Ordered list of C# properties, for common operations? - c#

Background: I have a form ViewModel with 7 properties, each ViewModel representing sections of a wizard, and all implement IFormSection. I'm trying to use a single definition (i.e. DRY/SPoT) for these ViewModels between multi-section AJAX clients and single-section JavaScript-disabled clients.
It's important to have these accessible as properties so the automated serialization/deserialization works (i.e. ASP.NET MVC model binding), and those properties must also be individually nullable to indicate unsubmitted sections.
But I also have 6-10 occasions to iterate through these serializable properties with common IFormSection operations, in some cases in an ordered fashion. So how can I store this list of properties for reuse? EDIT: This includes batch new()ing them up in a full load operation.
For example, maybe the end result looks something like:
interface IFormSection {
void Load();
void Save();
bool Validate();
IFormSection GetNextSection(); // It's ok if this has to be done via ISectionManager
string DisplayName; // e.g. "Contact Information"
string AssociatedViewModelName; // e.g. "ContactInformation"
}
interface ISectionManager {
void LoadAllSections(); // EDIT: added this to clarify a desired use.
IFormSection GetRequestedSection(string name); // Users can navigate to a specific section
List<IFormSection> GetSections(bool? ValidityFilter = null);
// I'd use the above List to get the first invalid section
// (since a new user cannot proceed past an invalid section),
// also to get a list of sections to call .Save on,
// also to .Load and render all sections.
}
interface IFormTopLevel {
// Bindable properties
IFormSection ProfileContactInformation { get; set; }
IFormSection Page2 { get; set; }
IFormSection Page3 { get; set; }
IFormSection Page4 { get; set; }
IFormSection Page5 { get; set; }
IFormSection Page6 { get; set; }
IFormSection Page7 { get; set; }
}
I'm running into problems where I can't have abstract static methods, resulting in too many reflection calls or generics to do stupid stuff, and other problems that just make my whole thought process smell bad.
Help?
p.s.
I accept I may be overlooking a much simpler design involving delegates or something. I also realize I have SoC issues here, not all of which are a result of summarizing the problem for StackOverflow.

If the order is constant, you can have a property or method returning IEnumerable<object>; then yield return each property value... or IEnumerable<Tuple<string,object>>... which you can iterate over later.
Something super simple like:
private IEnumerable<Tuple<string,object>> GetProps1()
{
yield return Tuple.Create("Property1", Property1);
yield return Tuple.Create("Property2", Property2);
yield return Tuple.Create("Property3", Property3);
}
if you wanted a more generic approach doing the same thing, you can use reflection:
private IEnumerable<Tuple<string,object>> GetProps2(){
var properties = this.GetType().GetProperties();
return properties.Select(p=>Tuple.Create(p.Name, p.GetValue(this, null)));
}
or, idk? an extension method maybe?
private static IEnumerable<Tuple<string,object>> GetProps3(this object obj){
var properties = obj.GetType().GetProperties();
return properties.Select(p=>Tuple.Create(p.Name, p.GetValue(obj, null)));
}

