Uppercase all keys in a series of C# KeyValuePairs - c#

I have a list of JSON objects, each of which I'm iterating over and I simply want to process all of the KeyValuePairs therein so that the keys are uppercased, then return the revised objects.
This is what I attempted:
public static List<JObject> normalizeKeys(List<JObject> jObjList)
{
jObjList.ForEach(jobj => {
foreach(var kvp in jobj)
{
kvp.Key = kvp.Key.ToUpper();
}
});
return jObjList;
}
but it doesn't execute and instead I get KeyValuePair<string, JToken>.Key cannot be assigned to -- it is readonly. Does anyone have any suggestions for how to accomplish what I'm after?

Though the given answer works, I would be inclined to say that it is both not as elegant as it could be, and not as generally useful as it could be. We can make it more of both. To begin with, solve the problem for one object:
public static JObject NormalizeKeys(JObject originalObject)
{
var newObject = new JObject();
foreach (var kvp in originalObject)
newObject.Add(kvp.Key.ToUpper(), kvp.Value);
return newObject;
}
And now to solve the problem for a list:
var newList = oldList.Select(x=>NormalizeKeys(x)).ToList();
Or, even shorter:
var newList = oldList.Select(NormalizeKeys).ToList();
Isn't that much more pleasant than all that nested loop stuff? Say how to normalize one object, and then say that you want to apply that function to the list, and you're done.

Guess you know the answer yourself, you must create a new collection and copy the items over, since key is key, it's case sensitive, and cannot be changed, as otherwise you might end up with probably 2 sets of data, one set with normal case, and the other with upper cases.
The solution is as the following:
public static List<JObject> normalizeKeys(List<JObject> jObjList)
{
// create a new list for return and copy over the existing items
var jObjReturnList = new List<JObject>(jObjList.Count);
jObjList.ForEach(jobj =>
{
var jObjNew = new JObject();
foreach (var kvp in jobj)
{
jObjNew.Add(kvp.Key.ToUpper(), kvp.Value);
}
jObjReturnList.Add(jObjNew);
});
return jObjReturnList;
}

Related

OrderedDictionary value not returning list but object [duplicate]

This question already has answers here:
No generic implementation of OrderedDictionary?
(13 answers)
Closed 1 year ago.
Ok, I give up. It's probably something really simple I'm missing but I've been stuck on this for the last 2 hours and I can't find the answer anywhere online. The below code shows a CS1579 error in my list inside my foreach saying that:
"foreach statement cannot operate on variables of type 'object' because 'object' does not contain a public definition for 'GetEnumerator'".
Shouldn't my roomList[roomNameTest] return a List<string>?
var roomList = new OrderedDictionary();
var listA = new List<string>();
listA.Add("elemA");
listA.Add("elemB");
roomList["roomA"] = listA;
var roomNameTest = "roomA";
if (roomList.Contains(roomNameTest))
{
var list = roomList[roomNameTest];
foreach (var item in list)
{
Console.WriteLine(item);
}
}
SOLUTION:
Using a Dictionary<string, List<string>>() worked really well and I used the OrderBy(x => x.Key) to sort the dictionary later on as I needed. Thanks everybody for the contribution, much appreciated.
OrderedDictionary isn't a generic class so it works with objects only. You will need to cast or use a different type of collection. For example:
var list = (List<string>) roomList[roomNameTest];
But that might lead to issues if you add something that is not a <List<string> to the dictionary.
Also, I'm not really sure that you need to use OrderedDictionary here, and a strongly typed Dictionary<string, List<string>> would be much better. For example:
var roomList = new Dictionary<string, List<string>>();
//...
if (roomList.ContainsKey(roomNameTest))
{
//...
}
Though I would also recommend using TryGetValue:
if(roomList.TryGetValue(roomNameTest, out var list))
{
foreach (var item in list)
{
Console.WriteLine(item);
}
}
Well, since items of OrderedDictionary declared being of type object, .Net treats them as
instances of object, which don't imeplement IEnumerable. For instance you can easily put
roomList.Add("abc", 123);
roomList.Add("def", true);
roomList.Add("pqr", "bla-bla-bla");
You can try casting these items
into IEnumerable<string> and on success looping:
var roomList = new System.Collections.Specialized.OrderedDictionary();
var listA = new List<string>();
listA.Add("elemA");
listA.Add("elemB");
// Note "Add", since item with Key == "roomA" doesn't exist
roomList.Add("roomA", listA);
var roomNameTest = "roomA";
if (roomList.Contains(roomNameTest)) {
// if item implements IEnumerable<string>, say it List<string>
// we can loop over it
if (roomList[roomNameTest] is IEnumerable<string> list)
foreach (var item in list) {
Console.WriteLine(item);
}
}

c# Dictionary<string,string> how to loop through items without knowing key [duplicate]

