Related
Assume I have this enum defined, where several members have the same underlying value:
enum Number
{
One = 1,
Eins = 1,
Uno = 1
}
According to MSDN documentation:
If multiple enumeration members have the same underlying value and you attempt to retrieve the string representation of an enumeration member's name based on its underlying value, your code should not make any assumptions about which name the method will return.
So for example,
var number = Number.One;
Console.WriteLine(number);
gives me the following output:
Eins
Printing all enum members,
Console.WriteLine($"{Number.One} {Number.Eins} {Number.Uno}");
yields the following output:
Eins Eins Eins
However, taking the nameof of each member,
Console.WriteLine($"{nameof(Number.One)} {nameof(Number.Eins)} {nameof(Number.Uno)}");
gives the following result:
One Eins Uno
So apparently the enum members are separable. Can I take advantage of this separation, i.e. is there any way I can assign a specific Number member to a variable and consistently have that same member returned whenever the variable is accessed?
So apparently the enum members are separable
Well, that's not entirely true... They are only separable at compile time.
You see, nameof is actually an expression evaluated at compile time. It is a constant expression. This can be proved by assigning a nameof expression to a const:
const string a = nameof(Number.One);
It compiles.
Trying to get the string representation of a enum value using string interpolation on the other hand, is evaluated at runtime, so this does not compile:
const string a = $"{Number.One}";
At runtime, the enum cases are not separable, so the answer to:
is there any way I can assign a specific Number member to a variable and consistently have that same member returned whenever the variable is accessed?
is "no".
The only possibility I see to always return an expected enum name is to create a 2nd enum next to your first of the underlying type and with the same values but limit the members to those that you expect (and make sure there are no shared values). Then you can cast from one to the other and use the new enum in your refactored code that relies on specific/expected members.
SomeMethod
Console.WriteLine("{0:G}", (KnownNumber)Number.Eins); // > One
Console.WriteLine("{0:G}", (KnownNumber)Number.Uno); // > One
Console.WriteLine("{0:G}", (KnownNumber)Number.One); // > One
Enums.cs
public enum Number
{
One = 1,
Eins = 1,
Uno = 1
}
public enum KnownNumber
{
One = 1,
Two = 2,
Three = 3
}
Fiddle
I wrote something that should get it work
public static class NumberExtension
{
private static Dictionary<int, string> pointers = new Dictionary<int, string>();
public static unsafe void SetValue(this Number source, string value)
{
if (pointers.ContainsKey((int)&source))
pointers[(int)&source] = value;
else
pointers.Add((int)&source, value);
}
public static unsafe string GetValue(this Number source)
{
if (pointers.ContainsKey((int)&source))
return pointers[(int)&source];
return source.ToString();
}
}
And to use:
Number num = default(Number);
num.SetValue(nameof(Number.Uno));
Console.WriteLine(num.GetValue());
However, it looks like a kind of 'hack' and I do NOT recommend it. It would be better if you look for a better solution.
I've got a enum type defined in my C# code that corresponds to all possible values for the NetConnectionStatus field in Win32_NetworkAdapter WMI table, as documented here.
The documentation shows that the integers 0 through 12 each have a unique status name, but then all integers between 13 and 65,535 are lumped into one bucket called "Other." So here's my code:
[Serializable]
public enum NetConnectionStatus
{
Disconnected = 0,
Connecting = 1,
Connected = 2,
Disconnecting = 3,
HardwareNotPresent = 4,
HardwareDisabled = 5,
HardwareMalfunction = 6,
MediaDisconnected = 7,
Authenticating = 8,
AuthenticationSucceeded = 9,
AuthenticationFailed = 10,
InvalidAddress = 11,
CredentialsRequired = 12,
Other
}
This works fine for the values that are not Other. For instance, I can do this:
var result = (NetConnectionStatus) 2;
Assert.AreEqual(NetConnectionStatus.Connected, result);
But for anything in that higher numeric range, it doesn't work so great. I would like it if I could do this:
var result = (NetConnectionStatus) 20;
Assert.AreEqual(NetConnectionStatus.Other, result);
But right now that result variable gets assigned the literal value 20 instead of Other. Is there some out-of-the-box way of accomplishing this, something akin to Parse() but for integers instead of strings, or perhaps some special attribute I'm unaware of? I would prefer to not write my own wrapper method for this if there is already a good way to accomplish this.
If you have a string value, then the closest thing I can think of is to use Enum.TryParse:
NetConnectionStatus result;
if (Enum.TryParse(stringValue, out result) == false)
result = NetConnectionStatus.Other;
For an integer value that you're casting, you can use:
result = (NetConnectionStatus)integerValue;
if (Enum.GetValues(typeof(NetConnectionStatus)).Contains(result) == false)
result = NetConnectionStatus.Other;
Not really ideal, but in C# enums aren't much more than fancy names for integral values, so it's valid to stuff an integer value not in the defined values of the enums into a value of that enum type.
