C# 4.0 - Multidimensional Associative Array (or way to mimic one?) - c#

I'm an experienced PHP developer transitioning to C#. At present I am working on a Windows Forms application.
I found in my searches that C# doesn't support associative arrays in the same loose fashion PHP does. I have found info on Dictionary and something about "structs" which seem to be class objects.
The trouble I am having is getting my head around not only an Associative array, but a multi dimensional one that I want to use for keeping multiple counts in a series of loops.
The application is reading a text log file, searching for a predefined string, pulling out the date on that line when the string is found, and incrementing a count for that string match on that date.
In PHP, it would be as easy as this:
// Initialize
$count_array[$string_date][$string_keyword] = 0;
...
// if string is found
$count_array[$string_date][$string_keyword] += 1;
...
// To ouput contents of array
foreach($count_array as $date -> $keyword_count_array) {
echo $date; // output date
foreach($keyword_count_array as $keyword -> $count) {
echo $keyword . ": " . $count;
}
}
It seems to be a little more involved in C# (which isn't a bad thing). I have tried using an suggestion I found on another similar question but I don't really follow how to either increment or iterate/output the contents:
// Initialize
var count_array = new Dictionary<string, Dictionary<string, int>>();
count_array = null;
...
// if string is found - I think the second reference is supposed to be a Dictionary object??
count_array[string_date.ToShortDateString()][string_keyword]++;
...
// To ouput contents of "array"
foreach (KeyValuePair<string, Dictionary<string, int>> kvp in exportArray)
{
foreach(KeyValuePair<string, int> kvp2 in kvp.Value)
{
MessageBox.Show(kvp.Key + " - " + kvp2.Key + " = " + kvp2.Value);
}
}
Am I even on the right track? Or does someone have a better/cleaner method of mimicing the PHP code above?
UPDATE
With the above C# code, I actually get an error at the "// if string is found " line. The error is "Object reference is not set to an instance of an object". I am assuming that it is because I have a string in the secound reference, not a Dictionary object. So right now, I am unsure how to increment.
UPDATE 2
Thanks everyone for your time. Current code is now functional thanks to understanding how Dictionary's work. However all advice regarding the use of classes and objects for this situation is not lost either. I may refactor to suit.

The code itself looks sound, the only thing I see missing is there are no checks to see if the values exist before incrementing them.
Before you call
count_array[string_date.ToShortDateString()][string_keyword]++;
You'll need to do:
string shortDate = string_date.ToShortDateString();
if (!count_array.ContainsKey(shortDate))
{
count_array.Add(shortDate, new Dictionary<string, int>());
}
if (!count_array[shortDate].ContainsKey(string_keyword))
{
count_array[shortDate].Add(string_keyword, 0);
}
Before you try incrementing anything.
You need to initialize your dictionary entries by calling .Add or ["key"] = value. Calling ++ on an uninitialized dictionary entry won't work. Depending on what exactly it is you're trying to accomplish though it might be a good idea to use a class.

You can use a tuple to create a multi-dimensional key for use in a Dictionary.
Dictionary<Tuple<TKey1,TKey2>,TValue>
Or a Dictionary of Dictionary:
Dictionary<TKey1,Dictionart<TKey2,Tvalue>>
The second one is more annoying to work with, but has the upside that you can index into it with just the first key and then get all key-value pairs associated with that key.
But perhaps you can use some linq, but your code is a bit incomplete for that.

What about creating a class for this?
public class LogEntry
{
private List<int> _lines = new List<int>();
public string LogContent { get;set; }
public DateTime Time { get;set; }
public List<int> Lines { get { return _lines; } }
}
You'd still have a dictionary of probably DateTime, LogEntry? Not entirely sure what exactly you need / what the key is.
Anyways, creating a class seems to be the "correct" way as you can express your intend more clearly.

Your approach can work, however, you need to understand Dictionary is a reference type, which means it has to be created prior to use. You create the “top-level” Dictionary, but the “second-level” dictionaries need to be created as well. But in
count_array[string_date.ToShortDateString()][string_keyword]++;
you count on count_array[string_date.ToShortDateString()] being already created (so that it can be queried). And another problem is that Dictionary<Key, Value> behavior is that an attempt to access an item which does not exist results in an exception (KeyNotFoundException). There is a more lenient TryGetValue method for you to use. Combined, you need to do something along the lines of:
// Initialize
var count_array = new Dictionary<string, Dictionary<string, int>>();
// if string is found - I think the second reference is supposed to be a Dictionary object??
Dictionary<string, int> perDateDict;
var dateKey = string_date.ToShortDateString();
if (!count_array.TryGetValue(dateKey, out perDateDict)
{
perDateDict = new Dictionary<string, int>();
count_array.Add(adteKey, perDateDict);
}
int prevValue;
// note that when not found, prevValue will be zero, which is what we need
perDateDict.TryGetValue(string_keyword, out prevValue);
perDateDict[string_keyword] = prevValue+1;
// To ouput contents of "array"
foreach (KeyValuePair<string, Dictionary<string, int>> kvp in exportArray)
{
foreach(KeyValuePair<string, int> kvp2 in kvp.Value)
{
MessageBox.Show(kvp.Key + " - " + kvp2.Key + " = " + kvp2.Value);
}
}

