I want to try Multimedia Class Scheduler Service http://msdn.microsoft.com/en-us/library/ms684247(v=VS.85).aspx
I hope it can reduce latency by scheduling my threads better.
How can it be done in C# ?
Note: my app is nothing to do with multimedia I just need features of MMCSS.
Each thread that is performing work
related to a particular task calls the
AvSetMmMaxThreadCharacteristics or
AvSetMmThreadCharacteristics function
to inform MMCSS that it is working on
that task.
It would seem all you need is to P/Invoke one or other of those API calls.
However, I suspect all that will be in vain when the garbage collector steps in and messes things up.
Have you done any profiling of the app to see what's going on under the covers? If you app is truly that latency sensitive then C# is probably the wrong choice of language to be honest.
I'm not sure what the point of using the MMCSS would be in a managed application. After all, the point of the MMCSS is to adjust the scheduling priority of the process to avoid stalls during multimedia stream processing - we're talking nanosecond level scheduling. But with a managed language where a garbage collection can happen at any time and potentially take tens or even hundreds of milliseconds, then I'm not sure what benefit the MMCSS would provide that wouldn't be totally wiped out by garbage collection.
With that in mind, I wouldn't expect to see a managed interface to the MMCSS any time soon. You can certainly access it via P/Invoke, but I wouldn't expect miracles from it :)
Related
Hey I was hoping some one could explain something to me. I'm new to programming and so far in the program I am writing I haven't done anything with threading, but when I look at the resource monitor in windows 7 it shows 18 threads for my program.
My program is just under 1MB at this point uses about 10,000kb of private memory on average and rarely hits 1% of my cpu usage. The program still runs great but I was just a little confused and wanted some insight on this.
Should this even be something I should be concerned about and if so, what should I be looking at that might cause so many threads being used?
The threads you are seeing may well not be your own threads, they will be owned by the clr and will be handling things like garbage collection.
I'd suggest that you don't need to worry about thread management. If you need to program multiple tasks happening at once, then take a look at the Task Parallel Library (TPL). Multi threaded programming is hard, learn about it only when you really have to.
We have a very high performance multitasking, near real-time C# application. This performance was achieved primarily by implementing cooperative multitasking in-house with a home grown scheduler. This is often called micro-threads. In this system all the tasks communicate with other tasks via queues.
The specific problem that we have seems to only be solvable via first class continuations which C# does not support.
Specifically the problem arises in 2 cases dealing with queues. Whenever any particular task performs some work before placing an item on a queue. What if the queue is full?
Conversely, a different task may do some work and then need to take an item off of a queue. What if that queue is empty?
We have solved this in 90% of the cases by linking queues to tasks to avoid tasks getting invoked if any of their outbound queues are full or inbound queue is empty.
Furthermore certain tasks were converted into state machines so they can handle if a queue is full/empty and continue without waiting.
The real problem arises in a few edge cases where it is impractical to do either of those solutions. The idea in that scenario would be to save the stack state at the point and switch to a different task so that it can do the work and subsequently retry the waiting task whenever it is able to continue.
In the past, we attempted to have the waiting task call back into the schedule (recursively) to allow the other tasks to and later retry the waiting task. However, that led to too many "deadlock" situations.
There was an example somewhere of a custom CLR host to make the .NET threads actually operate as "fibers" which essentially allows switching stack state between threads. But now I can't seem to find any sample code for that. Plus it seems that will take some significant complexity to get it right.
Does anyone have any other creative ideas how to switch between tasks efficiently and avoid the above problems?
Are there any other CLR hosts that offer this, commercial or otherwise? Is there any add-on native library that can offer some form of continuations for C#?
There is the C# 5 CTP, which performs a continuation-passing-style transformation over methods declared with the new async keyword, and continuation-passing based calls when using the await keyword.
This is not actually a new CLR feature but rather a set of directives for the compiler to perform the CPS transformation over your code and a handful of library routines for manipulating and scheduling continuations. Activation records for async methods are placed on the heap instead of the stack, so they're not tied to a specific thread.