This solution will handle negative numbers, or cases where you have gaps in your enum values more elegantly than doing numerical comparisons.
it would be nice but no. How about
var result = (NetConnectionStatus) 20;
Assert.IsTrue(result >= (int)NetConnectionStatus.Other);
.NET does not such thing as a "any other" enumeration value bucket. Technically, enumeration (enum) is a pretty set of named constants of some underlying type (which is one of following: sbyte, short, int, long and their unsigned counterparts). You can cast an enum value to/from a corresponding type without any losses, as in this example:
enum TestEnum:int // Explicitly stating a type.
{
OnlyElement=0
}
class Program
{
static void Main(string[] args)
{
// Console.WriteLine implicitly calls ToString of the TestEnum.OnlyElement.
Console.WriteLine("OnlyElement == {0}", TestEnum.OnlyElement);
//TestEnum.OnlyElement equals to 0, as demonstrated by this casting:
Console.WriteLine("(int)OnlyElement == {0}", (int)TestEnum.OnlyElement);
//We can do it in reverse...
Console.WriteLine("(TestEnum)0 == ",(TestEnum)0);
// But what happens when we try to cast a value, which is not
// representable by any of enum's named constants,
// into value of enum in question? No exception is thrown
// whatsoever: enum variable simply holds that value, and,
// having no named constant to associate it with, simply returns
// that value when attempting to "ToString"ify it:
Console.WriteLine("(TestEnum)5 == {0}", (TestEnum)5); //prints "(TestEnum)5 == 5".
Console.ReadKey();
}
}
I'd like to repeat it again, enum in .NET is simply a value of the underlying type with some nice decorations like overriden ToString method and flags checking (look here or here if you want to know more about flags). You cannot have an integer with only 14 values like "0..12 and everything else", and so you cannot have such enum. In your example, NetConnectionStatus.Other simply receives single literal value (I assume it would most probably be '13', as the next available positive value of underlying type - however it actually depends on the compiler) as any other enumeration constant would do if not specified explicitly - and, obviously, it does not become a bucket.
However, there are options to achieve simple equation checks for integers/bytes/shorts/longs - and enums alike. Consider this extension method:
static bool IsOther(this NetConnectionStatus A)
{
return (A < (NetConnectionStatus)0) || (A > (NetConnectionStatus)12);
}
Now you can have a simple assertion like this:
var result = (NetConnectionStatus)10;
Trace.Assert(result.IsOther()); //No assertion is triggered; result is NetConnectionStatus.AuthenticationFailed
and
var result = (NetConnectionStatus)20;
Trace.Assert(result.IsOther()); //Assertion failed; result is undefined!
(Of course you can replace IsOther method with IsNotOther, overload it and pretty much anything else you could do with a method.)
Now there is one more thing. Enum class itself contains a method called IsDefined, which allows you to avoid checks for specific enum's value boundaries (<0, >12), therefore preventing unwanted bugs in case enum values would ever be added/removed, at the small performance cost of unboxing and checking each value in enum for a match (I'm not sure how this works under the hood though, I hope these checks are optimized). So your method would look like this:
static bool IsOther(NetConnectionStatus A)
{
return !Enum.IsDefined(typeof(NetConnectionStatus), A);
}
(However, concluding from enum's name, it seems like you want to make a network application/server, and for these performance might be of very great importance - but most probably I'm just being paranoid and this will not be your application's bottleneck. Stability is much more of concern, and, unless you experience real troubles with performance, it is considered to be much better practice to enable as much stability&safety&portability as possible. Enum.IsDefined is much more understandable, portable and stable than the explicit boundaries checking.)
Hope that helps!
Thanks everyone for the replies. As confirmed by all of you, there is indeed no way to do this out-of-the-box. For the benefit of others I thought I'd post the (custom) code I ended up writing. I wrote an extension method that utilizes a custom attribute on the enum value that I called [CatchAll].