Related

Setting the propery, when not knowing which one

Say I have this class with a few members, for example (this is a contrived example, I'd rather no have a discussion about the intricacies of the real-life design. I really just want to convey the general idea here.):
public class Address
{
public Guid Id { get; set; }
public Guid? HouseId { get; set; }
public Guid? FlatId { get; set; }
public Guid? SomeOtherBuildingTypeId { get; set;
}
Now as it happens there exist 3 methods to create an Address:
public void CreateAddressForHouse();
public void CreateAddressForFlat();
public void CreateAddressForSomeOtherBuildingType();
Under the surface this group of methods does the exact same thing, bar setting a different Id property in the Address class. This is causing quite some code duplication in the real life application and I want to rewrite this to something more general.
In my mind I can pass the name of the required property and its value to a CreateAddress function, in something like a Func. But I'm seriously lacking in this respect, where to start? What .NET stuff can I use out of the box? Or what specific keywords should I look for?
You can use a MemberExpression:
public void CreateAddress(Expression<Func<Address, Guid?>> member)
{
// Get the property from the expression
var propertyInfo = GetPropertyInfo(this, member);
// Create a new address
var guid = Guid.NewGuid();
// Assign it to the property of this instance
propertyInfo.SetValue(this, guid);
}
Then you call the method like this, using a lambda a => a.PropertyName:
var address = new Address();
address.CreateAddress(a => a.HouseId);
Console.WriteLine(address.HouseId);
See Retrieving Property name from lambda expression for the implementation of GetPropertyInfo. It gets the PropertyInfo of the member specified in the lambda expression (and checks that it is indeed a property), which you can use to set the property in the CreateAddress method.
Apart from that, #Corak's suggestion is a valid one. Maybe you shouldn't use a property per address type, but use a Dictionary<AddressType, Guid?> property. That may or may not be viable depending on the class design and its intended usage.
You can use expression trees to simplify your problem:
public class AddressService
{
public Address CreateAddress(Expression<Func<Address, Guid?>> idPropertySelector)
{
// So you get the property info to later set it using reflection
MemberExpression propertyExpr = (MemberExpression)idPropertySelector.Body;
PropertyInfo property = (PropertyInfo)propertyExpr.Member;
// Then you create an instance of address...
Address address = new Address();
// and you set the property using reflection:
property.SetValue(address, (Guid?)Guid.NewGuid());
return address;
}
}
Now, who knows where in your code, this will work:
AddressService service = new AddressService();
Address address = service.CreateAddress(a => a.FlatId);
Guid? flatId = address.FlatId; // This will be already assigned!
You can add a property BuildingType BuildingType being a value of the enum BuildingType { House, Flat, SomeOtherBuildingType, YetAnotherThing } as suggested by Corak.
To make it simpler, you can create a parameterized constructor in Address class:
public Address(Guid? id,BuildingType type)
{
switch(type)
{
case BuildingType.House:
HouseId=id;
break;
case BuildingType.Flat:
FlatId=id;
break;
case BuildingType.SomeOtherBuildingType:
SomeOtherBuildingTypeId =id;
break;
default:
break;
}
}
This way it will be easier to extend.
Also, you need not to have so many methods. Only one CreateAddress() can be used to generate address of multiple types.

