Cast object from an interface to its implementation - c#

I have the following code:
public interface BaseInterface
{
int ID { get; }
}
public interface SpecialInterface1 : BaseInterface
{
int price { get; }
}
public interface SpecialInterface1 : BaseInterface
{
int xyz { get; }
}
public class Implementation1 : SpecialInterface
{
int price { get; }
int ID { get; internal set; }
}
public class Implementation2 : SpecialInterface
{
int xyz { get; }
int ID { get; internal set; }
}
Now in a Management class I want to add the objects that implement BaseInterface into a List.
I know that I can use as or is to cast the interface to an implementation, but in my project, I have about 10 special interfaces with an implementation each so I would have to write a really big if statements.
public void Add(BaseInterface u, int id)
{
if (u is Implementation1)
{
((Implementation1)u).ID = id;
Units.Add(u);
}
if (u is Implementation2)
{
((Implementation2)u).ID = id;
Units.Add(u);
}
}
My goal is that the id is not changeable outside the implementation and I would provide only the interfaces outside my dll so none can change the id.

A solution would be to add an extra interface. This eliminates the internal setter in your implementation.
internal interface IChangeID
{
void SetID(int id);
}
public interface IBaseInterface
{
int ID { get; }
}
public class Implementation : IBaseInterface,
IChangeID
{
public void SetID(int id) { ID = id; }
public int ID { get; private set; }
}
Only the real implementations should implement IChangeID. Returning IBaseInterface or ISpecialInterface will hide the setter, because those interfaces do not inherit from IChangeID.
This would change your add into:
public void Add(BaseInterface u, int id)
{
((IChangeID)u).SetID(id);
Units.Add(u);
}
If you do want to return the concrete types, not interfaces. You could implement the given interface explicit. This will hide the set method even from the concrete implementation.
public class Implementation : IBaseInterface,
IChangeID
{
void IChangeID.SetID(int id) { ID = id; }
public int ID { get; private set; }
}
var obj = new Implementation();
obj.SetID() // This WILL NOT Compile

If you don't want to modify the interfaces and implementations, you could use C# 7's pattern matching to access the implementation type without casting. It requires 3 lines per implementation type but avoids modifying the classes:
public void Add(BaseInterface u, int id)
{
switch(u)
{
case Implementation1 u1:
u1.ID = id;
break;
case Implementation2 u1:
u1.ID = id;
break;
default :
throw new ArgumentException("Unexpected implementation!");
}
Units.Add(u);
}
The obvious disadvantage is that the code will have to be modified if a new implementation is added.
Another option is to use dynamic, losing type safety. This will fail at runtime if some implementation doesn't have a setter (eg because it was replaced by constructor initialization)
public void Add(BaseInterface u, int id)
{
dynamic x =u;
x.ID=id;
Units.Add(x);
}

While I like this answer the best,
I recommend making the ID a required parameter of all the implementation's constructors, and then to use a factory pattern to generate any instance you require. This makes any instance without the ID set throw an exception at compile time rather than runtime reducing the probability of exceptions.
Here is a simple example that gets you what you want without an additional interface. Should you choose you can combine my answer with #Iqon's answer.
public interface IInterface
{
int ID { get; }
}
internal class InternalImplementation: IInterface {
public InternalImplementation(int ID) { this.ID = ID; }
public int ID { get; set; }
}
public class MyImplementationFactoryService {
public IInterface Create() {
int id = 1 // Or however you get your ID, possibly from a DB query?
return new InternalImplementation(id);
}
public IInterface Create(type|enum createtype) {
// return type based on typeof or enum
}
}

In case you want to use reflection to set property, code below may help
public interface IBaseInterface
{
int ID { get; }
}
public class Impl1 : IBaseInterface
{
public int ID { get; internal set; }
public int Price {get; set;}
}
public class Impl2 : IBaseInterface
{
public int ID { get { return 0;} }
public int Subscription {get; set;}
}
public class Program
{
public static void Main(string[] args)
{
IBaseInterface obj1 = new Impl1();
SetProperty(obj1, "ID", 100);
Console.WriteLine("Object1 Id is {0}", obj1.ID);
IBaseInterface obj2 = new Impl2();
SetProperty(obj2, "ID", 500);
Console.WriteLine("Object2 Id is {0}", obj2.ID);
}
private static void SetProperty(IBaseInterface obj, string propertyName, object id){
if(obj.GetType().GetProperty(propertyName).CanWrite) {
obj.GetType().GetProperty(propertyName).SetValue(obj, id);
Console.WriteLine("CanWrite property '{0}' : {1}" , propertyName, obj.GetType().GetProperty(propertyName).CanWrite);
}
}
}
Output
CanWrite property 'ID' : True
Object1 Id is 100
Object2 Id is 0