public class CatchAll : Attribute { }
public static class EnumExtensions
{
public static T ToEnum<T, U>(this U value) where T : struct, IConvertible where U : struct, IComparable, IConvertible, IFormattable, IComparable<U>, IEquatable<U>
{
var result = (T)Enum.ToObject(typeof(T), value);
var values = Enum.GetValues(typeof(T)).Cast<T>().ToList();
if (!values.Contains(result))
{
foreach (var enumVal in from enumVal in values
let info = typeof(T).GetField(enumVal.ToString())
let attrs = info.GetCustomAttributes(typeof(CatchAll), false)
where attrs.Length == 1
select enumVal)
{
result = enumVal;
break;
}
}
return result;
}
}
So then I just have to apply that [CatchAll] attribute to the Other value in the enum definition. Then I can do things like this:
int value = 13;
var result = value.ToEnum<NetConnectionStatus, int>();
Assert.AreEqual(NetConnectionStatus.Other, result);
And this:
ushort value = 20;
result = value.ToEnum<NetConnectionStatus, ushort>();
Assert.AreEqual(NetConnectionStatus.Other, result);
I'm playing around with a very simple program to take an array of doubles and return the standard deviation. This part worked but I wanted to make the code more reusable. I would like to make it so the method can accept a parameter of any type that could be considered numeric and return the standard deviation instead of hardcoding a double type (like I initially did in this program). How does one go about this and what is the proper term for it?
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
namespace ConsoleApplication5
{
class Program
{
static void Main(string[] args)
{
double[] avg = { 3.4, 55.6, 10.0, 4.5, 2, 2 };
double x = avg.Average();
//first round of testing
Console.WriteLine("The average of the first array is below ");
Console.WriteLine(x);
Console.WriteLine("below should be the standard deviation!");
Console.WriteLine(CalculateStandardDeviation(avg));
Console.ReadLine();
int[] intAvg = { 4, 3, 5, 6, 2 };
double secondAvg = intAvg.Average();
Console.WriteLine("The average of the second array is below ");
Console.WriteLine(secondAvg);
//this is where the error is happening
//CalculateStandardDeviation(secondAvg);
}
//this is where I tried to make the query more reusable
public static double CalculateStandardDeviation(IEnumerable<double> values)
{
double avg = values.Average();
double sum = 0;
foreach (double d in values)
{
sum += Math.Pow((d - avg), 2);
}
return Math.Pow(sum / (values.Count() - 1),.5);
}
}
}
You could use something like this:
public static decimal CalculateStandardDeviation<T>(IEnumerable<T> values)
{
IEnumerable<decimal> decimalValues = values.Select(v => Convert.ToDecimal(v));
decimal result = 0;
// calculate standard deviation on decimalValues
return result;
}
It will throw an exception if values contains values that can't be converted to a decimal, but will work if the values are of an appropriate type, and I think that makes perfect sense.
Unfortunately, there is no base class for all numbers. You can do this with a generic run-time checking method, or a compile-time safe set of overloads.
Generic Method:
public static T CalculateStandardDeviation(IEnumerable<T> values)
{
var valueArray = values.Select(Convert.ToDecimal).ToArray();
//...
return (T)standardDeviation;
}
The problem with using a single generic method is that you can't put a type constraint on the type parameter that would restrict it to only numeric types. You would have to resort to failing at run-time. There would be nothing to stop you from calling the method with an array of strings, or objects, or Colors, or HttpWebRequests, etc. and unless you do in fact know how to calculate the standard deviation of a color, you should probably stick to individual overrides for a particular numeric type:
I would recommend using the decimal type as your main implementation, and then casting everything to it.
Type-Specific Overloads:
public static decimal CalculateStandardDeviation(IEnumerable<decimal> values)
{
//...
}
public static double CalculateStandardDeviation(IEnumerable<double> values)
{
return (double)CalculateStandardDeviation(values.Select(Convert.ToDecimal));
}
public static int CalculateStandardDeviation(IEnumerable<int> values)
{
return (int)CalculateStandardDeviation(values.Select(Convert.ToDecimal));
}
// etc...
Use C# Generics.
Your function signature will be:
public static T CalculateStandardDeviation(IEnumerable<T> values)
And you can use it like:
int stdDev = CalculateStandardDeviation([int-array]);
double stdDev = CalculateStandardDeviation([double-array]);
Please follow this link:
http://msdn.microsoft.com/en-us/library/ms379564%28VS.80%29.aspx
Edit:
To resolve the Average issue on the generic types, please take a look in this library:
How to Implement Generic Method to do Math calculations on different value types
Obs: Suggestion from Brian.
EDIT
You should use JLRishe's answer, it's much more elegant than this.
You should probably start by adding generics to your method and use the type converter to transform your unknown input into doubles like so :
public static double CalculateStandardDeviation<TSource>(IEnumerable<TSource> inputs)
{
var converter = TypeDescriptor.GetConverter(typeof (double));
if (!converter.CanConvertFrom(typeof(TSource)))
return 0;
var values = new List<double>();
foreach (var value in inputs)
{
values.Add((double) converter.ConvertFrom(value));
}
// Your logic here ...
return ...;
}
I did not tested this snippet but you get the idea.
Foreword:
this answer builds on
How to verify whether a type overloads/supports a certain operator?
and
http://www.codeproject.com/Articles/87438/TinyLisp-A-Language-and-Parser-to-See-LINQ-Express
The second link shows how to compile and evaluate linq expressions.