Produce different serialized JSON for a given class in different scenarios

Update 1: for reasons I won't go into, I want to avoid having anything other than the properties to be persisted in my entity objects. This means no extra properties or methods...
I have an entity called Entity1 with (say) 10 public properties. In
one place in my code I want to output serialized JSON with (say) 3 of
those fields, in a second place I need to output 7 fields and in a
third place I might need to output (say) all 10 fields. How do I do
this using Newtonsoft's JSON library?
I can't use [JsonIgnore] or [DataMember] as that will apply to all
cases, so I won't be able to create "custom views" of the data (my own
terminology :-).
I tried to achieve this using an interface:
public interface Entity1View1
{
string Property1;
string Property2;
string Property5;
}
had Entity1 implement Entity1View1 and I passed an
IList<Entity1View1> to the JSON serializer (the objects were
actually just Entity1 objects). Didn't work: the serializer output
all the 10 public properties of Entity1.
The only other way I could think of was to implement
Entity1Wrapper1, Entity1Wrapper2 etc. type of classes where each
object would hold a corresponding instance of Entity1 and in turn
expose only those public properties that correspond to the properties
I want to show in "View1", "View2" etc. Then I pass lists of these
wrapper objects to the serializer (should work, haven't tried it yet).
Is there a better way?
If it matters, here's my configuration:
.Net 4.5
MVC 5
Don't know it that's the best way... but that's one.
One good point is that it will work either with json serialization or xml serialization, for example (which you may don't mind at all).
You can use ShouldSerialize<yourpropertyName> to manage what is serialized or not. <yourpropertyName> must match exactly the name of the property you wanna manage.
For example
public class Entity {
//assuming you want the default behavior to be "serialize all properties"
public Entity() {
ShouldSerializeProperty1 = true;
ShouldSerializeProperty2 = true;
ShouldSerializeProperty3 = true;
}
public string Property1 {get;set;}
public bool ShouldSerializeProperty1 {get;set;}
public string Property2 {get;set;}
public bool ShouldSerializeProperty2 {get;set;}
public int Property3 {get;set;}
public bool ShouldSerializeProperty3 {get;set;}
}
Then you could do, before all your serialization (of course, this could / should be extension methods).
var list = myListOfEntity;
//serialization1
foreach (var element in list) {
element.ShouldSerializeProperty3 = false;
}
//or serialization2
foreach (var element in list) {
element.ShouldSerializeProperty2 = false;
element.ShouldSerializeProperty3 = false;
}
I just wanted to make sure that this was the final step in processing.
You can create anonymous objects to serialize based on circumstance:
var json1Source1 = new {
Property1 = entityView1.Property1,
Property3 = entityView1.Property3
};
var json1Source2 = new {
Property2 = entityView1.Property2,
Property3 = entityView1.Property3
};
You can create jsonSource1 (or 2, 3, 4 etc) as anonymous objects that capture just what you need and then serialize them. The serializer will not care that they are anonymous.
Update 1:
To conditionally serialize a property, add a method that returns boolean with the same name as the property and then prefix the method name with ShouldSerialize..
This means that the solution suggested by Raphaël Althaus doesn't work as it relies on properties, whereas the serializer's documentation mentions that it has to be a method. I have verified that only a method returning a bool works as expected.
Original:
I finally went with a mix of Wrapper classes and the methodology suggested by Raphaël Althaus (with modifications): use Wrappers where some amount of sophistication may be required and use Raphaël's suggestion when simplicity will do.
Here's how I am using wrappers (intentionally left out null checks):
public class Entity1View1
{
protected Entity1 wrapped;
public Entity1View1(Entity1 entity)
{
wrapped = entity;
}
public String Property1
{
get { return wrapped.Property1; }
}
public String Property2
{
get { return wrapped.Property2; }
}
public String Property3
{
get { return wrapped.Property3.ToUpper(); }
}
}
This allows me to modify properties as their values are returned (as done with Property3 above) and lets me leverage inheritance to create new ways of serialization. For example, I can flatten the structure/hierarchy:
public class Entity1View2 : Entity1View1
{
pulic Entity1View2(Entity1 entity) : base(entity) { }
public long? SubEntityID
{
get { return wrapped.SubEntity.ID; }
}
}
For simpler cases where complexity/transformation of this sort is not required, I can simply use the ShouldSerialize* methods.
Same entity classes, different serialization outputs.

Solution for CA2227 or better approach?