Related

Interfaces and inheritance with derived class

I am stuck on interfaces and inheritance. If I implement two classes who both have an interface each, how would I be able to add the properties of Class A and B together? For instance I wanted to associate firstitem with the seconditem.
public interface IAlpha
{
[WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.Bare, RequestFormat = WebMessageFormat.Xml, ResponseFormat = WebMessageFormat.Xml, UriTemplate = "/AddBravoToAlpha/{firstitem}/{seconditem}")]
void AddBravoToAlpha(int firstitem, int seconditem);
}
public interface IBravo
{
// what goes in here?
}
public Class Alpha
{
public Alpha()
{
AlphaAdd = new List<Bravo>();
}
int Firstitem { get; set }
public List<Bravo> AlphaAdd { get; set; }
}
public Class Bravo
{
public Bravo()
{
BravoAdd = new List<Alpha>(); //not sure if Bravo can access Alpha (derived class)
}
int Seconditem { get; set }
Guid Indexer { get; set }
public List<Alpha> BravoAdd { get; set; }
}
public Class BravoDoesAlpha : IBravo, IAlpha //????
{
List<Alpha> alpha = new List<Alpha>();
List<Bravo> bravo = new List<Bravo>();
public void AddBravoToAlpha(int firstitem, int seconditem)
{
var result = alpha.Where(n => String.Equals(n.Firstitem, firstitem)).FirstOrDefault();
var result1 = bravo.Where(n => String.Equals(n.Seconditem, seconditem)).FirstOrDefault();
if (result != null)
{
result.BravoAdd.Add(new Alpha() { Firstitem = firstitem });
}
if (result1 != null)
{
result1.AlphaAdd.Add(new Bravo() { Seconditem = seconditem });
}
}
}
Okay, so the question you are being asked is basically one about how to do a certain kind of refactoring known as "extracting" an interface.
This is one of the more easy refactorings to do and to understand if you understand interfaces vs. types.
All interfaces are types, but not all types are interfaces.
Now let's assume we are dealing in a world with two families of types: classes and interfaces (as in your example).
Instead of working your example directly, I will work a different but clearer example that does not use Alpha, Bravo, Charlie, Epsilon, etc. because this kind of stuff makes it harder to see the meaning.
First, here's the before:
public class Dog
{
public void Bark() { Console.WriteLine("Woof!"); }
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
}
public class DoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
}
To extract the interface of a class, simply, well, extract all the public members of the class to an interface.
public interface IDog
{
void Bark();
int NumberOfDogLegs { get; }
int NumberOfDogFriends { get; set; }
}
public interface IDoorBell
{
void Chime();
}
Now to really make use of OOP, you can find a way to abstract IDog and IDoorBell. What do they have in common? Well, the obvious one is they both make a noise. So we make a new interface, public interface IMakeANoise and say that IDog and IDoorBell both implement it.
public interface IMakeANoise
{
void MakeNoise();
}
public interface IDog : IMakeANoise
{
void Bark();
int NumberOfDogLegs { get; }
int NumberOfDogFriends { get; set; }
}
public interface IDoorBell : IMakeANoise
{
void Chime();
}
And now we have a new method to implement on Dog and DoorBell.
public class Dog : IDog
{
public void Bark() { Console.WriteLine("Woof!"); }