One thing you must be make sure Dictionary is not a ValueType and is not auto initialized.
Hence when you say count_array = null it means you are resetting the reference to null location. Just remove the line.
Your code should look like :
var count_array = new Dictionary<string, Dictionary<string, int>>();
// if string is found - I think the second reference is supposed to be a Dictionary object??
string dt = DateTime.Now.ToShortDateString();
count_array[dt] = new Dictionary<string, int>(); //It is important as you should always give appropriate refernece before doing a fetch.
count_array[dt]["key"] = 0; //Value types are defaults to 0 so it is not explicitely required.
//Now you can do
count_array[dt]["key"]++;
// To ouput contents of "array"
foreach (KeyValuePair<string, Dictionary<string, int>> kvp in count_array)
{
foreach (KeyValuePair<string, int> kvp2 in kvp.Value)
{
Console.WriteLine(kvp.Key + " - " + kvp2.Key + " = " + kvp2.Value);
}
}
You can also use ?? operator to ensure that when Dictionary is null, you assign a new reference.
count_array[dt] = count_array[dt] ?? new Dictionary();
I hope this will help you even you should recode this properly.

You need to start thinking in OO terms. In production code I would give the classes some destination to print to, instead of going directly to Console, and maybe use strategy or similar to format the text, but essentially this is the OO way of thinking about the problem.
class Log {
Dictionary<DateTime, List<LogEntry>} Entries { get; private set; }
public void PrintLogs()
{
foreach (var date in Entries.Keys)
{
Console.WriteLine(date);
foreach (var entry in Entries[date])
{
entry.PrintEntry();
}
}
}
}
class LogEntry {
public List<string> EntryLines { get; set; }
public DateTime Date { get; set; }
public void PrintEntry()
{
foreach (var line in EntryLines)
Console.WriteLine(line);
}
}

Related

Uppercase all keys in a series of C# KeyValuePairs

I have a list of JSON objects, each of which I'm iterating over and I simply want to process all of the KeyValuePairs therein so that the keys are uppercased, then return the revised objects.
This is what I attempted:
public static List<JObject> normalizeKeys(List<JObject> jObjList)
{
jObjList.ForEach(jobj => {
foreach(var kvp in jobj)
{
kvp.Key = kvp.Key.ToUpper();
}
});
return jObjList;
}
but it doesn't execute and instead I get KeyValuePair<string, JToken>.Key cannot be assigned to -- it is readonly. Does anyone have any suggestions for how to accomplish what I'm after?
Though the given answer works, I would be inclined to say that it is both not as elegant as it could be, and not as generally useful as it could be. We can make it more of both. To begin with, solve the problem for one object:
public static JObject NormalizeKeys(JObject originalObject)
{
var newObject = new JObject();
foreach (var kvp in originalObject)
newObject.Add(kvp.Key.ToUpper(), kvp.Value);
return newObject;
}
And now to solve the problem for a list:
var newList = oldList.Select(x=>NormalizeKeys(x)).ToList();
Or, even shorter:
var newList = oldList.Select(NormalizeKeys).ToList();
Isn't that much more pleasant than all that nested loop stuff? Say how to normalize one object, and then say that you want to apply that function to the list, and you're done.
Guess you know the answer yourself, you must create a new collection and copy the items over, since key is key, it's case sensitive, and cannot be changed, as otherwise you might end up with probably 2 sets of data, one set with normal case, and the other with upper cases.
The solution is as the following:
public static List<JObject> normalizeKeys(List<JObject> jObjList)
{
// create a new list for return and copy over the existing items
var jObjReturnList = new List<JObject>(jObjList.Count);
jObjList.ForEach(jobj =>
{
var jObjNew = new JObject();
foreach (var kvp in jobj)
{
jObjNew.Add(kvp.Key.ToUpper(), kvp.Value);
}
jObjReturnList.Add(jObjNew);
});
return jObjReturnList;
}