In short you could forego static type safety and check for the ability of a type to support specific operations at runtime (first link), in case it does not you could throw an exception as the following sample demonstrates:
void Main()
{
DoAdd<float>(5,6);
DoAdd<int>(5,6);
DoAdd<bool>(true,false);
}
// Define other methods and classes here
static void DoAdd<T>(T in1, T in2){
if(!HasAdd<T>()){throw new Exception("Unsupported Type!");}
var c1 = Expression.Constant(in1, typeof(T));
var c2 = Expression.Constant(in2, typeof(T));
var expression=Expression.Add(c1, c2);
Expression<Func<T>> lExpression = Expression.Lambda<Func<T>>(expression);
Func<T> fExpression = lExpression.Compile();
Console.WriteLine(fExpression());
}
static bool HasAdd<T>() {
var c = Expression.Constant(default(T), typeof(T));
try {
Expression.Add(c, c); // Throws an exception if + is not defined
return true;
} catch {
return false;
}
}
Passing an IEnumerable of Numeric Values as a parameter to method will be supported in C# 6.0
I've read a few SO posts and it seems most basic operation is missing.
public enum LoggingLevel
{
Off = 0,
Error = 1,
Warning = 2,
Info = 3,
Debug = 4,
Trace = 5
};
if (s == "LogLevel")
{
_log.LogLevel = (LoggingLevel)Convert.ToInt32("78");
_log.LogLevel = (LoggingLevel)Enum.Parse(typeof(LoggingLevel), "78");
_log.WriteDebug(_log.LogLevel.ToString());
}
This causes no exceptions, it's happy to store 78. Is there a way to validate a value going into an enum?
Check out Enum.IsDefined
Usage:
if(Enum.IsDefined(typeof(MyEnum), value))
MyEnum a = (MyEnum)value;
This is the example from that page:
using System;
[Flags] public enum PetType
{
None = 0, Dog = 1, Cat = 2, Rodent = 4, Bird = 8, Reptile = 16, Other = 32
};
public class Example
{
public static void Main()
{
object value;
// Call IsDefined with underlying integral value of member.
value = 1;
Console.WriteLine("{0}: {1}", value, Enum.IsDefined(typeof(PetType), value));
// Call IsDefined with invalid underlying integral value.
value = 64;
Console.WriteLine("{0}: {1}", value, Enum.IsDefined(typeof(PetType), value));
// Call IsDefined with string containing member name.
value = "Rodent";
Console.WriteLine("{0}: {1}", value, Enum.IsDefined(typeof(PetType), value));
// Call IsDefined with a variable of type PetType.
value = PetType.Dog;
Console.WriteLine("{0}: {1}", value, Enum.IsDefined(typeof(PetType), value));
value = PetType.Dog | PetType.Cat;
Console.WriteLine("{0}: {1}", value, Enum.IsDefined(typeof(PetType), value));
// Call IsDefined with uppercase member name.
value = "None";
Console.WriteLine("{0}: {1}", value, Enum.IsDefined(typeof(PetType), value));
value = "NONE";
Console.WriteLine("{0}: {1}", value, Enum.IsDefined(typeof(PetType), value));
// Call IsDefined with combined value
value = PetType.Dog | PetType.Bird;
Console.WriteLine("{0:D}: {1}", value, Enum.IsDefined(typeof(PetType), value));
value = value.ToString();
Console.WriteLine("{0:D}: {1}", value, Enum.IsDefined(typeof(PetType), value));
}
}
The example displays the following output:
// 1: True
// 64: False
// Rodent: True
// Dog: True
// Dog, Cat: False
// None: True
// NONE: False
// 9: False
// Dog, Bird: False
The above solutions do not deal with [Flags] situations.
My solution below may have some performance issues (I'm sure one could optimise in various ways) but essentially it will always prove whether an enum value is valid or not.
It relies on three assumptions:
Enum values in C# are only allowed to be int, absolutely nothing else
Enum names in C# must begin with an alphabetic character
No valid enum name can being with a minus sign: -
Calling ToString() on an enum returns either the int value if no enum (flag or not) is matched. If an allowed enum value is matched, it will print the name of the match(es).
So:
[Flags]
enum WithFlags
{
First = 1,
Second = 2,
Third = 4,
Fourth = 8
}
((WithFlags)2).ToString() ==> "Second"
((WithFlags)(2 + 4)).ToString() ==> "Second, Third"
((WithFlags)20).ToString() ==> "20"
With these two rules in mind we can assume that if the .NET Framework does its job correctly that any calls to a valid enum's ToString() method will result in something that has an alphabetic character as its first character:
public static bool IsValid<TEnum>(this TEnum enumValue)
where TEnum : struct
{
var firstChar = enumValue.ToString()[0];
return (firstChar < '0' || firstChar > '9') && firstChar != '-';
}
One could call it a "hack", but the advantages are that by relying on Microsoft's own implementation of Enum and C# standards, you're not relying on your own potentially buggy code or checks. In situations where performance is not exceptionally critical, this will save a lot of nasty switch statements or other checks!