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
public void IMakeANoise() { Bark(); }
}
public class DoorBell : IDoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
public void IMakeANoise() { Chime(); }
}
Now let's say we are actually writing a video game and Dog and DoorBell are both things that we can show on the screen. Well, this makes them a lot bigger because we will need to provide more information like their coordinates, their states, etc.
In this case, Dog and DoorBell may be very different to us but are similar enough to potentially merit sharing a base class. (Really, this is a stretch, but it does get the point across.)
Without adding all those new interfaces and their implementations, let's just do the "sharing a base class" refactoring for what we already have.
public class RenderableThing : IMakeANoise, IDoAThousandOtherThings
{
protected virtual string MyNoiseToMake { get { return ""; } }
public virtual void MakeANoise()
{
Console.WriteLine(MyNoiseToMake);
}
}
public class Dog : RenderableThing, IDog
{
protected override string MyNoiseToMake { get { return "Woof!"; } }
public void Bark() { MakeANoise(); } // see what we did there?
// Notice that I am not declaring the method MakeANoise because it is inherited and I am using it by overriding MyNoiseToMake
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
}
public class DoorBell : RenderableThing, IDoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
public override void MakeANoise()
{
Chime(); Chime(); Chime(); //I'll do it my own way!
}
}
You may wonder, what's the point? So we can do this...
IMakeANoise dogNoiseMaker = new Dog();
IMakeANoise doorBellNoiseMaker = new DoorBell();
IList<IMakeANoise> listOfNoiseMakers = new List<IMakeANoise>();
listOfNoiseMakers.Add(dogNoiseMaker);
listOfNoiseMakers.Add(doorBellNoiseMaker);
foreach (IMakeANoise noiseMaker in listOfNoiseMakers)
{
noiseMaker.MakeANoise();
}
// This will output
// Woof!
// Ding!
// Ding!
// Ding!
I'm going to take a shot in the dark and venture a guess that you don't quite understand what interfaces and inheritance is. I'll start off by explaining what interfaces are:
Interfaces contain only the definitions of methods, properties, events or indexers that an inheriting class must implement.
For example:
interface IExample
{
void HelloWorld();
}
class ExampleClass : IExample
{
public void HelloWorld()
{
Console.WriteLine("Hello world.");
}
}
Now for Inheritance; when you derive a class from a base class the derived class will inherit all members of the base class except for the constructors. Note: Depending on the accessibility of the members in the base class it's children may or may not be able to access the parents members.
public class Animal
{
public string Name { get; set; }
public Animal(string name)
{
Name = name;
}
public void Talk()
{
Console.WriteLine("{0} is talking", Name);
}
}
public class Cat : Animal
{
public Cat(string name) : base(name) { }
}
public class Dog : Animal
{
public string FurColor { get; set; }
public Dog(string name, string furColor) : base(name)
{
FurColor = furColor;
}
public void Greeting()
{
Console.WriteLine("{0} has {1} fur.", Name, FurColor);
}
}
class Program
{
static void Main(string[] args)
{
var cat = new Cat("Rex");
cat.Talk();
var dog = new Dog("Beanie", "Red");
dog.Talk();
}
}