Retrieving the key of a value from a hash table c#

I have a hash table that contains values of a^j. j is the key and a^j is the value.
I am now calculating another value a^m. I basically want to see if a^m is in the hash table.
I used the ContainsValue fn. to find the value. How would i go about finding out the key of the value?
Here is a little snippet of where i want to implement the search for the value.
Dictionary<BigInteger, BigInteger> b = new Dictionary<BigInteger, BigInteger>();
***add a bunch of BigIntegers into b***
for(int j=0; j < n; j++)
{
z = q* BigInteger.ModPow(temp,j,mod);
***I want to implement to search for z in b here****
}
Does this change anything? the fact that i am searching while inside a for loop?
The fastest way is probably to iterate through the hashtable's DictionaryEntry items to find the value, which in turn gives you the key. I don't see how else to do it.
Firstly, you should absolutely be using Dictionary<TKey, TValue> instead of Hashtable - if you're using BigInteger from .NET 4, there's no reason not to use generic collections everywhere you can. Chances are for the most part you'd see no difference in how it's used - just create it with:
Dictionary<BigInteger, BigInteger> map =
new Dictionary<BigInteger, BigInteger>();
to start with. One thing to watch out for is that the indexer will throw an exception if the key isn't present in the map - use TryGetValue to fetch the value if it exists and a bool to say whether or not it did exist.
As for finding the key by value - there's no way to do that efficiently from a Dictionary. You can search all the entries, which is most easily done with LINQ:
var key = map.Where(pair => pair.Value == value)
.Select(pair => pair.Key)
.First();
but that will iterate over the whole dictionary until it finds a match, so it's an O(n) operation.
If you want to do this efficiently, you should keep two dictionaries - one from a to a^j and one from a^j to a. When you add an entry, add it both ways round. Somewhere on Stack Overflow I've got some sample code of a class which does this for you, but I doubt I'd be able to find it easily. EDIT: There's one which copes with multiple mappings here; the "single mapping" version is in the answer beneath that one.
Anyway, once you've got two dictionaries, one in each direction, it's easy - obviously you'd just lookup a^m as a key in the second dictionary to find the original value which created it.
Note that you'll need to consider whether it's possible for two original keys to end up with the same value - at that point you obviously wouldn't be able to have both mappings in one reverse dictionary (unless it was a Dictionary<BigInteger, List<BigInteger>> or something similar).
Edit: Changed to use Dictionary<TKey, TValue>
Dictionary<TKey, TValue> is an IEnumerable<KeyValuePair<TKey, TValue>>. If you do a foreach over it directly, you can get both the key and value for each entry.
class SomeType
{
public int SomeData = 5;
public override string ToString()
{
return SomeData.ToString();
}
}
// ...
var blah = new Dictionary<string, SomeType>();
blah.Add("test", new SomeType() { SomeData = 6 });
foreach (KeyValuePair<string, SomeType> item in blah)
{
if(e.Value.SomeData == 6)
{
Console.WriteLine("Key: {0}, Value: {1}", item.Key, item.Value);
}
}
If you have a newer version of the .Net framework, you could use Linq to find your matches, and place them in their own collection. Here's a code sample showing a little bit of Linq syntax:
using System;
using System.Collections;
using System.Linq;
class SomeType
{
public int SomeData = 5;
public override string ToString()
{
return SomeData.ToString();
}
}
class Program
{
static void Main(string[] args)
{
var blah = new Dictionary<string, SomeType>();
blah.Add("test", new SomeType() { SomeData = 6 });
// Build an enumeration of just matches:
var entriesThatMatchValue = blah
.Where(e => e.Value.SomeData == 6);
foreach (KeyValuePair<string, SomeType> item in entriesThatMatchValue)
{
Console.WriteLine("Key: {0}, Value: {1}", item.Key, item.Value);
}
// or: ...
// Build a sub-enumeration of just keys from matches:
var keysThatMatchValue = entriesThatMatchValue.Select(e => e.Key);
// Build a list of keys from matches in-line, using method chaining:
List<string> matchingKeys = blah
.Where(e => e.Value.SomeData == 6)
.Select(e => e.Key)
.ToList();
}
}
private object GetKeyByValue(object searchValue)
{
foreach (DictionaryEntry entry in myHashTable)
{
if (entry.Value.Equals(searchValue))
{
return entry.Key;
}
}
return null;
}