I'm only using Code Analysis for cleaning, organizing and ensuring these changes are globally performed for all instances of a particular warning. I'm down to the final, and it's CA2227.
CA2227 Collection properties should be read only Change '' to be
read-only by removing the property setter.
Note this is for mapping of EDI documents. These classes are to represent a whole or part of an EDI document.
public class PO1Loop
{
public SegmentTypes.PO1LoopSegmentTypes.PO1 PO1 { get; set; }
public Collection<SegmentTypes.PO1LoopSegmentTypes.PID1> PIDRepeat1 { get; set; }
public Collection<SegmentTypes.PO1LoopSegmentTypes.PID2> PIDRepeat2 { get; set; }
public SegmentTypes.PO1LoopSegmentTypes.PO4 PO4 { get; set; }
/* Max Use: 8 */
public Collection<SegmentTypes.PO1LoopSegmentTypes.ACK> ACKRepeat { get; set; }
}
You can see all of the Collection properties will give me this warning, and there are hundreds of them. When using the above class I instantiate it without any data. Then externally I add the data and set each individual variable through its public accessor. I do not instantiate this class with all the data prepared and passed using a constructor method (IMO for the size these can reach it can easily wreak havoc on the eyes). When complete and all properties are assigned the class as a whole is then used to generate that part of a document it represents.
My question is, for the usage described above, what would be a better approach for setting this up correctly? Do I keep the public accessors and suppress this warning entirely, or is there a entirely different solution that would work?
Here's what MSDN says about the error, and also how you can avoid it.
Here's my take on the issue.
Consider, the following class:
class BigDataClass
{
public List<string> Data { get; set; }
}
This class will throw that exact same issue. Why? Because Collections do not need a setter. Now, we can do anything with that object: assign Data to an arbitrary List<string>, add elements to Data, remove elements from Data, etc. If we remove the setter, we only lose the ability to directly assign to that property.
Consider the following code:
class BigDataClass
{
private List<string> data = new List<string>();
public List<string> Data { get { return data; } } // note, we removed the setter
}
var bigData = new BigDataClass();
bigData.Data.Add("Some String");
This code is perfectly valid and in fact the recommended way to do things. Why? Because the List<string> is a reference to a memory location, that contains the remainder of the data.
Now, the only thing you cannot now do with this, is directly set the Data property. I.e. the following is invalid:
var bigData = new BigDataClass();
bigData.Data = new List<string>();
This is not necessarily a bad thing. You'll notice that on many .NET types this model is used. It's the basics of immutability. You usually do not want direct access to the mutability of Collections, as this can cause some accidental behavior that has strange issues. This is why Microsoft recommends you omit setters.
Example:
var bigData = new BigDataClass();
bigData.Data.Add("Some String");
var l2 = new List<string>();
l2.Add("String 1");
l2.Add("String 2");
bigData.Data = l2;
Console.WriteLine(bigData.Data[0]);
We might be expecting Some String, but we'll get String 1. This also means that you cannot reliably attach events to the Collection in question, so you cannot reliably determine if new values are added or values are removed.
A writable collection property allows a user to replace the collection with a completely different collection.
Essentially, if you only ever need to run the constructor, or assignment, once, then omit the set modifier. You won't need it, direct assignment of collections is against best-practices.
Now, I'm not saying never use a setter on a Collection, sometimes you may need one, but in general you should not use them.
You can always use .AddRange, .Clone, etc. on the Collections, you only lose the ability of direct assignment.
Serialization
Lastly, what do we do if we wish to Serialize or Deserialize a class that contains our Collection without a set? Well, there is always more than one way to do it, the simplest (in my opinion) is to create a property that represents the serialized collection.
Take our BigDataClass for example. If we wished to Serialize, and then Deserialize this class with the following code, the Data property would have no elements.
JavaScriptSerializer jss = new JavaScriptSerializer();
BigDataClass bdc = new BigDataClass();
bdc.Data.Add("Test String");
string serd = jss.Serialize(bdc);
Console.WriteLine(serd);
BigDataClass bdc2 = jss.Deserialize<BigDataClass>(serd);
So, to fix this, we can simply modify our BigDataClass a bit to make it use a new string property for Serialization purposes.
public class BigDataClass
{
private List<string> data = new List<string>();
[ScriptIgnore]
public List<string> Data { get { return data; } } // note, we removed the setter
public string SerializedData { get { JavaScriptSerializer jss = new JavaScriptSerializer(); return jss.Serialize(data); } set { JavaScriptSerializer jss = new JavaScriptSerializer(); data = jss.Deserialize<List<string>>(value); } }
}
Another option is always the DataContractSerializer (which is really a better option, in general.) You can find information about it on this StackOverflow question.
With current VS2019 we can simply do this:
public List<string> Data { get; } = new List<string>();
This satisfies CA2227 and can be serialized/deserialized.
The deserialization works because List<> has an "Add" method, and the serializer knows how to handle a read-only collection property with an Add method (the property is read-only but not the elements) (I use Json.Net, other serializers may behave differently).
Edit:
As pointed out it should be "=" and not "=>" (compiler will prevent you using "=>"). If we used "public List Data => new List();" then it would create a new list every time the property was accessed which is not what we want either.
Edit:
Note that this will NOT work if the type of the property is an interface, such as IList
Edit:
I think the handling of interfaces is determined by the serializer used. The following works perfectly. I'm sure all common serializers know how to handle ICollection. And if you have some custom interface that does not implement ICollection then you should be able to configure the serializer to handle it, but in that case CA2227 probably won't be triggered making it irrelevant here. (As it is a read-only property you have to assign a concrete value within the class so it should always be serializing and de-serializing a non-null value)
public class CA2227TestClass
{
public IList Data { get; } = new List<string>();
}
[TestMethod]
public void CA2227_Serialization()
{
var test = new CA2227TestClass()
{
Data = { "One", "Two", "Three" }
};
var json = JsonConvert.SerializeObject(test);
Assert.AreEqual("{\"Data\":[\"One\",\"Two\",\"Three\"]}", json);
var jsonObject = JsonConvert.DeserializeObject(json, typeof(CA2227TestClass)) as CA2227TestClass;
Assert.IsNotNull(jsonObject);
Assert.AreEqual(3, jsonObject.Data.Count);
Assert.AreEqual("One", jsonObject.Data[0]);
Assert.AreEqual("Two", jsonObject.Data[1]);
Assert.AreEqual("Three", jsonObject.Data[2]);
Assert.AreEqual(typeof(List<string>), jsonObject.Data.GetType());
}
💡 Alternative Solution 💡
In my situation, making the property read-only was not viable because the whole list (as a reference) could change to a new list.
I was able to resolve this warning by changing the properties' setter scope to be internal.
public List<Batch> Batches
{
get { return _Batches; }
internal set { _Batches = value; OnPropertyChanged(nameof(Batches)); }
}
Note one could also use private set...
The hint's (achilleas heal) of this warning seems really pointed to libraries for the documentation says (Bolding mine):
An externally visible writable property is a type that implements
System.Collections.ICollection.
For me it was, "Ok, I won't make it viewable externally...." and internal was fine for the app.
Thanks to #Matthew, #CraigW and #EBrown for helping me understanding the solution for this warning.
public class PO1Loop
{
public SegmentTypes.PO1LoopSegmentTypes.PO1 PO1 { get; set; }
public Collection<SegmentTypes.PO1LoopSegmentTypes.PID1> PIDRepeat1 { get; private set; }
public Collection<SegmentTypes.PO1LoopSegmentTypes.PID2> PIDRepeat2 { get; private set; }
public SegmentTypes.PO1LoopSegmentTypes.PO4 PO4 { get; set; }
/* Max Use: 8 */
public Collection<SegmentTypes.PO1LoopSegmentTypes.ACK> ACKRepeat { get; private set; }
public PO1Loop()
{
PIDRepeat1 = new Collection<SegmentTypes.PO1LoopSegmentTypes.PID1>();
PIDRepeat2 = new Collection<SegmentTypes.PO1LoopSegmentTypes.PID2>();
ACKRepeat = new Collection<SegmentTypes.PO1LoopSegmentTypes.ACK>();
}
}
When wanting to assign data to the collection types use AddRange, Clear or any other variation of method for modifying a collection.
Only while binding DTO, you need to suppress warnings.
otherwise a custom ModelBinder is required custom ModelBinder to bind collections.
quoting the rule documentation:
When to suppress warnings
You can suppress the warning if the property is part of a Data Transfer Object (DTO) class.
Otherwise, do not suppress warnings from this rule.
https://learn.microsoft.com/pt-br/visualstudio/code-quality/ca2227?view=vs-2019
DTOs often require serialization and deserialization. Thus, they are required to be mutable.
Having to create an alternate backing property is a pain.
Simply change the property type from List<string> to IReadOnlyList<string> then this works as expected without CA2227.
The collection is set via the property but you can also cast to List<string> if you wish to append or delete items.
class Holder
{
public IReadOnlyList<string> Col { get; set; } = new List<string>();
}
var list = new List<string> { "One", "Two" };
var holder = new Holder() { Col = list } ;
var json = JsonConvert.SerializeObject(holder);
// output json {"Col":["One","Two"]}
var deserializedHolder = JsonConvert.DeserializeObject<Holder>(json);
I had to fix some of the CA2227 violations, so i had to add the "readonly" keyword to the collection field and then of course, had to remove the setter property. Some code that have used the setter, just created a new collection object which initially was empty. This code sure did not compile so i had to add a SetXxx() method in order to realize the missing setter's functionality. I did it like this:
public void SetXxx(List<string> list)
{
this.theList.Clear();
this.theList.AddRange(list);
}
The code of callers using the setter has been replaced with a call to the method SetXxx().
Instead of creating a complete new list, the existing list now will be cleared and filled with new items from another list, passed in as a parameter. The original list, due to the fact it is readonly and created only once, will always remain.
I believe this is also a good way to avoid that the garbagae collector has to delete old objects that got out of scope and second, to create new collection objects although there is already one.
As an addition to Der Kommissar's excellent answer.
Starting with .NET 5 (C# 9.0) there are init-only properties. These properties are only settable under specific circumstances, see here for reference.
The following example should not raise a warning CA2227, yet still allow for the collection being set during object initialization.
using System.Collections.Generic;
namespace BookStore
{
public class BookModel
{
public ICollection<string> Chapters { get; init; }
}
}
Note that the current version of the .NET SDK still raises a warning when using the built-in analyzer (not the NuGet package). This is a known bug and should be fixed in the future.
To cover all the possible scenarios to resolve CA2227 error:
This covers the Entity relationship mapping when we use Entity Framework.
class Program
{
static void Main(string[] args)
{
ParentClass obj = new ParentClass();
obj.ChildDetails.Clear();
obj.ChildDetails.AddRange();
obj.LstNames.Clear();
obj.LstNames.AddRange();
}
}
public class ChildClass
{ }
public class ParentClass
{
private readonly ICollection<ChildClass> _ChildClass;
public ParentClass()
{
_ChildClass = new HashSet<ChildClass>();
}
public virtual ICollection<ChildClass> ChildDetails => _ChildClass;
public IList<string> LstNames => new List<string>();
}