Access const with generics C#

I have the following base class:
public class Base
{
public string LogicalName { get; set; }
public int NumberOfChars { get; set; }
public Base()
{
}
public Base(string logicalName, int numberOfChars)
{
LogicalName = logicalName;
NumberOfChars = numberOfChars;
}
}
and the following derived classes:
public class Derived1 : Base
{
public const string EntityLogicalName = "Name1";
public const int EntityNumberOfChars = 30;
public Derived1() : base(EntityLogicalName, EntityNumberOfChars)
{
}
}
public class Derived2 : Base
{
public const string EntityLogicalName = "Name2";
public const int EntityNumberOfChars = 50;
public Derived2()
: base(EntityLogicalName, EntityNumberOfChars)
{
}
}
and I also have this function that is provided by a service:
public IEnumerable<T> GetEntities<T>(string entityName, int numberOfChars) where T : Base
{
//Some code to get the entities
}
My problem is how can I call this function generically? I want to call it with something that looks like this:
public void TestEntities<T>() where T : Base
{
var entities = GetEntities<T>(T.EntityLogicalName, T.EntityNumberOfChars);
//some other code to test the entities
}
This of course doesn't work because at this point T is not known. How can I accomplish something similar to this? EntityLogicalName and EntityNumberOfChars are characteristics that all Base derived classes have and they never change for each derived class. Can I get them from the Base class without instantiating objects or some other way that I am not seeing?
Replace constants with getter abstract properties
public abstract class Base
{
public abstract string LogicalName { get; }
public abstract int NumberOfChars { get; }
public Base()
{
}
}
public class Derived1 : Base
{
public string LogicalName { get { return "Name1"; } }
public int NumberOfChars { get { return 30; } }
public Derived1() : base()
{
}
}
Also, you will be able to put some logic into overriden getter, e.g. :
...
public string LogicalName { get { return this.EntityMap.Name; } }
...
UPDATE: The fact that you do not want to instantiate object from class but want to be able to get that string in a strongly typed manner can be handled in one more way. It is totally separate from answer above ( Since you can't override static props in c#). Consider the following code. We are adding one more class here, but LocatorInner can be a member of BaseClass. We are using this approach a lot in several existing apps.:
public class Locator
{
public static class LocatorInner<T> where T : BaseClass
{
public static string Name { get; set; }
}
public static string GetName<T>() where T : BaseClass
{
return LocatorInner<T>.Name;
}
public static void SetName<T>(string name) where T : BaseClass
{
LocatorInner<T>.Name = name;
}
}
public class BaseClass
{
}
public class DerivedClass: BaseClass
{
static DerivedClass()
{
Locator.LocatorInner<DerivedClass>.Name = "me";
}
}
public class TestClass<T> where T : BaseClass
{
public void Method()
{
var name = Locator.GetName<T>();
}
}
IMHO, I believe using constants here is a bad design decision.
You can either solve the issue using #vittore approach, but for me it sounds like you should use meta-programming with attributes if you're looking to get data from the T generic argument
For example, what about:
public class LogicalNameAttribute : Attribute
{
public LogicalNameAttribute(string name)
{
Name = name;
}
public string Name { get; private set; }
}
public class NumberOfCharsAttribute : Attribute
{
public NumberOfCharsAttribute (int number)
{
Number = number;
}
public string Number { get; private set; }
}
[LogicalName("Name1"), NumberOfChars(30)]
public class Derived1 : Base
{
public Derived1() : base()
{
}
}
Now your service method can extract attribute metadata as follows:
public void TestEntities<T>() where T : Base
{
LogicalNameAttribute logicalNameAttr = typeof(T).GetCustomAttribute<LogicalNameAttribute>();
NumberOfCharsAttribute numberOfCharsAttr = typeof(T).GetCustomAttribute<NumberOfCharsAttribute >();
Contract.Assert(logicalNameAttr != null);
Contract.Assert(numberOfCharsAttr != null);
string logicalName = logicalNameAttr.Name;
int numberOfChars = numberOfCharsAttr.Number;
// Other stuff
}
There's a performance penalty because you need to use reflection to get attributes applied to T, but you gain the flexibility of not forcing derived classes to provide this static info.
As #vittore mentioned, move the properties to base,pass the hard coded values from derived and in creation use just defautl(T)
public IEnumerable<T> GetEntities<T>(string entityName, int numberOfChars) where T : Base
{
yield return default(T); //Is its always class use new constraint and return new T();
}

How to make this generic method?