Converting a KeyValuePair collection in to anonymous type

Is it possible to convert a a IEnumerable<KeyValuePair<string,string>> of KeyValuePair to an anonymous type?
Dictionary<string, string> dict= new Dictionary<string, string>();
dict.add("first", "hello");
dict.add("second", "world");
var anonType = new{dict.Keys[0] = dict[0], dict.Keys[1] = dict[1]};
Console.WriteLine(anonType.first);
Console.WriteLine(anonType.second);
********************output*****************
hello
world
The reason i would like to do this is because I am retrieving an object from a webservice that represents an object that does not exist in the wsdl. The returned object only contains a KeyValuePair collection that contains the custom fields and their values. These custom fields can be named anything, so i cant really map an xml deserialization method to the final object i will be using (whose properties must be bound to a grid).
*Just because I used Dictionary<string,string> does not mean it is absolutely a dictionary, i just used it for illustration. Really its an IEnumerable<KeyValuePair<string,string>>
Ive been trying to thing of a way to do this, but am drawing a blank. This is c# .NET 4.0.
You could use the ExpandoObject, it is based on a dictionary.
I think there are a lot of ways to achieve this, but actually converting it in the same Dictionary seems a bit odd to do.
One way to accomplish this, by not actually converting everyting is the following:
public class MyDictionary<T,K> : Dictionary<string,string> // T and K is your own type
{
public override bool TryGetValue(T key, out K value)
{
string theValue = null;
// magic conversion of T to a string here
base.TryGetValue(theConvertedOfjectOfTypeT, out theValue);
// Do some magic conversion here to make it a K, instead of a string here
return theConvertedObjectOfTypeK;
}
}
ExpandoObject is the best option, which I believe is a wrapper around some XML. You could also use an XElement:
var result = new XElement("root");
result.Add(new XElement("first", "hello"));
result.Add(new XElement("second", "world"));
Console.WriteLine(result.Element("first").Value);
Console.WriteLine(result.Element("second").Value);
foreach (var element in result.Elements())
Console.WriteLine(element.Name + ": " + element.Value);
I haven't used ExpandoObject, so I'd try that first because I understand it does exactly what you want and is also something new and interesting to learn.

C# List - Group By - Without Linq

I have an object:
IObject
{
string Account,
decimal Amount
}
How do I group by Account and Sum the Amount, returning a List without Linq.
2.0 Framework ... that is why no Linq.
Here is what I have:
ListofObjects = List<IObject>;
foreach (var object in objects)
{
var objectToAdd = new Object(object);
var oa = ListofObjects.Find(x => x.Account == objectToAdd.Account);
if (oa == null)
{
ListofObjects.Add(objectToAdd);
}
else
{
ListofObjects.Remove(oa);
oa.Amount = objectToAdd.Amount;
ListofObjects.Add(oa);
}
}
Easiest answer: use LINQBridge and get all your LINQ to Objects goodness against .NET 2.0... works best if you can use C# 3 (i.e. VS2008 but targeting .NET 2.0).
If you really can't do that, you'll basically need to keep a dictionary from a key to a list of values. Iterate through the sequence, and check whether it already contains a list - if not, add one. Then add to whatever list you've found (whether new or old).
If you need to return the groups in key order, you'll need to also keep a list of keys in the order in which you found them. Frankly it's a pain... just get LINQBridge instead :)
(Seriously, each individual bit of LINQ is actually fairly easy to write - but it's also quite easy to make off-by-one errors, or end up forgetting to optimize something like Count() in the case where it's actually an ICollection<T>... There's no need to reinvent the wheel here.)
EDIT: I was about to write some code, but then I noticed that you want a list returned... a list of what? A List<IList<IObject>>? Or are you actually trying to group and sum in one go? If so, don't you want a list of pairs of key and amount? Or are you going to reuse the same class that you've already got for a single account, but as the aggregate? If it's the latter, here's some sample code:
public static IList<IObject> SumAccounts(IEnumerable<IObject> data)
{
List<IObject> ret = new List<IObject>();
Dictionary<string, IObject> map = new Dictionary<string, IObject>();
foreach (var item in data)
{
IObject existing;
if (!map.TryGetValue(item.Account, out existing))
{
existing = new IObject(item.Account, 0m);
map[item.Account] = existing;
ret.Add(existing);
}
existing.Amount += item.Amount;
}
return ret;
}
Admittedly the extra efficiency here due to using a Dictionary for lookups will be pointless unless you've got really quite a lot of accounts...
EDIT: If you've got a small number of accounts as per your comment, you could use:
public static IList<IObject> SumAccounts(IEnumerable<IObject> data)
{
List<IObject> ret = new List<IObject>();
foreach (var item in data)
{
IObject existing = ret.Find(x => x.Account == item.Account);
if (existing == null)
{
existing = new IObject(item.Account, 0m);
ret.Add(existing);
}
existing.Amount += item.Amount;
}
return ret;
}
Use a dictionary to hold the results. Locating an item in a dictionary is close to an O(1) operation, so it's a lot faster than searching for items in a list.
Dictionary<string, decimal> sum = new Dictionary<string, decimal>();
foreach (IObject obj in objects) {
if (sum.ContainsKey(obj.Account)) {
sum[obj.Account].Amount += obj.Amount;
} else {
sum.Add(obj.Account, obj.Amount);
}
}

How to iterate over a dictionary?