This question already has answers here:
How to iterate over a dictionary?
(29 answers)
Closed 8 years ago.
I have a:
var selectedDates = new Dictionary<string, string>();
selectedDates.Add("2014-06-21", DateTime.Now.ToLongDateString());
selectedDates.Add("2014-07-21", DateTime.Now.AddDays(5).ToLongDateString());
selectedDates.Add("2014-08-21", DateTime.Now.AddDays(9).ToLongDateString());
selectedDates.Add("2014-09-21", DateTime.Now.AddDays(14).ToLongDateString());
How can I loop trough items without knowing the key?
For example I want to get the value of the item[0]
If I do:
var item = selectedDates[0].value; // I get an error
How can I loop trough items without knowing the key?
For example I want to get the value of the item[0]
You want to treat the dictionary as (ordered) collection similar to a list or array and get the first item in it?
You can because a Dictionary<string, string> is an IEnumerable<KeyValuePair<string, string>> implicitly. Just use First or FirstOrDefault:
string valueAtFirstPosition = selectedDates.First().Value;
However, note that a dictionary is not meant to be used as as an ordered collection. It is a collection which can be used to fast-lookup a value by a key. But you can enumerate it anyway.
foreach(KeyValuePair<string, string>keyVal in selectedDates)
{
Console.WriteLine("Key: {0} Value: {1}", keyVal.Key, keyVal.Value);
}
You should simply not rely on that order. I think in the current implementation the order is stable as long as you don't delete items. Read
Read: Why is a Dictionary “not ordered”?
try this
foreach (string key in selectedDates.Keys)
{
var item = selectedDates[key];
}
It's simple, loop trough it with a foreach or to get a specific index do:
var date = selectedDates.ElementAt(0).Value;
Let me put together two things for you. Firstly, you can loop or use LINQ to access elements, just as you could do it in a list as well:
var dict = new Dictionary<string, string>();
// loop
foreach (var item in dict)
{
var key = item.Key;
var value = item.Value;
}
// "first" (see below)
var firstItem = dict.First();
However, be aware that what you're referring to as the first item can be pretty much any item in the Dictionary. Dictionaries store elements in any order that is convenient for a lookup (so do sets).
This order is known for some implementations, but lists or arrays might fit better when the order of the elements is important. A Dictionary in .NET is an implementation of a hash table data structure (tree map is another map implementation).
try this :
foreach(var key in selectedDates.Keys)
{
var value = selectedDates[key];
}
Use this overload of Where:
var result = selectedDates.Where((d,i)=>i==0);
Try:
foreach (var date in selectedDates)
{
var item = date.Value;
}

