Long time running applications - c#

I'm going to design an Application (C# or VB.NET) which use .NET Framework to run for very long time. It may be restarted every year or even more...
Is there anything (using special design patterns or so) which I must care about in designing "Long time running applications in .NET"?
Is .NET ever a good platform for these kind of applications or I should use other platforms such as J2SE?
(It's not a web application.)

I actually would say that using .NET is well-suited to long running applications. Managed code, in general, tends to do fairly well in this type of scenario, as a compacting GC helps prevent issues that can arise due to memory fragmentation over time.
That being said, it's difficult to give much guidance, as there's very little information in the question itself. The "every year or more" run times is not enough information to say that a particular framework or language choice would benefit - any language can work, as the issues that arise from long running applications tend to be more design issues, and less framework/language/toolset/etc.
I've written some .NET-based applications which run as services and stay continually running for very long times, and never had any issues with the application (at least none related to the technology itself).

I'd worry less about keeping an app running and more about what happens when it inevitably stops - and make no mistake, it WILL stop.
There are many factors that can go wrong; a crash, server fault, network failure or someone simply stopping the app. The true work will be resuming the application's tasks after it restarts.

.NET's garbage collector is very good, so as long as you don't have any non-obvious memory leaks, that should be OK. "Non-obvious" includes not releasing event-handlers when you're truly done with them., using lambda expressions for event handlers in other classes, and that sort of thing.
Be sure that you're catching and logging all unhandled exceptions. If it does die, you'll want to know why.
Also, take a look at the application restart support in Windows 7. This can restart your app in case it does fail. Although it's written for unmanaged code, it's accessible for .net in the Windows 7 API code pack.

Related

"On-the-run" Debugging/Monitoring

Is there a way/system to debug/monitor code without stopping execution?
In industrial automation control programming (PLC/PAC/DCS) it is possible to connect the debugger while the program is running, and see in the code editor the value of variables and expressions, without setting breakpoints or tracepoints.
As an example, let's have a F# multithreaded application, where code is executed in a continuous loop or triggered by timers. Is there a way to attach a debugger like Visual studio Debugger and see the values of variables and expressions (in the code editor or in a watch pane) WITHOUT interrupting the execution?
It doesn't matter if it's not synchronous, it's acceptable if the debugger/monitor does not capture all the code scans.
I am tasked to create an high level controller for a process plant and I would like to use C# or F# or even C++ with a managed or native application, instead of a PAC system. But being forced to interrupt execution to debug is a huge disadvantage in this kind of application.
UPDATE
First of all thanks to all for their answer.
Based on those answers, though, I realized that probably I need to reformulate my question as follows:
Is anyone aware of any library/framework/package/extension that allows to work with a native or managed application in windows or linux (C#, F# or C++) the exact same way as a PAC development platform, specifically:
1) Put the dev platform in "status" mode, where it shows automatically the runtime value for variables and expressions present in the code exceprt currently visible, without interrupting execution?
2) Create watch windows that show the runtime value of variables and expressions, again without interrupting execution?
Also, what I am looking for is something that (like any PAC platform) offers these features OUT OF THE BOX, without requiring any change in the application code (like adding log instructions).
Thank you in advance
UPDATE 2
It looks like there is something (see http://vsdevaids.webs.com/); does anyone know whether they are still available somewhere?
UPDATE 3
For those interested, I managed to download the last available release of VSDEVAIDS. I installed it and looks working, but it's pointless without a licence and couldn't find information on how to reach the author.
http://www.mediafire.com/file/vvdk2e0g6091r4h/VSDevAidsInstaller.msi
If somebody has better luck, please let me know.
this is a normal requirement - needing instrumentation / diagnostic data from a production system. Its not really a debugger. Its usually one of the first things you should establish in your system design.
Not knowing your system at all its hard to say what you need but generally they fall into 2 categories
human readable trace - something like log4net is what I would recommend
machine readable counters etc. Say 'number of widget shaving in last pass',..... This one is harder to generalize, you could layer it onto log4net too. Or invent your own pipe
With regards to your edited question, I can almost guarantee you that what you are looking for does not exist. Consequence-free debugging/monitoring of even moderate usefulness for production code with no prior effort? I'd have heard of it. Consider that both C++ and C# are extremely cross-platform. There are a few caveats:
There are almost certainly C++ compilers built for very specific hardware that do what you require. This hardware is likely to have very limited capabilities, and the compilers are likely to otherwise be inferior to their larger counterparts, such as gcc, clang, MSVC, to name a few.
Compile-time instrumentation can do what you require, although it affects speed and memory usage, and even stability, in my experience.
There ARE also frameworks that do what you require, but not without affecting your code. For example, if you are using WPF as your UI, it's possible to monitor anything directly related to the UI of your application. But...that's hardly a better solution than log4net.
Lastly, there are tools that can monitor EVERY system call your application makes for both Windows (procmon.exe/"Process Monitor" from SysInternals) and Linux (strace). There's very little you can't find out using these. That said, the ease of use is hardly what you're looking for, and strictly internal variables are still not going to be visible. Still might be something to consider if you know you'll be making system calls with the variables you're interested in and can set up adequate filtering.
Also, you should reconsider your "No impact on the code" requirement. There are .NET frameworks that can allow you to monitor an entire class merely by making a single function call during construction, or by deriving from a class in the framework. Many modern UIs are predicated on the UIs being able to be notified of any change to the data they are monitoring. Extensive effort has gone into making this as powerful and easy as possible. But it does require you to at least consider it when writing your code.
Many years ago (think 8 bit 6502/6809 days) you could buy (or usually rent, I seem to remember a figure of £40K to purchase one in the late 80s) a processor simulator, that would allow you replace the processor in your design with a pin compatible device that had a flying lead to the simulator box. this would allow things like capturing instructions/data leading up to a processor interrupt, or some other way of stopping the processor (even a 'push button to stop code' was possible). You could even step-backwards allowing you to see why an instruction or branch happened.
In these days of multi-core, nm-technology, I doubt there is such a thing.
I have been searching for this kind of features since quite a long time with no luck, unfortunately. Submitting the question to the StackOverflow community was sort of a "last resort", so now I'm ready to conclude that it doesn't exist.
VSDevAids (as #zzxyz pointed out) is not a solution, as it requires significant support from the application itself.
Pod cpu emulators (mentioned by #Neil) aka in-circuit emulators (ICE) and their evolutions are designed to thoroughly test the interaction between firmware and hardware, not so useful in high level programming (especially if managed like .NET).
Thanks for all contributions.