I've seen a few different ways to iterate over a dictionary in C#. Is there a standard way?
foreach(KeyValuePair<string, string> entry in myDictionary)
{
// do something with entry.Value or entry.Key
}
If you are trying to use a generic Dictionary in C# like you would use an associative array in another language:
foreach(var item in myDictionary)
{
foo(item.Key);
bar(item.Value);
}
Or, if you only need to iterate over the collection of keys, use
foreach(var item in myDictionary.Keys)
{
foo(item);
}
And lastly, if you're only interested in the values:
foreach(var item in myDictionary.Values)
{
foo(item);
}
(Take note that the var keyword is an optional C# 3.0 and above feature, you could also use the exact type of your keys/values here)
In some cases you may need a counter that may be provided by for-loop implementation. For that, LINQ provides ElementAt which enables the following:
for (int index = 0; index < dictionary.Count; index++) {
var item = dictionary.ElementAt(index);
var itemKey = item.Key;
var itemValue = item.Value;
}
Depends on whether you're after the keys or the values...
From the MSDN Dictionary(TKey, TValue) Class description:
// When you use foreach to enumerate dictionary elements,
// the elements are retrieved as KeyValuePair objects.
Console.WriteLine();
foreach( KeyValuePair<string, string> kvp in openWith )
{
Console.WriteLine("Key = {0}, Value = {1}",
kvp.Key, kvp.Value);
}
// To get the values alone, use the Values property.
Dictionary<string, string>.ValueCollection valueColl =
openWith.Values;
// The elements of the ValueCollection are strongly typed
// with the type that was specified for dictionary values.
Console.WriteLine();
foreach( string s in valueColl )
{
Console.WriteLine("Value = {0}", s);
}
// To get the keys alone, use the Keys property.
Dictionary<string, string>.KeyCollection keyColl =
openWith.Keys;
// The elements of the KeyCollection are strongly typed
// with the type that was specified for dictionary keys.
Console.WriteLine();
foreach( string s in keyColl )
{
Console.WriteLine("Key = {0}", s);
}
Generally, asking for "the best way" without a specific context is like asking
what is the best color?
One the one hand, there are many colors and there's no best color. It depends on the need and often on taste, too.
On the other hand, there are many ways to iterate over a Dictionary in C# and there's no best way. It depends on the need and often on taste, too.
Most straightforward way
foreach (var kvp in items)
{
// key is kvp.Key
doStuff(kvp.Value)
}
If you need only the value (allows to call it item, more readable than kvp.Value).
foreach (var item in items.Values)
{
doStuff(item)
}
If you need a specific sort order
Generally, beginners are surprised about order of enumeration of a Dictionary.
LINQ provides a concise syntax that allows to specify order (and many other things), e.g.:
foreach (var kvp in items.OrderBy(kvp => kvp.Key))
{
// key is kvp.Key
doStuff(kvp.Value)
}
Again you might only need the value. LINQ also provides a concise solution to:
iterate directly on the value (allows to call it item, more readable than kvp.Value)
but sorted by the keys
Here it is:
foreach (var item in items.OrderBy(kvp => kvp.Key).Select(kvp => kvp.Value))
{
doStuff(item)
}
There are many more real-world use case you can do from these examples.
If you don't need a specific order, just stick to the "most straightforward way" (see above)!
C# 7.0 introduced Deconstructors and if you are using .NET Core 2.0+ Application, the struct KeyValuePair<> already include a Deconstruct() for you. So you can do:
var dic = new Dictionary<int, string>() { { 1, "One" }, { 2, "Two" }, { 3, "Three" } };
foreach (var (key, value) in dic) {
Console.WriteLine($"Item [{key}] = {value}");
}
//Or
foreach (var (_, value) in dic) {
Console.WriteLine($"Item [NO_ID] = {value}");
}
//Or
foreach ((int key, string value) in dic) {
Console.WriteLine($"Item [{key}] = {value}");
}
I would say foreach is the standard way, though it obviously depends on what you're looking for
foreach(var kvp in my_dictionary) {
...
}
Is that what you're looking for?
You can also try this on big dictionaries for multithreaded processing.
dictionary
.AsParallel()
.ForAll(pair =>
{
// Process pair.Key and pair.Value here
});
I appreciate this question has already had a lot of responses but I wanted to throw in a little research.