Nope, not going to work. C# (and even IL) is too complex language to perform such transformations (CPS) in a general way. The best you can get is what C# 5 will offer. That said, you will probably not be able to break/resume with higher order loops/iterations, which is really want you want from general purpose reifiable continuations.
Fiber mode was removed from v2 of the CLR because of issues under stress, see:
Fiber mode is gone...
Fibers and the CLR
Question to the CLR experts : fiber mode support in hosting
To my knowledge fiber support has not yet bee re-added, although from reading the above articles it may be added again (however the fact that nothing has mentioned for 6-7 years on the topic makes me believe that its unlikely).
FYI fiber support was intended to be a way for existing applications that use fibers (such as SQL Server) to host the CLR in a way that allows them to maximise performance, not as a method to allow .Net applications to create hundereds of threads - in short fibers are not a magic bullet solution to your problem, however if you have an application that uses fibers an wishes to host the CLR then the managed hosting APIs do provide the means for the CLR to "work nicely" with your application. A good source of information on this would be the managed hosting API documentation, or to look into how SQL Server hosts the CLR, of which there are several highly informative articles around.
Also take a quick read of Threads, fibers, stacks and address space.
Actually, we decided on a direction to go with this. We're using the Observer pattern with Message Passsing. We built a home grown library to handle all communication between "Agents" which are similar to an Erlang process. Later we will consider using AppDomains to even better separate Agents from each other. Design ideas were borrowed from the Erlang programming language which has extremely reliable mult-core and distributed processing.
The solution to your problem is to use lock-free algorithms allowing for system wide progress of at least one task. You need to use inline assembler that is CPU dependent to make sure that you atomic CAS (compare-and-swap). Wikipedia has an article as well as patterns described the the book by Douglas Schmidt called "Pattern-Oriented Software Architecture, Patterns for Concurrent and Networked Objects". It is not immediately clear to me how you will do that under the dotnet framework.
Other way of solving your problem is using the publish-subscriber pattern or possible thread pools.
Hope this was helpful?
Can C# be used for developing a real-time application that involves taking input from web cam continuously and processing the input?
You cannot use any main stream garbage collected language for “hard real-time systems”, as the garbage collect will sometimes stop the system responding in a defined time. Avoiding allocating object can help, however you need a way to prove you are not creating any garbage and that the garbage collector will not kick in.
However most “real time” systems don’t in fact need to always respond within a hard time limit, so it all comes down do what you mean by “real time”.
Even when parts of the system needs to be “hard real time” often other large parts of the system like the UI don’t.
(I think your app needs to be fast rather than “real time”, if 1 frame is lost every 100 years how many people will get killed?)
I've used C# to create multiple realtime, high speed, machine vision applications that run 24/7 and have moving machinery dependent on the application. If something goes wrong in the software, something immediately and visibly goes wrong in the real world.
I've found that C#/.Net provide pretty good functionality for doing so. As others have said, definitely stay on top of garbage collection. Break up to processing into several logical steps, and have separate threads working each. I've found the Producer Consumer programming model to work well for this, perhaps ConcurrentQueue for starters.
You could start with something like:
Thread 1 captures the camera image, converts it to some format, and puts it into an ImageQueue
Thread 2 consumes from the ImageQueue, processing the image and comes up with a data object that is put onto a ProcessedQueue
Thread 3 consumes from the ProcessedQueue and does something interesting with the results.
If Thread 2 takes too long, Threads 1 and 3 are still chugging along. If you have a multicore processor you'll be throwing more hardware at the math. You could also use several threads in place of any thread that I wrote above, although you'd have to take care of ordering the results manually.
Edit
After reading other peoples answers, you could probably argue my definition of "realtime". In my case, the computer produces targets that it sends to motion controllers which do the actual realtime motion. The motion controllers provide their own safety layers for things like timing, max/min ranges, smooth accel/decelerations and safety sensors. These controllers read sensors across an entire factory with a cycle time of less than 1ms.