Thread-Limit ML4/COM started C# Application

I have two applications, the main-app is written in ML4 (a programming language which compiles to machine language; I do not know much about this technology), the tool-app is written in C#.NET.
The main-app calls the .NET assembly via COM, invokes a delegate which does some work, shows a window, etc. So far it works pretty acceptable.
In the .NET app, I seem to have a pretty strict thread-limit. The complete application can have around 18 threads. Starting another one results in a OutOfMemoryException in Thread.StartInternal without any further information.
The question is obviously: why? Both apps run in the process of the ML4-app, but I never heard of such a thread-limit. Does maybe the COM-Interface cause it?
Or can a process be configured to have such limitation?
Typically, I wouldn't post such a question here, since it reads like a no-effort-question. The problem is, I have a very limited knowledge about processes and threads in the operating system, so I cannot really tell what possible causes could be.

Can C# .NET be used for hard real-time?

Given that the familiar form of .NET is run on Windows, which is not a real-time O/S, and MONO runs on Linux (standard kernel is also not a real-time O/S).
Given also, that any memory allocation scheme offering garbage collection (as in "managed" .NET), and indeed any heap memory scheme will introduce non-deterministic, potentially non-trivial delays into an application's execution behavior.
Is there any combination of alternate host O/S and coding paradigm in which one can leverage all of the power and conveniences of C# .NET while implementing a solution which can execute designated portions of code within tightly specified time constraints? e.g. start a C# method every 10ms to a tolerance of less than 1ms, with completion time determined only by the work performed in the method itself?
Obviously, the application would have to be carefully written; time-critical code would have to avoid memory allocations; the application would have to have completed all its memory allocation etc. work and have no other threads active once the hard real-time loop is started. Also, the host O/S would have to support real-time scheduling.
Is this possible within the .NET / MONO framework, or is it precluded by the design of the .NET runtime, framework, and O/Ss on which it (or compatible equivalent) is supported?
For example: is it possible to do reliable fine-grained (~1ms) machine control purely in C# with something like NETduino, or do they have limits or require alternate strategies for such applications?
Short Answer: No.
Longer answer: The closest you can get is running the .net Micro Framework directly on Hardware, but the TinyCLR still doesn't give you deterministic timings. Microsoft has Windows CE/Windows Embedded Compact as their real time offering, but even that is only real time for slower tasks (I believe somewhere in the range of 50 microseconds or more - not sure if that qualifies for Hard Real Time)
I do not know if it were technically possible to create a real-time c# implementation, but no one has done one and even .net native isn't made for that.
Can C# be used for hard real-time? Yes
When we talk about real-time it's most often (if not always) about robotics and IoT. And for that we almost always go with one of these options (forget Windows CE and Windows 10 IoT):
Microcontrollers (example: Arduino, RPi Pico, NodeMCU)
Linux based SBCs (example: Raspberry Pi, BeagleBone, Rock Pi)
Microcontrollers are by nature real-time. Basically the device will just run a loop forever (there are interrupts and multi-threading on some chips though). Top languages in this category are C/C++ and MicroPython. But C# can also be used:
Wilderness Labs (Netduino and Meadow F7)
.NET nanoframefork (several boards)
The second option (Linux based SBCs) is a bit more tricky. The OS has complete control over the hardware and it has a scheduler. That way many processes can be run on just one CPU. The OS itself has a lot of housekeeping as well.
Linux has a set of scheduling APIs that can be used to tell the OS that we want you to favor our process over others. And the OS will do its best to comply but no guarantees. This is usually called soft real-time. In .NET you can use the Process.PriorityClass to change your process's nice value. Depending on how busy the OS is and the amount of resources available (CPUs and memory) you might get satisfying results.
Other than that, Linux also provides hard real-time capabilities with the PREEMT_RT patch, and there is also a feature that you can isolate a CPU core for your selected processes. But to my knowledge .NET does not have any API to use these capabilities (P/Invoke may work).