C# List - Group By - Without Linq

I have an object:
IObject
{
string Account,
decimal Amount
}
How do I group by Account and Sum the Amount, returning a List without Linq.
2.0 Framework ... that is why no Linq.
Here is what I have:
ListofObjects = List<IObject>;
foreach (var object in objects)
{
var objectToAdd = new Object(object);
var oa = ListofObjects.Find(x => x.Account == objectToAdd.Account);
if (oa == null)
{
ListofObjects.Add(objectToAdd);
}
else
{
ListofObjects.Remove(oa);
oa.Amount = objectToAdd.Amount;
ListofObjects.Add(oa);
}
}
Easiest answer: use LINQBridge and get all your LINQ to Objects goodness against .NET 2.0... works best if you can use C# 3 (i.e. VS2008 but targeting .NET 2.0).
If you really can't do that, you'll basically need to keep a dictionary from a key to a list of values. Iterate through the sequence, and check whether it already contains a list - if not, add one. Then add to whatever list you've found (whether new or old).
If you need to return the groups in key order, you'll need to also keep a list of keys in the order in which you found them. Frankly it's a pain... just get LINQBridge instead :)
(Seriously, each individual bit of LINQ is actually fairly easy to write - but it's also quite easy to make off-by-one errors, or end up forgetting to optimize something like Count() in the case where it's actually an ICollection<T>... There's no need to reinvent the wheel here.)
EDIT: I was about to write some code, but then I noticed that you want a list returned... a list of what? A List<IList<IObject>>? Or are you actually trying to group and sum in one go? If so, don't you want a list of pairs of key and amount? Or are you going to reuse the same class that you've already got for a single account, but as the aggregate? If it's the latter, here's some sample code:
public static IList<IObject> SumAccounts(IEnumerable<IObject> data)
{
List<IObject> ret = new List<IObject>();
Dictionary<string, IObject> map = new Dictionary<string, IObject>();
foreach (var item in data)
{
IObject existing;
if (!map.TryGetValue(item.Account, out existing))
{
existing = new IObject(item.Account, 0m);
map[item.Account] = existing;
ret.Add(existing);
}
existing.Amount += item.Amount;
}
return ret;
}
Admittedly the extra efficiency here due to using a Dictionary for lookups will be pointless unless you've got really quite a lot of accounts...
EDIT: If you've got a small number of accounts as per your comment, you could use:
public static IList<IObject> SumAccounts(IEnumerable<IObject> data)
{
List<IObject> ret = new List<IObject>();
foreach (var item in data)
{
IObject existing = ret.Find(x => x.Account == item.Account);
if (existing == null)
{
existing = new IObject(item.Account, 0m);
ret.Add(existing);
}
existing.Amount += item.Amount;
}
return ret;
}
Use a dictionary to hold the results. Locating an item in a dictionary is close to an O(1) operation, so it's a lot faster than searching for items in a list.
Dictionary<string, decimal> sum = new Dictionary<string, decimal>();
foreach (IObject obj in objects) {
if (sum.ContainsKey(obj.Account)) {
sum[obj.Account].Amount += obj.Amount;
} else {
sum.Add(obj.Account, obj.Amount);
}
}

How do you return a copy of original List<T> from Func<T, TResult>?

I have found out (in a hard way) that a collection that is being enumerated cannot be modified within "Foreach" statement
"Collection was modified; enumeration operation may not execute."
Now, the solution I came up with is to create a dummy collection of the same size that contains a dictionary key and enumerate over it to modify collection in question.
private void InvalidateAuthenticatedNodes()
{
var dummy = new Dictionary<int, bool>(_AuthenticatedNodes.Count);
foreach (var nodeId in _AuthenticatedNodes.Keys)
dummy[nodeId] = false;
foreach (var nodeId in dummy.Keys)
_AuthenticatedNodes[nodeId] = false;
ClearAuthenticatedDateTime();
}
Above code worked fine; I was in process of refactoring above code to use a Func delegate to return a copy of keys as following
private void InvalidateAuthenticatedNodes()
{
var getNodeIds =
new Func<Dictionary<int, bool>, IEnumerable<int>>(
nodes => nodes.Select(node => node.Key));
foreach (var nodeId in getNodeIds(_AuthenticatedNodes))
{
_AuthenticatedNodes[nodeId] = false;
}
ClearAuthenticatedDateTime();
}
Unlike what I have expected, getNodeIds does not return a copy.
Is there a way to return a copy instead?
*EDIT: Temporary Result before JaredPar's answer
Similar to JaredPar's answer but his was more concise and I went with his answer.
But here is the similar result I came up with to share.
private void InvalidateAuthenticatedNodes()
{
var getNodeIds =
new Func<Dictionary<int, bool>, IEnumerable<int>>(nodes =>
nodes.Select(node => node.Key));
foreach (var nodeId in getNodeIds(_AuthenticatedNodes).ToList())
{
_AuthenticatedNodes[nodeId] = false;
}
ClearAuthenticatedDateTime();
}
*EDIT: Final Result (refined)
_AuthenticatedNodes.Keys.ToList().ForEach(
nodeId => _AuthenticatedNodes[nodeId] = false);
Just add a .ToList() to the end of the collection and it will automagically return a complete copy of the list.
foreach (var nodeId in _AuthenticatedNodes.Keys.ToList())
...
Instead of using a foreach, you could use a normal for. However, be careful when adding/removing items, it changes the indexes of the elements inside the collection.
Once you change an Enumerable class, your original enumerator may become invalid, thus the need to create a copy and make your modifications there.

How to iterate over a dictionary?