Absolutely. The key will be to avoid garbage collection and memory management as much as possible. Try to avoid new-ing objects as much as possible, using buffers or object pools when you can.
Of course, someone has even developed a library to do that: AForge.NET
As with any real-time application and not just C#, you'll have to manage the buffers well as #David suggested.
Not only that, there're also the XNA Framework (for things like 3D games) and you can program DirectX using C# as well which are very real-time.
And did you know that, if you want, you can do pointer manipulations in C# too?
It depends on how 'real-time' it needs to be; ie, what your timing constraints are, and how quickly you need to 'do something'.
If you can handle 'doing something' maybe every 300ms or so in .NET, say on a timer event, I've found Windows to work okay. Note that this is something I found true on multiple systems of different ages and different speeds. As always, YMMV.
But that number is awfully long for a lot of applications. Maybe not for yours.
Do some research, make sure your app responds quickly enough for your application.
Learning about threading is fascinating no doubt and there are some really good resources to do that. But, my question is threading applied explicitly either as part of design or development in real-world applications.
I have worked on some extensively used and well-architected .NET apps in C# but found no trace of explicit usage.Is there no real need due to this being managed by CLR or is there any specific reason?
Also, any example of threading coded in widely used .NET apps. in Codelplex or Gooogle Code are also welcome.
The simplest place to use threading is performing a long operation in a GUI while keeping the UI responsive.
If you perform the operation on the UI thread, the entire GUI will freeze until it finishes. (Because it won't run a message loop)
By executing it on a background thread, the UI will remain responsive.
The BackgroundWorker class is very useful here.
is threading applied explicitly either as part of design or development in real-world applications.
In order to take full advantage of modern, multi-core systems, threading must be part of the design from the start. While it's fairly easy (especially in .NET 4) to find small portions of code to thread, to get real scalability, you need to design your algorithms to handle being threaded, preferably at a "high level" in your code. The earlier this is done in the design phases, the easier it is to properly build threading into an application.
Is there no real need due to this being managed by CLR or is there any specific reason?
There is definitely a need. Threading doesn't come for free - it must be added in by the developer. The main reason this isn't found very often, especially in open source code, is really more a matter of difficulty. Even using .NET 4, properly designing algorithms to thread in a scalable, safe manner is difficult.
That entirely depends on the application.
For a client app that ever needs to do any significant work (or perform other potentially long-running tasks, such as making web service calls) I'd expect background threads to be used. This could be achieved via BackgroundWorker, explicit use of the thread pool, explicit use of Parallel Extensions, or creating new threads explicitly.
Web services and web applications are somewhat less likely to create their own threads, in my experience. You're more likely to effectively treat each request as having a separate thread (even if ASP.NET moves it around internally) and perform everything synchronously. Of course there are web applications which either execute asynchronously or start threads for other reasons - but I'd say this comes up less often than in client apps.
Definitely a +1 on the Parallel Extensions to .NET. Microsoft has done some great work here to improve the ThreadPool. You used to have one global queue which handled all tasks, even if they were spawned from a worker thread. Now they have a lock-free global queue and local queues for each worker thread. That's a very nice improvement.
I'm not as big a fan of things like Parallel.For, Parallel.Foreach, and Parallel.Invoke (regions), as I believe they should be pure language extensions rather than class libraries. Obviously, I understand why we have this intermediate step, but it's inevitable for C# to gain language improvements for concurrency and it's equally inevitable that we'll have to go back and change our code to take advantage of it :-)
Overall, if you're looking at building concurrent apps in .NET, you owe it to yourself to research the heck out of the Parallel Extensions. I also think, given that this is a pretty nascent effort from Microsoft, you should be very vocal about what works for you and what doesn't, independent of what you perceive your own skill level to be with concurrency. Microsoft is definitely listening, but I don't think there are that many people yet using the Parallel Extensions. I was at VSLive Redmond yesterday and watched a session on this topic and continue to be impressed with the team working on this.