Edit
Thanks to #ChaseMedallion for pointing out that my original implementation did not support negative values. This has been remedied and tests provided.
And the tests to back it up:
[TestClass]
public class EnumExtensionsTests
{
[Flags]
enum WithFlags
{
First = 1,
Second = 2,
Third = 4,
Fourth = 8
}
enum WithoutFlags
{
First = 1,
Second = 22,
Third = 55,
Fourth = 13,
Fifth = 127
}
enum WithoutNumbers
{
First, // 1
Second, // 2
Third, // 3
Fourth // 4
}
enum WithoutFirstNumberAssigned
{
First = 7,
Second, // 8
Third, // 9
Fourth // 10
}
enum WithNagativeNumbers
{
First = -7,
Second = -8,
Third = -9,
Fourth = -10
}
[TestMethod]
public void IsValidEnumTests()
{
Assert.IsTrue(((WithFlags)(1 | 4)).IsValid());
Assert.IsTrue(((WithFlags)(1 | 4)).IsValid());
Assert.IsTrue(((WithFlags)(1 | 4 | 2)).IsValid());
Assert.IsTrue(((WithFlags)(2)).IsValid());
Assert.IsTrue(((WithFlags)(3)).IsValid());
Assert.IsTrue(((WithFlags)(1 + 2 + 4 + 8)).IsValid());
Assert.IsFalse(((WithFlags)(16)).IsValid());
Assert.IsFalse(((WithFlags)(17)).IsValid());
Assert.IsFalse(((WithFlags)(18)).IsValid());
Assert.IsFalse(((WithFlags)(0)).IsValid());
Assert.IsTrue(((WithoutFlags)1).IsValid());
Assert.IsTrue(((WithoutFlags)22).IsValid());
Assert.IsTrue(((WithoutFlags)(53 | 6)).IsValid()); // Will end up being Third
Assert.IsTrue(((WithoutFlags)(22 | 25 | 99)).IsValid()); // Will end up being Fifth
Assert.IsTrue(((WithoutFlags)55).IsValid());
Assert.IsTrue(((WithoutFlags)127).IsValid());
Assert.IsFalse(((WithoutFlags)48).IsValid());
Assert.IsFalse(((WithoutFlags)50).IsValid());
Assert.IsFalse(((WithoutFlags)(1 | 22)).IsValid());
Assert.IsFalse(((WithoutFlags)(9 | 27 | 4)).IsValid());
Assert.IsTrue(((WithoutNumbers)0).IsValid());
Assert.IsTrue(((WithoutNumbers)1).IsValid());
Assert.IsTrue(((WithoutNumbers)2).IsValid());
Assert.IsTrue(((WithoutNumbers)3).IsValid());
Assert.IsTrue(((WithoutNumbers)(1 | 2)).IsValid()); // Will end up being Third
Assert.IsTrue(((WithoutNumbers)(1 + 2)).IsValid()); // Will end up being Third
Assert.IsFalse(((WithoutNumbers)4).IsValid());
Assert.IsFalse(((WithoutNumbers)5).IsValid());
Assert.IsFalse(((WithoutNumbers)25).IsValid());
Assert.IsFalse(((WithoutNumbers)(1 + 2 + 3)).IsValid());
Assert.IsTrue(((WithoutFirstNumberAssigned)7).IsValid());
Assert.IsTrue(((WithoutFirstNumberAssigned)8).IsValid());
Assert.IsTrue(((WithoutFirstNumberAssigned)9).IsValid());
Assert.IsTrue(((WithoutFirstNumberAssigned)10).IsValid());
Assert.IsFalse(((WithoutFirstNumberAssigned)11).IsValid());
Assert.IsFalse(((WithoutFirstNumberAssigned)6).IsValid());
Assert.IsFalse(((WithoutFirstNumberAssigned)(7 | 9)).IsValid());
Assert.IsFalse(((WithoutFirstNumberAssigned)(8 + 10)).IsValid());
Assert.IsTrue(((WithNagativeNumbers)(-7)).IsValid());
Assert.IsTrue(((WithNagativeNumbers)(-8)).IsValid());
Assert.IsTrue(((WithNagativeNumbers)(-9)).IsValid());
Assert.IsTrue(((WithNagativeNumbers)(-10)).IsValid());
Assert.IsFalse(((WithNagativeNumbers)(-11)).IsValid());
Assert.IsFalse(((WithNagativeNumbers)(7)).IsValid());
Assert.IsFalse(((WithNagativeNumbers)(8)).IsValid());
}
}
The canonical answer would be Enum.IsDefined, but that is a: a bit slow if used in a tight loop, and b: not useful for [Flags] enums.