C# Comparing complex objects returning list of differences

I've been working on a project for a while to parse a list of entries from a csv file and use that data to update a database.
For each entry I create a new user instance that I put in a collection. Now I want to iterate that collection and compare the user entry to the user from the database (if it exists). My question is, how can I compare that user (entry) object to the user (db) object, while returning a list with differences?
For example following classes generated from database:
public class User
{
public int ID { get; set; }
public string EmployeeNumber { get; set; }
public string UserName { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }
public Nullable<int> OfficeID { get; set; }
public virtual Office Office { get; set; }
}
public class Office
{
public int ID { get; set; }
public string Code { get; set; }
public virtual ICollection<User> Users { get; set; }
}
To save some queries to the database, I only fill the properties that I can retrieve from the csv file, so the ID's (for example) are not available for the equality check.
Is there any way to compare these objects without defining a rule for each property and returning a list of properties that are modified? I know this question seems similar to some earlier posts. I've read a lot of them but as I'm rather inexperienced at programming, I'd appreciate some advice.
From what I've gathered from what I've read, should I be combining 'comparing properties generically' with 'ignoring properties using data annotations' and 'returning a list of CompareResults'?
There are several approaches that you can solve this:
Approach #1 is to create separate DTO-style classes for the contents of the CSV files. Though this involves creating new classes with a lot of similar fields, it decouples the CSV file format from your database and gives you the ability to change them later without influencing the other part. In order to implement the comparison, you could create a Comparer class. As long as the classes are almost identical, the comparison can get all the properties from the DTO class and implement the comparison dynamically (e.g. by creating and evaluating a Lambda expression that contains a BinaryExpression of type Equal).
Approach #2 avoids the DTOs, but uses attributes to mark the properties that are part of the comparison. You'd need to create a custom attribute that you assign to the properties in question. In the compare, you analyze all the properties of the class and filter out the ones that are marked with the attribute. For the comparison of the properties you can use the same approach as in #1. Downside of this approach is that you couple the comparison logic tightly with the data classes. If you'd need to implement several different comparisons, you'd clutter the data classes with the attributes.
Of course, #1 results in a higher effort than #2. I understand that it is not what you are looking for, but maybe having a separate, strongly-typed compared class is also an approach one can think about.
Some more details on a dynamic comparison algorithm: it is based on reflection to get the properties that need to be compared (depending on the approach you get the properties of the DTO or the relevant ones of the data class). Once you have the properties (in case of DTOs, the properties should have the same name and data type), you can create a LamdaExpression and compile and evaluate it dynamically. The following lines show an excerpt of a code sample:
public static bool AreEqual<TDTO, TDATA>(TDTO dto, TDATA data)
{
foreach(var prop in typeof(TDTO).GetProperties())
{
var dataProp = typeof(TDATA).GetProperty(prop.Name);
if (dataProp == null)
throw new InvalidOperationException(string.Format("Property {0} is missing in data class.", prop.Name));
var compExpr = GetComparisonExpression(prop, dataProp);
var del = compExpr.Compile();
if (!(bool)del.DynamicInvoke(dto, data))
return false;
}
return true;
}
private static LambdaExpression GetComparisonExpression(PropertyInfo dtoProp, PropertyInfo dataProp)
{
var dtoParam = Expression.Parameter(dtoProp.DeclaringType, "dto");
var dataParam = Expression.Parameter(dataProp.DeclaringType, "data");
return Expression.Lambda(
Expression.MakeBinary(ExpressionType.Equal,
Expression.MakeMemberAccess(
dtoParam, dtoProp),
Expression.MakeMemberAccess(
dataParam, dataProp)), dtoParam, dataParam);
}
For the full sample, see this link. Please note that this dynamic approach is just an easy implementation that leaves room for improvement (e.g. there is no check for the data type of the properties). It also does only check for equality and does not collect the properties that are not equal; but that should be easy to transfer.
While the dynamic approach is easy to implement, the risk for runtime errors is bigger than in a strongly-typed approach.