C# Threading in real-world apps

Learning about threading is fascinating no doubt and there are some really good resources to do that. But, my question is threading applied explicitly either as part of design or development in real-world applications.
I have worked on some extensively used and well-architected .NET apps in C# but found no trace of explicit usage.Is there no real need due to this being managed by CLR or is there any specific reason?
Also, any example of threading coded in widely used .NET apps. in Codelplex or Gooogle Code are also welcome.
The simplest place to use threading is performing a long operation in a GUI while keeping the UI responsive.
If you perform the operation on the UI thread, the entire GUI will freeze until it finishes. (Because it won't run a message loop)
By executing it on a background thread, the UI will remain responsive.
The BackgroundWorker class is very useful here.
is threading applied explicitly either as part of design or development in real-world applications.
In order to take full advantage of modern, multi-core systems, threading must be part of the design from the start. While it's fairly easy (especially in .NET 4) to find small portions of code to thread, to get real scalability, you need to design your algorithms to handle being threaded, preferably at a "high level" in your code. The earlier this is done in the design phases, the easier it is to properly build threading into an application.
Is there no real need due to this being managed by CLR or is there any specific reason?
There is definitely a need. Threading doesn't come for free - it must be added in by the developer. The main reason this isn't found very often, especially in open source code, is really more a matter of difficulty. Even using .NET 4, properly designing algorithms to thread in a scalable, safe manner is difficult.
That entirely depends on the application.
For a client app that ever needs to do any significant work (or perform other potentially long-running tasks, such as making web service calls) I'd expect background threads to be used. This could be achieved via BackgroundWorker, explicit use of the thread pool, explicit use of Parallel Extensions, or creating new threads explicitly.
Web services and web applications are somewhat less likely to create their own threads, in my experience. You're more likely to effectively treat each request as having a separate thread (even if ASP.NET moves it around internally) and perform everything synchronously. Of course there are web applications which either execute asynchronously or start threads for other reasons - but I'd say this comes up less often than in client apps.
Definitely a +1 on the Parallel Extensions to .NET. Microsoft has done some great work here to improve the ThreadPool. You used to have one global queue which handled all tasks, even if they were spawned from a worker thread. Now they have a lock-free global queue and local queues for each worker thread. That's a very nice improvement.
I'm not as big a fan of things like Parallel.For, Parallel.Foreach, and Parallel.Invoke (regions), as I believe they should be pure language extensions rather than class libraries. Obviously, I understand why we have this intermediate step, but it's inevitable for C# to gain language improvements for concurrency and it's equally inevitable that we'll have to go back and change our code to take advantage of it :-)
Overall, if you're looking at building concurrent apps in .NET, you owe it to yourself to research the heck out of the Parallel Extensions. I also think, given that this is a pretty nascent effort from Microsoft, you should be very vocal about what works for you and what doesn't, independent of what you perceive your own skill level to be with concurrency. Microsoft is definitely listening, but I don't think there are that many people yet using the Parallel Extensions. I was at VSLive Redmond yesterday and watched a session on this topic and continue to be impressed with the team working on this.
Disclosure: I used to be the Marketing Director for Visual Studio and am now at a startup called Corensic where we're building tools to detect bugs in concurrent apps.
Most real-world usages of threading I've seen is to simply avoid blocking - UI, network, database calls, etc.
You might see it in use as BeginXXX and EndXXX method pairs, delegate.BeginInvoke calls, Control.Invoke calls.
Some systems I've seen, where threading would be a boon, actually use the isolation principle to achieve multiple "threads", in other words, split the work down into completely unrelated chunks and process them all independently of each other - "multi-threading" (or many-core utilisation) is automagically achieved by simply running all the processes at once.
I think it's fair to say you find a lot of stock-and-trade applications (data presentation) largely do not require massive parallisation, nor are they always able to be architected to be suitable for it. The examples I've seen are all very specific problems. This may attribute to why you've not seen any noticable implementations of it.
The question of whether to make use of an explicit threading implementation is normally a design consideration as others have mentioned here. Trying to implement concurrency as an afterthought usually requires a lot of radical and wholesale changes.
Keep in mind that simply throwing threads into an application doesn't inherently increase performance or speed, given that there is a cost in managing each thread, and also perhaps some memory overhead (not to mention, debugging it can be fun).
From my experience, the most common place to implement a threading design has been in Windows Services (background applications) and on applications which have had use case scenarios where a volume of work could be easily split up into smaller parcels of work (and handed off to threads to complete asynchronously).
As for examples, you could check out the Microsoft Robotics Studio (as far as I know there's a free version now) - it comes with an redistributable (I can't find it as a standalone download) of the Concurrency and Coordination Runtime, there's some coverage of it on Microsoft's Channel 9.
As mentioned by others the Parallel Extensions team (blog is here) have done some great work with thread safety and parallel execution and you can find some samples/examples on the MSDN Code site.
Threading is used in all sorts of scenarios, anything network based depends on threading, whether explicit (sockets stuff) or implicit (web services). Threading keeps UI responsive. And windows services having multiple parallel runs doing the same things in processing data working through queues that need to be processed.
Those are just the most common ones I've seen.
Most answers reference long-running tasks in a GUI application. Another very common usage scenario in my experience is Producer/Consumer queues. We have many utility applications that have to perform web requests etc. often to large number of endpoints. We use producer/consumer threading pattern (usually by integrating a custom thread pool) to allow high parallelization of these tasks.
In fact, at this very moment I am checking up on an application that uploads a 200MB file to 200 different FTP locations. We use SmartThreadPool and run up to around 50 uploads in parallel, which allows the whole batch to complete in under one hour (as opposed to over 50 hours were it all uploads to happen consecutively - so in our usage we find almost straight linear improvements in time).
As modern day programmers we love abstractions so we use threads by calling Async methods or BeginInvoke and by using things like BackgroundWorker or PFX in .Net 4.
Yet sometimes there is a need to do the threading yourself. For Example in a web app I built I have a mail queue that I add to from within the app and there is a background thread that sends the emails. If the thread notices that the queue is filling up faster that it is sending it creates another thread if it then sees that that thread is idle it kills it. This can be done with a higher level abstraction I guess but i did it manually.
I can't resist the edge case - in some applications where either a high degree of operational certainty must be achieved or a high degree of operational uncertainty must be tolerated, then threads and processes are considered from initial architecture design all the way through end delivery
Case 1 - for systems that must achieve extremely high levels of operational reliability, three completely separate subsystems using three different mechanisms may be used in a voting architecture - Spawn 3 threads/proceses across each of the voters, wait for them to conclude/die/be killed, and proceed IFF they all say the same thing - example - complex avionic susystems
Case 2 - for systems that must deal with a high degree of operational uncertainty - do the same thing, but once something/anything gets back to you, kill off the stragglers and go forth with the best answer you got - example - complex intraday trading algorithms endeavoring to destroy the business that employ them :-)