Personally, I'd stop worrying about that, and just switch appropriately, remembering:
if it is OK not to recognise everything (and just not do anything), then don't add a default: (or have an empty default: explaining why)
if there is a sensible default behaviour, put that in the default:
otherwise, handle the ones you know about and throw an exception for the rest:
Like so:
switch(someflag) {
case TriBool.Yes:
DoSomething();
break;
case TriBool.No:
DoSomethingElse();
break;
case TriBool.FileNotFound:
DoSomethingOther();
break;
default:
throw new ArgumentOutOfRangeException("someflag");
}
Use:
Enum.IsDefined ( typeof ( Enum ), EnumValue );
Use Enum.IsDefined.
In order to deal with [Flags] you can also use this solution from C# Cookbook:
First, add a new ALL value to your enum:
[Flags]
enum Language
{
CSharp = 1, VBNET = 2, VB6 = 4,
All = (CSharp | VBNET | VB6)
}
Then, check if the value is in ALL:
public bool HandleFlagsEnum(Language language)
{
if ((language & Language.All) == language)
{
return (true);
}
else
{
return (false);
}
}
As the others said, Enum.IsDefined returns false even if you have a valid combination of bit flags for an enum decorated with the FlagsAttribute.
Sadly, the only way to create a method returning true for valid bit flags is a bit lengthy:
public static bool ValidateEnumValue<T>(T value) where T : Enum
{
// Check if a simple value is defined in the enum.
Type enumType = typeof(T);
bool valid = Enum.IsDefined(enumType, value);
// For enums decorated with the FlagsAttribute, allow sets of flags.
if (!valid && enumType.GetCustomAttributes(typeof(FlagsAttribute), false)?.Any() == true)
{
long mask = 0;
foreach (object definedValue in Enum.GetValues(enumType))
mask |= Convert.ToInt64(definedValue);
long longValue = Convert.ToInt64(value);
valid = (mask & longValue) == longValue;
}
return valid;
}
You may want to cache the results of GetCustomAttribute in a dictionary:
private static readonly Dictionary<Type, bool> _flagEnums = new Dictionary<Type, bool>();
public static bool ValidateEnumValue<T>(T value) where T : Enum
{
// Check if a simple value is defined in the enum.
Type enumType = typeof(T);
bool valid = Enum.IsDefined(enumType, value);
if (!valid)
{
// For enums decorated with the FlagsAttribute, allow sets of flags.
if (!_flagEnums.TryGetValue(enumType, out bool isFlag))
{
isFlag = enumType.GetCustomAttributes(typeof(FlagsAttribute), false)?.Any() == true;
_flagEnums.Add(enumType, isFlag);
}
if (isFlag)
{
long mask = 0;
foreach (object definedValue in Enum.GetValues(enumType))
mask |= Convert.ToInt64(definedValue);
long longValue = Convert.ToInt64(value);
valid = (mask & longValue) == longValue;
}
}
return valid;
}
Note that the code above uses the new Enum constraint on T which is only available since C# 7.3. You need to pass an object value in older versions and call GetType() on it.
One way to do would be to rely on casting and enum to string conversion. When casting int to an Enum type the int is either converted to a corresponding enum value or the resulting enum just contains int as a value if enum value is not defined for the int.
enum NetworkStatus{
Unknown=0,
Active,
Slow
}
int statusCode=2;
NetworkStatus netStatus = (NetworkStatus) statusCode;
bool isDefined = netStatus.ToString() != statusCode.ToString();
Not tested for any edge cases.
I know this is an old question, but I ran into this today, and I wanted to expand on Josh Comley's answer (https://stackoverflow.com/a/23177585/3403999)
There's a couple of wrong assumptions in Josh's answer that I wanted to address:
It assumes that the '-' is always the negative sign. I don't know if there is any cultures that use a different sign, but .Net certainly allows for it in the NumberFormatInfo (https://learn.microsoft.com/en-us/dotnet/api/system.globalization.numberformatinfo.negativesign?view=net-5.0). About the only one I can think of that might be common is the parenthesis, ie (1) == -1.
Enum members have to start with an alphabetic character. Specifically, I know you can use an underscore as the first char. IE, enum MyEnum { _One = 1 } is valid.
Not really sure this exactly wrong, but it made the assumption that anything outside the range of '0' to '9' and '-' is a valid alphabetic character. It seemed like a bad assumption cause there are control characters outside that range that would return true - albeit, I don't think you can get those control characters into an enum member name without it throwing a compile error.