This is an enhancement on my previous question on specification pattern - How to combine conditions dynamically?.
I am trying to make the OnSaleSpecificationForBook method a generic one. The reason being the AudioCD logic also needs a similar specification and both Book and AudioCD implements ISellingItem interface.
Specification
public class OnSaleSpecificationForBook : Specification<Book>
{
public override bool IsSatisfiedBy(Book product)
{
return product.IsOnSale;
}
}
I tried to create a generic method as listed below but it throws following error:
The type or namespace name 'T' could not be found
Code with compilation error
public class OnSaleSpecification : Specification<T>
{
public override bool IsSatisfiedBy(T item)
{
return item.IsOnSale;
}
}
QUESTIONS
What is the reason for this error?
How can we make this method generic?
Note: I am using .Net 4.0. However I would like to know if there is any difference needed when compared with .Net 2.0
Abstractions
public interface ISellingItem
{
bool IsOnSale { get; set; }
double Price { get; set; }
}
public abstract class Specification<T>
{
public abstract bool IsSatisfiedBy(T obj);
}
Client
class Program
{
static void Main(string[] args)
{
List<Book> list = new List<Book>();
Book p1 = new Book(false, 99);
Book p2 = new Book(true, 99);
Book p3 = new Book(true, 101);
list.Add(p1);
list.Add(p2);
list.Add(p3);
var specification = new OnSaleSpecificationForBook();
List<Book> selectedList =
ProductFilterHelper.GetProductsUisngDynamicFilters(list, specification);
}
}
public static class ProductFilterHelper
{
public static List<Book> GetProductsUisngDynamicFilters(List<Book> productList, Specification<Book> productSpecification)
{
return productList.Where(p => productSpecification.IsSatisfiedBy(p))
.ToList();
}
}
Entities
public class Book : ISellingItem
{
public bool IsOnSale { get; set; }
public double Price { get; set; }
public Book(bool isOnSale, double price)
{
this.Price = price;
this.IsOnSale = isOnSale;
}
}
public class AudioCD : ISellingItem
{
public bool IsOnSale { get; set; }
public double Price { get; set; }
public AudioCD(bool isOnSale, double price)
{
this.Price = price;
this.IsOnSale = isOnSale;
}
}
You need to specify what the generic parameter's type is implementing before the compiler will know that it is an ISellingItem. You can do this with a where T: ISellingItem clause:
public class OnSaleSpecification<T> : Specification<T> where T : ISellingItem
{
public override bool IsSatisfiedBy(T item)
{
return item.IsOnSale;
}
}
Your class OnSaleSpecification need to define the generic parameter T and constrain it to an ISellingItem
public class OnSaleSpecification<T> : Specification<T> where T : ISellingItem
{
public override bool IsSatisfiedBy(T item)
{
return item.IsOnSale;
}
}

C#: Confusion about Interfaces, Implementation and Inheritance

I'm wondering about what's the way to go, if I need to publicate data-interfaces but want to use them internal with extended calculated properties. To make it clearer:
// The public interface
public interface IData
{
int Property { get; }
}
// The internal interface
internal interface IExtendedData : IData
{
int ExtendedProperty { get; }
}
// The assumed implementation of someone using my interface
public class Data : IData
{
public Data(int a)
{
Property = a;
}
public int Property
{
get;
private set;
}
public override string ToString()
{
return Property.ToString();
}
}
// My implementation
internal class ExtendedData : IExtendedData
{
public ExtendedData(int a)
{
Property = a;
}
public int Property
{
get;
private set;
}
public int ExtendedProperty
{
get
{
return 2 * Property;
}
}
public override string ToString()
{
return Property.ToString() + ExtendedProperty.ToString();
}
}
// publicated by me, for the person who uses my dll
public static class Calculations
{
public static int DoSomeCalculation(IData data, int parameter)
{
// This probably don't work, but maybe shows what I want to do
IExtendedData tempData = (ExtendedData)data;
return tempData.ExtendedProperty * parameter;
}
}
I'm realy frustrated, cause I feel like missing some basical programing skills.
You could solve this problem by implementing ExtendedData as a Wrapper for a class implementing IData
internal class ExtendedData : IExtendedData
{
private IData data;
public ExtendedData(IData data)
{
this.data = data;
}
public int Property
{
get { return data.Property; }
private set { data.Property = value; }
}
public int ExtendedProperty
{
get
{
return 2 * Property;
}
}
}
and use this in DoSomeCalculation like
IExtendedData tempData = new ExtendedData(data);
ExtendedData could inherit from Data:
class ExtendedData : Data
{...}
And for creation of a Data object you add a factory like so:
public class DataFactory
{
public IData CreateData()
{
return new ExtendedData();
}
}
User have to create all its Data objects by this factory. You can ensure it by making Data's constructor internal.
In your DLL you can then cast to ExtendedData.