I've seen a few different ways to iterate over a dictionary in C#. Is there a standard way?
foreach(KeyValuePair<string, string> entry in myDictionary)
{
// do something with entry.Value or entry.Key
}
If you are trying to use a generic Dictionary in C# like you would use an associative array in another language:
foreach(var item in myDictionary)
{
foo(item.Key);
bar(item.Value);
}
Or, if you only need to iterate over the collection of keys, use
foreach(var item in myDictionary.Keys)
{
foo(item);
}
And lastly, if you're only interested in the values:
foreach(var item in myDictionary.Values)
{
foo(item);
}
(Take note that the var keyword is an optional C# 3.0 and above feature, you could also use the exact type of your keys/values here)
In some cases you may need a counter that may be provided by for-loop implementation. For that, LINQ provides ElementAt which enables the following:
for (int index = 0; index < dictionary.Count; index++) {
var item = dictionary.ElementAt(index);
var itemKey = item.Key;
var itemValue = item.Value;
}
Depends on whether you're after the keys or the values...
From the MSDN Dictionary(TKey, TValue) Class description:
// When you use foreach to enumerate dictionary elements,
// the elements are retrieved as KeyValuePair objects.
Console.WriteLine();
foreach( KeyValuePair<string, string> kvp in openWith )
{
Console.WriteLine("Key = {0}, Value = {1}",
kvp.Key, kvp.Value);
}
// To get the values alone, use the Values property.
Dictionary<string, string>.ValueCollection valueColl =
openWith.Values;
// The elements of the ValueCollection are strongly typed
// with the type that was specified for dictionary values.
Console.WriteLine();
foreach( string s in valueColl )
{
Console.WriteLine("Value = {0}", s);
}
// To get the keys alone, use the Keys property.
Dictionary<string, string>.KeyCollection keyColl =
openWith.Keys;
// The elements of the KeyCollection are strongly typed
// with the type that was specified for dictionary keys.
Console.WriteLine();
foreach( string s in keyColl )
{
Console.WriteLine("Key = {0}", s);
}
Generally, asking for "the best way" without a specific context is like asking
what is the best color?
One the one hand, there are many colors and there's no best color. It depends on the need and often on taste, too.
On the other hand, there are many ways to iterate over a Dictionary in C# and there's no best way. It depends on the need and often on taste, too.
Most straightforward way
foreach (var kvp in items)
{
// key is kvp.Key
doStuff(kvp.Value)
}
If you need only the value (allows to call it item, more readable than kvp.Value).
foreach (var item in items.Values)
{
doStuff(item)
}
If you need a specific sort order
Generally, beginners are surprised about order of enumeration of a Dictionary.
LINQ provides a concise syntax that allows to specify order (and many other things), e.g.:
foreach (var kvp in items.OrderBy(kvp => kvp.Key))
{
// key is kvp.Key
doStuff(kvp.Value)
}
Again you might only need the value. LINQ also provides a concise solution to:
iterate directly on the value (allows to call it item, more readable than kvp.Value)
but sorted by the keys
Here it is:
foreach (var item in items.OrderBy(kvp => kvp.Key).Select(kvp => kvp.Value))
{
doStuff(item)
}
There are many more real-world use case you can do from these examples.
If you don't need a specific order, just stick to the "most straightforward way" (see above)!
C# 7.0 introduced Deconstructors and if you are using .NET Core 2.0+ Application, the struct KeyValuePair<> already include a Deconstruct() for you. So you can do:
var dic = new Dictionary<int, string>() { { 1, "One" }, { 2, "Two" }, { 3, "Three" } };
foreach (var (key, value) in dic) {
Console.WriteLine($"Item [{key}] = {value}");
}
//Or
foreach (var (_, value) in dic) {
Console.WriteLine($"Item [NO_ID] = {value}");
}
//Or
foreach ((int key, string value) in dic) {
Console.WriteLine($"Item [{key}] = {value}");
}
I would say foreach is the standard way, though it obviously depends on what you're looking for
foreach(var kvp in my_dictionary) {
...
}
Is that what you're looking for?
You can also try this on big dictionaries for multithreaded processing.
dictionary
.AsParallel()
.ForAll(pair =>
{
// Process pair.Key and pair.Value here
});
I appreciate this question has already had a lot of responses but I wanted to throw in a little research.