Anyway, here's my updated solution:
public static bool IsValid<TEnum>(this TEnum value) where TEnum : System.Enum
{
char first = value.ToString()[0];
return (char.IsLetter(first) || first == '_');
}
I did discover that you can use Unicode letters from other languages in enum member names (https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/identifier-names). My solution still passes in this regard. I tested with the following enum: enum MyEnum { \u05D0 }. The enum compiled, and the IsValid returned true.
I was curious what kind of performance hit you'd take going this route vs using a static helper class with a HashSet that is filled with Enum.GetValues(typeof(TEnum)) where you check to see if the HashSet contains the enum value. The thought being that both Enum.GetValues and Enum.IsDefined are just wrappers around expensive Reflection hits, so you do the Reflection once with GetValues, cache the results, and then just check the HashSet going forward.
I ran a fairly simple test with a StopWatch and Random that would generate valid & invalid enum values, and then I ran them through 3 different methods: the ToString method, the GetValues HashSet method, and the IsDefined method. I had them do each method int.MaxValue times. The results:
ToString averaged about 2 minutes every time I ran it 2 billion times.
GetValues HashSet about 50 seconds every time I ran it 2 billion times.
IsDefined about 5 minutes every time I ran it 2 billion times.
So all the solutions recommending IsDefined are probably a bad idea if performance is a concern, or your doing a loop. If you are only using it somehow validate user input on single instances, it probably doesn't matter.
For the HashSet, it's a small performance hit for each different enum you run through it (cause the first time a new enum type gets ran through generates a new static HashSet). Not scientific, but it seemed my break even point on my PC was about 200k to 300k runs for a single enum before it started out performing using the ToString method.
The ToString method, while not the fastest had the added benefit of handling Flags enums that neither the IsDefined nor HashSet accommodate.
If performance really is a concern, don't use any of these 3 methods. Instead write a method that validates on a specific enum optimized to that enum.
Also note that my tests were with relatively small enums (5 or so elements). I don't know how performance between ToString vs HashSet once you start getting into larger enums.
I know this rather goes against the idea of enums, but is it possible to extend enums in C#/Java? I mean "extend" in both the sense of adding new values to an enum, but also in the OO sense of inheriting from an existing enum.
I assume it's not possible in Java, as it only got them fairly recently (Java 5?). C# seems more forgiving of people that want to do crazy things, though, so I thought it might be possible some way. Presumably it could be hacked up via reflection (not that you'd every actually use that method)?
I'm not necessarily interested in implementing any given method, it just provoked my curiosity when it occurred to me :-)
The reason you can't extend Enums is because it would lead to problems with polymorphism.
Say you have an enum MyEnum with values A, B, and C , and extend it with value D as MyExtEnum.
Suppose a method expects a myEnum value somewhere, for instance as a parameter. It should be legal to supply a MyExtEnum value, because it's a subtype, but now what are you going to do when it turns out the value is D?
To eliminate this problem, extending enums is illegal
You're going the wrong way: a subclass of an enum would have fewer entries.
In pseudocode, think:
enum Animal { Mosquito, Dog, Cat };
enum Mammal : Animal { Dog, Cat }; // (not valid C#)
Any method that can accept an Animal should be able to accept a Mammal, but not the other way around. Subclassing is for making something more specific, not more general. That's why "object" is the root of the class hierarchy. Likewise, if enums were inheritable, then a hypothetical root of the enum hierarchy would have every possible symbol.
But no, C#/Java don't allow sub-enums, AFAICT, though it would be really useful at times. It's probably because they chose to implement Enums as ints (like C) instead of interned symbols (like Lisp). (Above, what does (Animal)1 represent, and what does (Mammal)1 represent, and are they the same value?)
You could write your own enum-like class (with a different name) that provided this, though. With C# attributes it might even look kind of nice.
When built-in enums aren't enough, you can do it the old fashion way and craft your own. For example, if you wanted to add an additional property, for example, a description field, you could do it as follows:
public class Action {
public string Name {get; private set;}
public string Description {get; private set;}
private Action(string name, string description) {
Name = name;
Description = description;
}
public static Action DoIt = new Action("Do it", "This does things");
public static Action StopIt = new Action("Stop It", "This stops things");
}
You can then treat it like an enum like so:
public void ProcessAction(Action a) {
Console.WriteLine("Performing action: " + a.Name)
if (a == Action.DoIt) {
// ... and so on
}
}
The trick is to make sure that the constructor is private (or protected if you want to inherit), and that your instances are static.
Enums are supposed to represent the enumeration of all possible values, so extending rather does go against the idea.