Iterating over a dictionary can be rather slow when compared with iterating over something like an array. In my tests an iteration over an array took 0.015003 seconds whereas an iteration over a dictionary (with the same number of elements) took 0.0365073 seconds that's 2.4 times as long! Although I have seen much bigger differences. For comparison a List was somewhere in between at 0.00215043 seconds.
However, that is like comparing apples and oranges. My point is that iterating over dictionaries is slow.
Dictionaries are optimised for lookups, so with that in mind I've created two methods. One simply does a foreach, the other iterates the keys then looks up.
public static string Normal(Dictionary<string, string> dictionary)
{
string value;
int count = 0;
foreach (var kvp in dictionary)
{
value = kvp.Value;
count++;
}
return "Normal";
}
This one loads the keys and iterates over them instead (I did also try pulling the keys into a string[] but the difference was negligible.
public static string Keys(Dictionary<string, string> dictionary)
{
string value;
int count = 0;
foreach (var key in dictionary.Keys)
{
value = dictionary[key];
count++;
}
return "Keys";
}
With this example the normal foreach test took 0.0310062 and the keys version took 0.2205441. Loading all the keys and iterating over all the lookups is clearly a LOT slower!
For a final test I've performed my iteration ten times to see if there are any benefits to using the keys here (by this point I was just curious):
Here's the RunTest method if that helps you visualise what's going on.
private static string RunTest<T>(T dictionary, Func<T, string> function)
{
DateTime start = DateTime.Now;
string name = null;
for (int i = 0; i < 10; i++)
{
name = function(dictionary);
}
DateTime end = DateTime.Now;
var duration = end.Subtract(start);
return string.Format("{0} took {1} seconds", name, duration.TotalSeconds);
}
Here the normal foreach run took 0.2820564 seconds (around ten times longer than a single iteration took - as you'd expect). The iteration over the keys took 2.2249449 seconds.
Edited To Add:
Reading some of the other answers made me question what would happen if I used Dictionary instead of Dictionary. In this example the array took 0.0120024 seconds, the list 0.0185037 seconds and the dictionary 0.0465093 seconds. It's reasonable to expect that the data type makes a difference on how much slower the dictionary is.
What are my Conclusions?
Avoid iterating over a dictionary if you can, they are substantially slower than iterating over an array with the same data in it.
If you do choose to iterate over a dictionary don't try to be too clever, although slower you could do a lot worse than using the standard foreach method.
As already pointed out on this answer, KeyValuePair<TKey, TValue> implements a Deconstruct method starting on .NET Core 2.0, .NET Standard 2.1 and .NET Framework 5.0 (preview).
With this, it's possible to iterate through a dictionary in a KeyValuePair agnostic way:
var dictionary = new Dictionary<int, string>();
// ...
foreach (var (key, value) in dictionary)
{
// ...
}
There are plenty of options. My personal favorite is by KeyValuePair
Dictionary<string, object> myDictionary = new Dictionary<string, object>();
// Populate your dictionary here
foreach (KeyValuePair<string,object> kvp in myDictionary)
{
// Do some interesting things
}
You can also use the Keys and Values Collections
With .NET Framework 4.7 one can use decomposition
var fruits = new Dictionary<string, int>();
...
foreach (var (fruit, number) in fruits)
{
Console.WriteLine(fruit + ": " + number);
}
To make this code work on lower C# versions, add System.ValueTuple NuGet package and write somewhere
public static class MyExtensions
{
public static void Deconstruct<T1, T2>(this KeyValuePair<T1, T2> tuple,
out T1 key, out T2 value)
{
key = tuple.Key;
value = tuple.Value;
}
}
As of C# 7, you can deconstruct objects into variables. I believe this to be the best way to iterate over a dictionary.
Example:
Create an extension method on KeyValuePair<TKey, TVal> that deconstructs it:
public static void Deconstruct<TKey, TVal>(this KeyValuePair<TKey, TVal> pair, out TKey key, out TVal value)
{
key = pair.Key;
value = pair.Value;
}
Iterate over any Dictionary<TKey, TVal> in the following manner
// Dictionary can be of any types, just using 'int' and 'string' as examples.
Dictionary<int, string> dict = new Dictionary<int, string>();
// Deconstructor gets called here.
foreach (var (key, value) in dict)
{
Console.WriteLine($"{key} : {value}");
}
foreach is fastest and if you only iterate over ___.Values, it is also faster
Using C# 7, add this extension method to any project of your solution:
public static class IDictionaryExtensions
{