Iterating over a dictionary can be rather slow when compared with iterating over something like an array. In my tests an iteration over an array took 0.015003 seconds whereas an iteration over a dictionary (with the same number of elements) took 0.0365073 seconds that's 2.4 times as long! Although I have seen much bigger differences. For comparison a List was somewhere in between at 0.00215043 seconds.
However, that is like comparing apples and oranges. My point is that iterating over dictionaries is slow.
Dictionaries are optimised for lookups, so with that in mind I've created two methods. One simply does a foreach, the other iterates the keys then looks up.
public static string Normal(Dictionary<string, string> dictionary)
{
string value;
int count = 0;
foreach (var kvp in dictionary)
{
value = kvp.Value;
count++;
}
return "Normal";
}
This one loads the keys and iterates over them instead (I did also try pulling the keys into a string[] but the difference was negligible.
public static string Keys(Dictionary<string, string> dictionary)
{
string value;
int count = 0;
foreach (var key in dictionary.Keys)
{
value = dictionary[key];
count++;
}
return "Keys";
}
With this example the normal foreach test took 0.0310062 and the keys version took 0.2205441. Loading all the keys and iterating over all the lookups is clearly a LOT slower!
For a final test I've performed my iteration ten times to see if there are any benefits to using the keys here (by this point I was just curious):
Here's the RunTest method if that helps you visualise what's going on.
private static string RunTest<T>(T dictionary, Func<T, string> function)
{
DateTime start = DateTime.Now;
string name = null;
for (int i = 0; i < 10; i++)
{
name = function(dictionary);
}
DateTime end = DateTime.Now;
var duration = end.Subtract(start);
return string.Format("{0} took {1} seconds", name, duration.TotalSeconds);
}
Here the normal foreach run took 0.2820564 seconds (around ten times longer than a single iteration took - as you'd expect). The iteration over the keys took 2.2249449 seconds.
Edited To Add:
Reading some of the other answers made me question what would happen if I used Dictionary instead of Dictionary. In this example the array took 0.0120024 seconds, the list 0.0185037 seconds and the dictionary 0.0465093 seconds. It's reasonable to expect that the data type makes a difference on how much slower the dictionary is.
What are my Conclusions?
Avoid iterating over a dictionary if you can, they are substantially slower than iterating over an array with the same data in it.
If you do choose to iterate over a dictionary don't try to be too clever, although slower you could do a lot worse than using the standard foreach method.
As already pointed out on this answer, KeyValuePair<TKey, TValue> implements a Deconstruct method starting on .NET Core 2.0, .NET Standard 2.1 and .NET Framework 5.0 (preview).
With this, it's possible to iterate through a dictionary in a KeyValuePair agnostic way:
var dictionary = new Dictionary<int, string>();
// ...
foreach (var (key, value) in dictionary)
{
// ...
}
There are plenty of options. My personal favorite is by KeyValuePair
Dictionary<string, object> myDictionary = new Dictionary<string, object>();
// Populate your dictionary here
foreach (KeyValuePair<string,object> kvp in myDictionary)
{
// Do some interesting things
}
You can also use the Keys and Values Collections
With .NET Framework 4.7 one can use decomposition
var fruits = new Dictionary<string, int>();
...
foreach (var (fruit, number) in fruits)
{
Console.WriteLine(fruit + ": " + number);
}
To make this code work on lower C# versions, add System.ValueTuple NuGet package and write somewhere
public static class MyExtensions
{
public static void Deconstruct<T1, T2>(this KeyValuePair<T1, T2> tuple,
out T1 key, out T2 value)
{
key = tuple.Key;
value = tuple.Value;
}
}
As of C# 7, you can deconstruct objects into variables. I believe this to be the best way to iterate over a dictionary.
Example:
Create an extension method on KeyValuePair<TKey, TVal> that deconstructs it:
public static void Deconstruct<TKey, TVal>(this KeyValuePair<TKey, TVal> pair, out TKey key, out TVal value)
{
key = pair.Key;
value = pair.Value;
}
Iterate over any Dictionary<TKey, TVal> in the following manner
// Dictionary can be of any types, just using 'int' and 'string' as examples.
Dictionary<int, string> dict = new Dictionary<int, string>();
// Deconstructor gets called here.
foreach (var (key, value) in dict)
{
Console.WriteLine($"{key} : {value}");
}
foreach is fastest and if you only iterate over ___.Values, it is also faster
Using C# 7, add this extension method to any project of your solution:
public static class IDictionaryExtensions
{