However, what you can do in Java (and presumably C++0x) is have an interface instead of a enum class. Then put you standard values in an enum that implements the feature. Obviously you don't get to use java.util.EnumSet and the like. This is the approach taken in "more NIO features", which should be in JDK7.
public interface Result {
String name();
String toString();
}
public enum StandardResults implements Result {
TRUE, FALSE
}
public enum WTFResults implements Result {
FILE_NOT_FOUND
}
You can use .NET reflection to retrieve the labels and values from an existing enum at run-time (Enum.GetNames() and Enum.GetValues() are the two specific methods you would use) and then use code injection to create a new one with those elements plus some new ones. This seems somewhat analagous to "inheriting from an existing enum".
I didn't see anyone else mention this but the ordinal value of an enum is important. For example, with grails when you save an enum to the database it uses the ordinal value. If you could somehow extend an enum, what would be the ordinal values of your extensions? If you extended it in multiple places how could you preserve some kind of order to these ordinals? Chaos/instability in the ordinal values would be a bad thing which is probably another reason why the language designers have not touched this.
Another difficulty if you were the language designer, how can you preserve the functionality of the values() method which is supposed to return all of the enum values. What would you invoke this on and how would it gather up all of the values?
Adding enums is a fairly common thing to do if you go back to the source code and edit, any other way (inheritance or reflection, if either is possible) is likely to come back and hit you when you get an upgrade of the library and they have introduced the same enum name or the same enum value - I have seen plenty of lowlevel code where the integer number matches to the binary encoding, where you would run into problems
Ideally code referencing enums should be written as equals only (or switches), and try to be future proof by not expecting the enum set to be const
If you mean extends in the Base class sense, then in Java... no.
But you can extend an enum value to have properties and methods if that's what you mean.
For example, the following uses a Bracket enum:
class Person {
enum Bracket {
Low(0, 12000),
Middle(12000, 60000),
Upper(60000, 100000);
private final int low;
private final int high;
Brackets(int low, int high) {
this.low = low;
this.high = high;
}
public int getLow() {
return low;
}
public int getHigh() {
return high;
}
public boolean isWithin(int value) {
return value >= low && value <= high;
}
public String toString() {
return "Bracket " + low + " to " + high;
}
}
private Bracket bracket;
private String name;
public Person(String name, Bracket bracket) {
this.bracket = bracket;
this.name = name;
}
public String toString() {
return name + " in " + bracket;
}
}
Saw a post regarding this for Java a while back, check out http://www.javaspecialists.eu/archive/Issue161.html .
I would like to be able to add values to C# enumerations which are combinations of existing values. For example (this is what I want to do):
AnchorStyles is defined as
public enum AnchorStyles {
None = 0,
Top = 1,
Bottom = 2,
Left = 4,
Right = 8,
}
and I would like to add an AnchorStyles.BottomRight = Right + Bottom so instead of saying
my_ctrl.Anchor = AnchorStyles.Right | AnchorStyles.Bottom;
I can just say
my_ctrl.Anchor = AnchorStyles.BottomRight;
This doesn't cause any of the problems that have been mentioned above, so it would be nice if it was possible.
A temporary/local workaround, when you just want very local/one time usage:
enum Animals { Dog, Cat }
enum AnimalsExt { Dog = Animals.Dog, Cat= Animals.Cat, MyOther}
// BUT CAST THEM when using:
var xyz = AnimalsExt.Cat;
MethodThatNeedsAnimal( (Animals)xyz );
See all answers at: Enum "Inheritance"
You can't inherit from/extend an enum, you can use attributes to declare a description. If you're looking for an integer value, that's built-in.
Hmmm - as far as I know, this can't be done - enumerations are written at design-time and are used as a convenience to the programmer.
I'm pretty sure that when the code is compiled, the equivalent values will be substituted for the names in your enumeration, thereby removing the concept of an enumeration and (therefore) the ability to extend it.
Some time back even i wanted to do something like this and found that enum extensions would voilate lot of basic concepts... (Not just polymorphisim)
But still u might need to do if the enum is declared in external library and
Remember you should make a special caution when using this enum extensions...
public enum MyEnum { A = 1, B = 2, C = 4 }
public const MyEnum D = (MyEnum)(8);
public const MyEnum E = (MyEnum)(16);
func1{
MyEnum EnumValue = D;
switch (EnumValue){
case D: break;
case E: break;
case MyEnum.A: break;
case MyEnum.B: break;
}
}
As far as java is concerned it is not allowed because adding elements to an enum would effectively create a super class rather than a sub class.
Consider:
enum Person (JOHN SAM}
enum Student extends Person {HARVEY ROSS}
A general use case of Polymorphism would be
Person person = Student.ROSS; //not legal
which is clearly wrong.