Reflecting on a Moq Object produces 2 additional properties

I've got a couple of methods that use reflection to transform from one object type to another. I'm in the process of testing the transformation methods via Moq and have stumbled upon a behavior I don't know how to handle. When I reflect across a Moq object to obtain PropertyInfo's, I get two additional objects.
Moq.Mock``1[Namespace.Class+IElement] Mock
Moq.Mock Mock
The code to reproduce this is below:
public void Moq_Reflection() {
var realElement = new Stuff();
// Produces 2 items
PropertyInfo[] pInfo = realElement.GetType().GetProperties();
var mockElement = new Mock<IElement>();
mockElement.Setup(e => e.Property1).Returns(12);
mockElement.Setup(e => e.Property2).Returns(42);
// Produces 4 items
pInfo = mockElement.Object.GetType().GetProperties();
}
public interface IElement {
int Property1 { get; set; }
int Property2 { get; set; }
}
public class Stuff : IElement
{
public int Property1
{
get { return -1; }
set { }
}
public int Property2
{
get { return -2; }
set { }
}
}
Is there a way to Reflect on a Moq object and not retrieve these properties?
I was thinking about this more this afternoon, so here's another idea.
If I were coding this in my own project, I'd abstract out the reflection of the object. I'd create an interface that defines a contract for a class that will return the properties of an object, and then create a class that implements that interface by using reflection to return the set of properties. Same as what you're probably doing.
But then in the tests, I'd create a new implementation of the interface, but I'd add in whatever rules I needed to filter out unwanted properties on my mock objects. My live code wouldn't include any of the code necessary for testing.
I just had to get that idea out, just trying to help. Good luck!
I took a look at the code in LinqPad, and the only solution I could find to cut those two properties out was to exclude them based on whether PropertyType or Name included "Mock". For example:
pInfo.Where(item => item.PropertyType.ToString().Contains("Mock") == false);
pInfo.Where(item => item.Name.Contains("Mock") == false);
It's borderline hacky, but it's the only attribute I can find to filter. I don't think there's a way to filter the reflection itself.

Categories