public static IEnumerable<(TKey, TValue)> Tuples<TKey, TValue>(
this IDictionary<TKey, TValue> dict)
{
foreach (KeyValuePair<TKey, TValue> kvp in dict)
yield return (kvp.Key, kvp.Value);
}
}
And use this simple syntax
foreach (var(id, value) in dict.Tuples())
{
// your code using 'id' and 'value'
}
Or this one, if you prefer
foreach ((string id, object value) in dict.Tuples())
{
// your code using 'id' and 'value'
}
In place of the traditional
foreach (KeyValuePair<string, object> kvp in dict)
{
string id = kvp.Key;
object value = kvp.Value;
// your code using 'id' and 'value'
}
The extension method transforms the KeyValuePair of your IDictionary<TKey, TValue> into a strongly typed tuple, allowing you to use this new comfortable syntax.
It converts -just- the required dictionary entries to tuples, so it does NOT converts the whole dictionary to tuples, so there are no performance concerns related to that.
There is a only minor cost calling the extension method for creating a tuple in comparison with using the KeyValuePair directly, which should NOT be an issue if you are assigning the KeyValuePair's properties Key and Value to new loop variables anyway.
In practice, this new syntax suits very well for most cases, except for low-level ultra-high performance scenarios, where you still have the option to simply not use it on that specific spot.
Check this out: MSDN Blog - New features in C# 7
Simplest form to iterate a dictionary:
foreach(var item in myDictionary)
{
Console.WriteLine(item.Key);
Console.WriteLine(item.Value);
}
I found this method in the documentation for the DictionaryBase class on MSDN:
foreach (DictionaryEntry de in myDictionary)
{
//Do some stuff with de.Value or de.Key
}
This was the only one I was able to get functioning correctly in a class that inherited from the DictionaryBase.
Sometimes if you only needs the values to be enumerated, use the dictionary's value collection:
foreach(var value in dictionary.Values)
{
// do something with entry.Value only
}
Reported by this post which states it is the fastest method:
http://alexpinsker.blogspot.hk/2010/02/c-fastest-way-to-iterate-over.html
I know this is a very old question, but I created some extension methods that might be useful:
public static void ForEach<T, U>(this Dictionary<T, U> d, Action<KeyValuePair<T, U>> a)
{
foreach (KeyValuePair<T, U> p in d) { a(p); }
}
public static void ForEach<T, U>(this Dictionary<T, U>.KeyCollection k, Action<T> a)
{
foreach (T t in k) { a(t); }
}
public static void ForEach<T, U>(this Dictionary<T, U>.ValueCollection v, Action<U> a)
{
foreach (U u in v) { a(u); }
}
This way I can write code like this:
myDictionary.ForEach(pair => Console.Write($"key: {pair.Key}, value: {pair.Value}"));
myDictionary.Keys.ForEach(key => Console.Write(key););
myDictionary.Values.ForEach(value => Console.Write(value););
If you want to use a for loop, you can do as below:
var keyList=new List<string>(dictionary.Keys);
for (int i = 0; i < keyList.Count; i++)
{
var key= keyList[i];
var value = dictionary[key];
}
I will take the advantage of .NET 4.0+ and provide an updated answer to the originally accepted one:
foreach(var entry in MyDic)
{
// do something with entry.Value or entry.Key
}
If say, you want to iterate over the values collection by default, I believe you can implement IEnumerable<>, Where T is the type of the values object in the dictionary, and "this" is a Dictionary.
public new IEnumerator<T> GetEnumerator()
{
return this.Values.GetEnumerator();
}
The standard way to iterate over a Dictionary, according to official documentation on MSDN is:
foreach (DictionaryEntry entry in myDictionary)
{
//Read entry.Key and entry.Value here
}
I wrote an extension to loop over a dictionary.
public static class DictionaryExtension
{
public static void ForEach<T1, T2>(this Dictionary<T1, T2> dictionary, Action<T1, T2> action) {
foreach(KeyValuePair<T1, T2> keyValue in dictionary) {
action(keyValue.Key, keyValue.Value);
}
}
}
Then you can call
myDictionary.ForEach((x,y) => Console.WriteLine(x + " - " + y));
Dictionary< TKey, TValue > It is a generic collection class in c# and it stores the data in the key value format.Key must be unique and it can not be null whereas value can be duplicate and null.As each item in the dictionary is treated as KeyValuePair< TKey, TValue > structure representing a key and its value. and hence we should take the element type KeyValuePair< TKey, TValue> during the iteration of element.Below is the example.
Dictionary<int, string> dict = new Dictionary<int, string>();
dict.Add(1,"One");
dict.Add(2,"Two");
dict.Add(3,"Three");