Disclosure: I used to be the Marketing Director for Visual Studio and am now at a startup called Corensic where we're building tools to detect bugs in concurrent apps.
Most real-world usages of threading I've seen is to simply avoid blocking - UI, network, database calls, etc.
You might see it in use as BeginXXX and EndXXX method pairs, delegate.BeginInvoke calls, Control.Invoke calls.
Some systems I've seen, where threading would be a boon, actually use the isolation principle to achieve multiple "threads", in other words, split the work down into completely unrelated chunks and process them all independently of each other - "multi-threading" (or many-core utilisation) is automagically achieved by simply running all the processes at once.
I think it's fair to say you find a lot of stock-and-trade applications (data presentation) largely do not require massive parallisation, nor are they always able to be architected to be suitable for it. The examples I've seen are all very specific problems. This may attribute to why you've not seen any noticable implementations of it.
The question of whether to make use of an explicit threading implementation is normally a design consideration as others have mentioned here. Trying to implement concurrency as an afterthought usually requires a lot of radical and wholesale changes.
Keep in mind that simply throwing threads into an application doesn't inherently increase performance or speed, given that there is a cost in managing each thread, and also perhaps some memory overhead (not to mention, debugging it can be fun).
From my experience, the most common place to implement a threading design has been in Windows Services (background applications) and on applications which have had use case scenarios where a volume of work could be easily split up into smaller parcels of work (and handed off to threads to complete asynchronously).
As for examples, you could check out the Microsoft Robotics Studio (as far as I know there's a free version now) - it comes with an redistributable (I can't find it as a standalone download) of the Concurrency and Coordination Runtime, there's some coverage of it on Microsoft's Channel 9.
As mentioned by others the Parallel Extensions team (blog is here) have done some great work with thread safety and parallel execution and you can find some samples/examples on the MSDN Code site.
Threading is used in all sorts of scenarios, anything network based depends on threading, whether explicit (sockets stuff) or implicit (web services). Threading keeps UI responsive. And windows services having multiple parallel runs doing the same things in processing data working through queues that need to be processed.
Those are just the most common ones I've seen.
Most answers reference long-running tasks in a GUI application. Another very common usage scenario in my experience is Producer/Consumer queues. We have many utility applications that have to perform web requests etc. often to large number of endpoints. We use producer/consumer threading pattern (usually by integrating a custom thread pool) to allow high parallelization of these tasks.
In fact, at this very moment I am checking up on an application that uploads a 200MB file to 200 different FTP locations. We use SmartThreadPool and run up to around 50 uploads in parallel, which allows the whole batch to complete in under one hour (as opposed to over 50 hours were it all uploads to happen consecutively - so in our usage we find almost straight linear improvements in time).
As modern day programmers we love abstractions so we use threads by calling Async methods or BeginInvoke and by using things like BackgroundWorker or PFX in .Net 4.
Yet sometimes there is a need to do the threading yourself. For Example in a web app I built I have a mail queue that I add to from within the app and there is a background thread that sends the emails. If the thread notices that the queue is filling up faster that it is sending it creates another thread if it then sees that that thread is idle it kills it. This can be done with a higher level abstraction I guess but i did it manually.
I can't resist the edge case - in some applications where either a high degree of operational certainty must be achieved or a high degree of operational uncertainty must be tolerated, then threads and processes are considered from initial architecture design all the way through end delivery
Case 1 - for systems that must achieve extremely high levels of operational reliability, three completely separate subsystems using three different mechanisms may be used in a voting architecture - Spawn 3 threads/proceses across each of the voters, wait for them to conclude/die/be killed, and proceed IFF they all say the same thing - example - complex avionic susystems
Case 2 - for systems that must deal with a high degree of operational uncertainty - do the same thing, but once something/anything gets back to you, kill off the stragglers and go forth with the best answer you got - example - complex intraday trading algorithms endeavoring to destroy the business that employ them :-)
I have an app that moves a project and its files from preview to production using a Flex front-end and a .NET web service. Currently, the process takes about 5-10 mins/per project. Aside from latency concerns, it really shouldn't take that long. I'm wondering whether or not this is a good use-case for multi-threading. Also, considering the user may want to push multiple projects or one right after another, is there a way to queue the jobs.