How to enable MMCSS in C# app?

I want to try Multimedia Class Scheduler Service http://msdn.microsoft.com/en-us/library/ms684247(v=VS.85).aspx
I hope it can reduce latency by scheduling my threads better.
How can it be done in C# ?
Note: my app is nothing to do with multimedia I just need features of MMCSS.
Each thread that is performing work
related to a particular task calls the
AvSetMmMaxThreadCharacteristics or
AvSetMmThreadCharacteristics function
to inform MMCSS that it is working on
that task.
It would seem all you need is to P/Invoke one or other of those API calls.
However, I suspect all that will be in vain when the garbage collector steps in and messes things up.
Have you done any profiling of the app to see what's going on under the covers? If you app is truly that latency sensitive then C# is probably the wrong choice of language to be honest.
I'm not sure what the point of using the MMCSS would be in a managed application. After all, the point of the MMCSS is to adjust the scheduling priority of the process to avoid stalls during multimedia stream processing - we're talking nanosecond level scheduling. But with a managed language where a garbage collection can happen at any time and potentially take tens or even hundreds of milliseconds, then I'm not sure what benefit the MMCSS would provide that wouldn't be totally wiped out by garbage collection.
With that in mind, I wouldn't expect to see a managed interface to the MMCSS any time soon. You can certainly access it via P/Invoke, but I wouldn't expect miracles from it :)

Categories