foreach (KeyValuePair<int, string> item in dict)
{
Console.WriteLine("Key: {0}, Value: {1}", item.Key, item.Value);
}
The best answer is of course: Think, if you could use a more appropriate data structure than a dictionary if you plan to iterate over it- as Vikas Gupta mentioned already in the (beginning of the) discussion under the question. But that discussion as this whole thread still lacks surprisingly good alternatives. One is:
SortedList<string, string> x = new SortedList<string, string>();
x.Add("key1", "value1");
x.Add("key2", "value2");
x["key3"] = "value3";
foreach( KeyValuePair<string, string> kvPair in x )
Console.WriteLine($"{kvPair.Key}, {kvPair.Value}");
Why it could be argued a code smell of iterating over a dictionary (e.g. by foreach(KeyValuePair<,>) ?
A basic principle of Clean Coding:
"Express intent!"
Robert C. Martin writes in "Clean Code": "Choosing names that reveal intent". Obviously naming alone is too weak. "Express (reveal) intent with every coding decision" expresses it better.
A related principle is "Principle of least surprise" (=Principle of Least Astonishment).
Why this is related to iterating over a dictionary? Choosing a dictionary expresses the intent of choosing a data structure which was made for primarily finding data by key. Nowadays there are so much alternatives in .NET, if you want to iterate through key/value pairs that you could choose something else.
Moreover: If you iterate over something, you have to reveal something about how the items are (to be) ordered and expected to be ordered!
Although the known implementations of Dictionary sort the key collection in the order of the items added-
AFAIK, Dictionary has no assured specification about ordering (has it?).
But what are the alternatives?
TLDR:
SortedList: If your collection is not getting too large, a simple solution would be to use SortedList<,> which gives you also full indexing of key/value pairs.
Microsoft has a long article about mentioning and explaining fitting collections:
Keyed collection
To mention the most important: KeyedCollection<,> and SortedDictionary<,> .
SortedDictionary<,> is a bit faster than SortedList for only inserting if it gets large, but lacks indexing and is needed only if O(log n) for inserting is preferenced over other operations. If you really need O(1) for inserting and accept slower iterating in exchange, you have to stay with simple Dictionary<,>.
Obviously there is no data structure which is the fastest for every possible operation..
Additionally there is ImmutableSortedDictionary<,>.
And if one data structure is not exactly what you need, then derivate from Dictionary<,> or even from the new ConcurrentDictionary<,> and add explicit iteration/sorting functions!
var dictionary = new Dictionary<string, int>
{
{ "Key", 12 }
};
var aggregateObjectCollection = dictionary.Select(
entry => new AggregateObject(entry.Key, entry.Value));
Just wanted to add my 2 cent, as the most answers relate to foreach-loop.
Please, take a look at the following code:
Dictionary<String, Double> myProductPrices = new Dictionary<String, Double>();
//Add some entries to the dictionary
myProductPrices.ToList().ForEach(kvP =>
{
kvP.Value *= 1.15;
Console.Writeline(String.Format("Product '{0}' has a new price: {1} $", kvp.Key, kvP.Value));
});
Altought this adds a additional call of '.ToList()', there might be a slight performance-improvement (as pointed out here foreach vs someList.Foreach(){}),
espacially when working with large Dictionaries and running in parallel is no option / won't have an effect at all.
Also, please note that you wont be able to assign values to the 'Value' property inside a foreach-loop. On the other hand, you will be able to manipulate the 'Key' as well, possibly getting you into trouble at runtime.
When you just want to "read" Keys and Values, you might also use IEnumerable.Select().
var newProductPrices = myProductPrices.Select(kvp => new { Name = kvp.Key, Price = kvp.Value * 1.15 } );
in addition to the highest ranking posts where there is a discussion between using
foreach(KeyValuePair<string, string> entry in myDictionary)
{
// do something with entry.Value or entry.Key
}
or
foreach(var entry in myDictionary)
{
// do something with entry.Value or entry.Key
}
most complete is the following because you can see the dictionary type from the initialization, kvp is KeyValuePair
var myDictionary = new Dictionary<string, string>(x);//fill dictionary with x
foreach(var kvp in myDictionary)//iterate over dictionary
{
// do something with kvp.Value or kvp.Key
}

Categories