Lookup>)inputList.Where(_predicate);
}
return string.Join(", ", inputList.Select(l => l.Value));
}
}
Concrete Mappers:
public class FooMapper<TRecordStatusFilterable> : RecordStatusFilterableMapperBase<Foo, FooViewModel>
where TRecordStatusFilterable : class, IRecordStatusFilterable
{
private readonly IMapper<IEnumerable<TRecordStatusFilterable>, string> _multiLookupValueMapper;
public FooMapper(IMapper<IEnumerable<TRecordStatusFilterable>, string> multiLookupValueMapper,
bool filterDeletedRecords) : base(filterDeletedRecords)
{
_multiLookupValueMapper = multiLookupValueMapper;
}
public override FooViewModel Map(Foo input)
{
return new FooViewModel
{
// Error here
BarLookupValues = _multiLookupValueMapper.Map(input.Lookups)
};
}
}
Entity Framework model:
public class Foo
{
public ICollection<Lookup> Lookups { get; set; }
}
public class Lookup : IRecordStatusFilterable
{
public string Value { get; set; }
public string RecordStatus { get; set; }
}
ViewModels:
public class FooViewModel
{
// ICollection<Lookup> => string
public string BarLookupValues { get; set; }
}
I got a compile error:
Argument 1: cannot convert from 'System.Collections.Generic.IEnumerable<Lookup>' to 'System.Collections.Generic.IEnumerable<TRecordStatusFilterable>'
But my Lookup class does fulfill the generic type parameter constraint as it implements IRecordStatusFilterable. Can anyone shed some light on this?
Actually a lot of the code is irrelevant to the actual problem. Here is a simpler version that, hopefully, illustrates it better:
class MyList<T>
where T : class, IConvertible
{
private List<T> list = new List<T>();
public void Add(string s)
{
list.Add(s); // error
}
}
Yes T is constrained, and string fits the constraints, but that doesn't mean you can go and add string to a List of arbitrary T's. That wouldn't type safe.
If I defined
class Bar : IConvertible { /* left out IConvertible impl */ }
and made a var bars = new MyList<Bar>() it is obvious that adding a string to bars is a problem for that code in the generic class.
You've just got a more complex version of this and I'm not 100% sure what exactly you are trying to express. Perhaps the class FooMapper shouldn't be generic at all and should just take an instance of IMapper<IEnumerable<Lookup>, string>.
This question already has answers here:
Interface with List of same interface
(2 answers)
Closed 8 years ago.
I have the following interface:
public interface IObject
{
double x { get; }
double y { get; }
Holder<IObject> Holder { get; set; }
}
and this class
public class Holder<T> where T : IObject
{
private List<T> items;
public void AddItem(T item){
items.Add(item);
item.Holder = this;
}
However the compiler doesn't like the AddItem method and on this line :
item.Holder = this;
gives me this error:
Cannot convert source type 'Holder<T>' to target type 'Holder<IObject>'
Why can't I do it and what is a good solution for this scenario?
thank you
You have to bear in mind the way Genrics works in C#, The compiler create a class of the specified type, and because of that you have the error.
To explain more, given the following example:
public class InterfaceImplementation : IObject
{
}
and then some where you do :
var genericInitialisation = new Holder<InterfaceImplementation>();
The compiler at compile time will create a class HolderInterfaceImplementation replacing all accurances of the T generic parameter.
so after compilation you will have this class:
public class HolderInterfaceImplementation
{
private ListInterfaceImplementation items;
public void AddItem(InterfaceImplementation item){
items.Add(item);
item.Holder = this;
}
And item.Holder would be HolderIObject type, so the compiler report an error about not being able to convert HolderInterfaceImplementation to HolderIObject wich is logical.
After explaining the theory the solution comes naturaly and here is an example:
public interface IObject<T> where T : IObject<T>
{
double x { get; }
double y { get; }
Holder<T> Holder { get; set; }
}
public class Holder<T> where T : IObject<T>
{
public Holder()
{
items = new List<T>();
}
private List<T> items;
public void AddItem(T item)
{
items.Add(item);
item.Holder = this;
}
}
public class Implementation : IObject<Implementation>
{
public double x
{
get { return 0; }
}
public double y
{
get { return 0; }
}
public Holder<Implementation> Holder
{
get;
set;
}
}
static void Main(string[] args)
{
var t = new Holder<Implementation>();
t.AddItem(new Implementation());
Console.ReadKey();
}
If it was possible to convert that would be a type system hole:
public class Holder<T> where T : IObject
{
public T SomeField;
}
...
var holder = new Holder<IObjectSubType2>();
Holder<IObject> dummy = holder; //assuming that this works
dummy.SomeField = new IObjectSubType1(); //violates type safety
IObjectSubType2 converted = holder.SomeField;
As you can see I was able to convert an instance of IObjectSubType1 to an IObjectSubType2.
That's why this does not type check.