public static IEnumerable<(TKey, TValue)> Tuples<TKey, TValue>(
this IDictionary<TKey, TValue> dict)
{
foreach (KeyValuePair<TKey, TValue> kvp in dict)
yield return (kvp.Key, kvp.Value);
}
}
And use this simple syntax
foreach (var(id, value) in dict.Tuples())
{
// your code using 'id' and 'value'
}
Or this one, if you prefer
foreach ((string id, object value) in dict.Tuples())
{
// your code using 'id' and 'value'
}
In place of the traditional
foreach (KeyValuePair<string, object> kvp in dict)
{
string id = kvp.Key;
object value = kvp.Value;
// your code using 'id' and 'value'
}
The extension method transforms the KeyValuePair of your IDictionary<TKey, TValue> into a strongly typed tuple, allowing you to use this new comfortable syntax.
It converts -just- the required dictionary entries to tuples, so it does NOT converts the whole dictionary to tuples, so there are no performance concerns related to that.
There is a only minor cost calling the extension method for creating a tuple in comparison with using the KeyValuePair directly, which should NOT be an issue if you are assigning the KeyValuePair's properties Key and Value to new loop variables anyway.
In practice, this new syntax suits very well for most cases, except for low-level ultra-high performance scenarios, where you still have the option to simply not use it on that specific spot.
Check this out: MSDN Blog - New features in C# 7
Simplest form to iterate a dictionary:
foreach(var item in myDictionary)
{
Console.WriteLine(item.Key);
Console.WriteLine(item.Value);
}
I found this method in the documentation for the DictionaryBase class on MSDN:
foreach (DictionaryEntry de in myDictionary)
{
//Do some stuff with de.Value or de.Key
}
This was the only one I was able to get functioning correctly in a class that inherited from the DictionaryBase.
Sometimes if you only needs the values to be enumerated, use the dictionary's value collection:
foreach(var value in dictionary.Values)
{
// do something with entry.Value only
}
Reported by this post which states it is the fastest method:
http://alexpinsker.blogspot.hk/2010/02/c-fastest-way-to-iterate-over.html
I know this is a very old question, but I created some extension methods that might be useful:
public static void ForEach<T, U>(this Dictionary<T, U> d, Action<KeyValuePair<T, U>> a)
{
foreach (KeyValuePair<T, U> p in d) { a(p); }
}
public static void ForEach<T, U>(this Dictionary<T, U>.KeyCollection k, Action<T> a)
{
foreach (T t in k) { a(t); }
}
public static void ForEach<T, U>(this Dictionary<T, U>.ValueCollection v, Action<U> a)
{
foreach (U u in v) { a(u); }
}
This way I can write code like this:
myDictionary.ForEach(pair => Console.Write($"key: {pair.Key}, value: {pair.Value}"));
myDictionary.Keys.ForEach(key => Console.Write(key););
myDictionary.Values.ForEach(value => Console.Write(value););
If you want to use a for loop, you can do as below:
var keyList=new List<string>(dictionary.Keys);
for (int i = 0; i < keyList.Count; i++)
{
var key= keyList[i];
var value = dictionary[key];
}
I will take the advantage of .NET 4.0+ and provide an updated answer to the originally accepted one:
foreach(var entry in MyDic)
{
// do something with entry.Value or entry.Key
}
If say, you want to iterate over the values collection by default, I believe you can implement IEnumerable<>, Where T is the type of the values object in the dictionary, and "this" is a Dictionary.
public new IEnumerator<T> GetEnumerator()
{
return this.Values.GetEnumerator();
}
The standard way to iterate over a Dictionary, according to official documentation on MSDN is:
foreach (DictionaryEntry entry in myDictionary)
{
//Read entry.Key and entry.Value here
}
I wrote an extension to loop over a dictionary.
public static class DictionaryExtension
{
public static void ForEach<T1, T2>(this Dictionary<T1, T2> dictionary, Action<T1, T2> action) {
foreach(KeyValuePair<T1, T2> keyValue in dictionary) {
action(keyValue.Key, keyValue.Value);
}
}
}
Then you can call
myDictionary.ForEach((x,y) => Console.WriteLine(x + " - " + y));
Dictionary< TKey, TValue > It is a generic collection class in c# and it stores the data in the key value format.Key must be unique and it can not be null whereas value can be duplicate and null.As each item in the dictionary is treated as KeyValuePair< TKey, TValue > structure representing a key and its value. and hence we should take the element type KeyValuePair< TKey, TValue> during the iteration of element.Below is the example.
Dictionary<int, string> dict = new Dictionary<int, string>();
dict.Add(1,"One");
dict.Add(2,"Two");
dict.Add(3,"Three");