Any suggestions and examples are greatly appreciated.
Thanks!
Something that does heavy disk IO typically isn't a good candidate for multithreading since the disks can really only do one thing at a time. However, if you're pushing to multiple servers or the servers have particularly good disk subsystems some light threading may be beneficial.
As a note - regardless of whether or not you decide to queue the jobs, you will use multi-threading. Queueing is just one way of handling what is ultimately solved using multi-threading.
And yes, I'd recommend you build a queue to push out each project.
You should compare the speed of your code compared to just copying in Windows (i.e., explorer or command line) vs copying with something advanced like TeraCopy. If your code is significantly slower than Window then look at parts in your code to optimize using a profiler. If your code is about as fast as Windows but slower than TeraCopy, then multithreading could help.
Multithreading is not generally helpful when the operation I/O bound, but copying files involves reading from the disk AND writing over the network. This is two I/O operations, so if you separate them onto different threads, it could increase performance. For something like this you need a producer/consumer setup where you have a Circular queue with one thread reading from disk and writing to the queue, and another thread reading from the queue and writing to the network. It'll be important to keep in mind that the two threads will not run at the same speed, so if the queue gets full, wait before writing more data and if it's empty, wait before writing. Also the locking strategy could have a big impact on performance here and could cause the performance to degrade to slower than a single-threaded implementation.
If you're moving things between just two computers, the network is going to be the bottleneck, so you may want to queue these operations.
Likewise, on the same machine, the I/O is going to be the bottleneck, so you'd want to queue there, too.
You should try using the ThreadPool.
ThreadPool.QueueUserWorkItem(MoveProject, project);
Agreed with everyone over the limited performance of running the tasks in parallel.
If you have full control over your deployment environment, you could use Rhino Queues:
http://ayende.com/Blog/archive/2008/08/01/Rhino-Queues.aspx
This will allow you to produce a queue of jobs asynchronously (say from a WCF service being called from your Silverlight/Flex app) and consume them synchronously.
Alternatively you could use WCF and MSMQ, but the learning curve is greater.
When dealing with multiple files using multiple threads usually IS a good idea in concerns of performance.The main reason is that most disks nowadays support native command queuing.
I wrote an article recently about reading/writing files with multiple files on ddj.com.
See http://www.ddj.com/go-parallel/article/showArticle.jhtml?articleID=220300055.
Also see related question
Will using multiple threads with a RandomAccessFile help performance?
In particular i made the experience that when dealing with very many files it IS a good idea to use a number of threads. In contrary using many thread in many cases does not slow down applications as much as commonly expected.
Having said that i'd say there is no other way to find out than trying all possible different approaches. It depends on very many conditions: Hardware, OS, Drivers etc.
The very first thing you should do is point any kind of profiling tool towards your software. If you can't do that (like, if you haven't got such a tool), insert logging code.
The very first thing you need to do is figure out what is taking a long time to complete, and then why is it taking a long time to complete. That your "copy" operation as a whole takes a long time to complete isn't good enough, you need to pinpoint the reason for this down to a method or a set of methods.
Until you do that, all the other things you can do to your code will likely be guesswork. My experience has taught me that when it comes to performance, 9 out of 10 reasons for things running slow comes as surprises to the guy(s) that wrote the code.
So measure first, then change.
For instance, you might discover that you're in fact reporting progress of copying the file on a byte-per-byte basis, to a GUI, using a synchronous call to the UI, in which case it wouldn't matter how fast the actual copying can run, you'll still be bound by message handling speed.
But that's just conjecture until you know, so measure first, then change.