Override abstract readonly property to read/write property

I would like to only force the implementation of a C# getter on a given property from a base abstract class. Derived classes might, if they want, also provide a setter for that property for public use of the statically bound type.
Given the following abstract class:
public abstract class Base
{
public abstract int Property { get; }
}
If I want a derived class that also implements a setter, I could naively try:
public class Derived : Base
{
public override int Property
{
get { return field; }
set { field = value; } // Error : Nothing to override.
}
private int field;
}
But then I get a syntax error since I try to override the non existing setter. I tried some other way such as declaring the base setter private and such and I still stumble upon all kind of errors preventing me from doing that. There must be a way to do that as it doesn't break any base class contract.
Incidentaly, it can be done with interfaces, but I really need that default implementation.
I stumbled into that situation so often, I was wondering if there was a hidden C# syntax trick to do that, else I will just live with it and implement a manual SetProperty() method.
You can't do it directly, since you can't new and override with the same signature on the same type; there are two options - if you control the base class, add a second property:
public abstract class Base
{
public int Property { get { return PropertyImpl; } }
protected abstract int PropertyImpl {get;}
}
public class Derived : Base
{
public new int Property {get;set;}
protected override int PropertyImpl
{
get { return Property; }
}
}
Else you can introduce an extra level in the class hierarchy:
public abstract class Base
{
public abstract int Property { get; }
}
public abstract class SecondBase : Base
{
public sealed override int Property
{
get { return PropertyImpl; }
}
protected abstract int PropertyImpl { get; }
}
public class Derived : SecondBase
{
public new int Property { get; set; }
protected override int PropertyImpl
{
get { return Property; }
}
}
Would this suit your needs?
public abstract class TheBase
{
public int Value
{
get;
protected set;
}
}
public class TheDerived : TheBase
{
public new int Value
{
get { return base.Value; }
set { base.Value = value; }
}
}
The virtual was removed, but the base value is still the only storage for the value. So this should show '5'. And the compiler should fuss about b.Value = 4;
TheDerived d = new TheDerived();
d.Value = 5;
TheBase b = d;
//b.Value = 4; // uncomment for compiler error
cout << "b.Value == " << b.Value << endl;
-Jesse
What about something like:
public abstract class Base
{
public virtual int Property
{
get { return this.GetProperty(); }
set { }
}
protected abstract int GetProperty();
}
I had a similar requirement where I needed an interface to be able to share common sorting functionality between two loosely related classes. One of them had a read-only Order property and the other had a read-write Order property, but I needed a way to read the property the same way from both classes.
It turns out that this can be done by hiding the read-only value in a derived interface. Here is how I did it.
interface ISortable
{
int Order { get; }
}
interface ISortableClass2
: ISortable
{
// This hides the read-only member of ISortable but still satisfies the contract
new int Order { get; set; }
}
class SortableClass1
: ISortable
{
private readonly int order;
public SortableClass1(int order)
{
this.order = order;
}
#region ISortable Members
public int Order
{
get { return this.order; }
}
#endregion
}
class SortableClass2
: ISortableClass2
{
#region ISortableClass2 Members
public int Order { get; set; }
#endregion
}
class RunSorting
{
public static void Run()
{
// Test SortableClass1
var list1 = new List<SortableClass1>();
list1.Add(new SortableClass1(6));
list1.Add(new SortableClass1(1));
list1.Add(new SortableClass1(5));
list1.Add(new SortableClass1(2));
list1.Add(new SortableClass1(4));
list1.Add(new SortableClass1(3));
var sorted1 = SortObjects(list1);
foreach (var item in sorted1)
{
Console.WriteLine("SortableClass1 order " + item.Order);
}
// Test SortableClass2
var list2 = new List<SortableClass2>();
list2.Add(new SortableClass2() { Order = 6 });
list2.Add(new SortableClass2() { Order = 2 });
list2.Add(new SortableClass2() { Order = 5 });
list2.Add(new SortableClass2() { Order = 1 });
list2.Add(new SortableClass2() { Order = 4 });
list2.Add(new SortableClass2() { Order = 3 });
var sorted2 = SortObjects(list2);
foreach (var item in sorted2)
{
Console.WriteLine("SortableClass2 order " + item.Order);
}
}
private static IEnumerable<T> SortObjects<T>(IList<T> objectsToSort) where T : ISortable
{
if (objectsToSort.Any(x => x.Order != 0))
{
return objectsToSort.OrderBy(x => x.Order);
}
return objectsToSort;
}
}
You may do this with a constructor as following;
public abstract class Base
{
public abstract int Property { get; }
}
public class Derived : Base
{
public Derived(string Property) : base(Property)
{
}
}

Categories