foreach (KeyValuePair<int, string> item in dict)
{
Console.WriteLine("Key: {0}, Value: {1}", item.Key, item.Value);
}
The best answer is of course: Think, if you could use a more appropriate data structure than a dictionary if you plan to iterate over it- as Vikas Gupta mentioned already in the (beginning of the) discussion under the question. But that discussion as this whole thread still lacks surprisingly good alternatives. One is:
SortedList<string, string> x = new SortedList<string, string>();
x.Add("key1", "value1");
x.Add("key2", "value2");
x["key3"] = "value3";
foreach( KeyValuePair<string, string> kvPair in x )
Console.WriteLine($"{kvPair.Key}, {kvPair.Value}");
Why it could be argued a code smell of iterating over a dictionary (e.g. by foreach(KeyValuePair<,>) ?
A basic principle of Clean Coding:
"Express intent!"
Robert C. Martin writes in "Clean Code": "Choosing names that reveal intent". Obviously naming alone is too weak. "Express (reveal) intent with every coding decision" expresses it better.
A related principle is "Principle of least surprise" (=Principle of Least Astonishment).
Why this is related to iterating over a dictionary? Choosing a dictionary expresses the intent of choosing a data structure which was made for primarily finding data by key. Nowadays there are so much alternatives in .NET, if you want to iterate through key/value pairs that you could choose something else.
Moreover: If you iterate over something, you have to reveal something about how the items are (to be) ordered and expected to be ordered!
Although the known implementations of Dictionary sort the key collection in the order of the items added-
AFAIK, Dictionary has no assured specification about ordering (has it?).
But what are the alternatives?
TLDR:
SortedList: If your collection is not getting too large, a simple solution would be to use SortedList<,> which gives you also full indexing of key/value pairs.
Microsoft has a long article about mentioning and explaining fitting collections:
Keyed collection
To mention the most important: KeyedCollection<,> and SortedDictionary<,> .
SortedDictionary<,> is a bit faster than SortedList for only inserting if it gets large, but lacks indexing and is needed only if O(log n) for inserting is preferenced over other operations. If you really need O(1) for inserting and accept slower iterating in exchange, you have to stay with simple Dictionary<,>.
Obviously there is no data structure which is the fastest for every possible operation..
Additionally there is ImmutableSortedDictionary<,>.
And if one data structure is not exactly what you need, then derivate from Dictionary<,> or even from the new ConcurrentDictionary<,> and add explicit iteration/sorting functions!
var dictionary = new Dictionary<string, int>
{
{ "Key", 12 }
};
var aggregateObjectCollection = dictionary.Select(
entry => new AggregateObject(entry.Key, entry.Value));
Just wanted to add my 2 cent, as the most answers relate to foreach-loop.
Please, take a look at the following code:
Dictionary<String, Double> myProductPrices = new Dictionary<String, Double>();
//Add some entries to the dictionary
myProductPrices.ToList().ForEach(kvP =>
{
kvP.Value *= 1.15;
Console.Writeline(String.Format("Product '{0}' has a new price: {1} $", kvp.Key, kvP.Value));
});
Altought this adds a additional call of '.ToList()', there might be a slight performance-improvement (as pointed out here foreach vs someList.Foreach(){}),
espacially when working with large Dictionaries and running in parallel is no option / won't have an effect at all.
Also, please note that you wont be able to assign values to the 'Value' property inside a foreach-loop. On the other hand, you will be able to manipulate the 'Key' as well, possibly getting you into trouble at runtime.
When you just want to "read" Keys and Values, you might also use IEnumerable.Select().
var newProductPrices = myProductPrices.Select(kvp => new { Name = kvp.Key, Price = kvp.Value * 1.15 } );
in addition to the highest ranking posts where there is a discussion between using
foreach(KeyValuePair<string, string> entry in myDictionary)
{
// do something with entry.Value or entry.Key
}
or
foreach(var entry in myDictionary)
{
// do something with entry.Value or entry.Key
}
most complete is the following because you can see the dictionary type from the initialization, kvp is KeyValuePair
var myDictionary = new Dictionary<string, string>(x);//fill dictionary with x
foreach(var kvp in myDictionary)//iterate over dictionary
{
// do something with kvp.Value or kvp.Key
}

Categories