Produce different serialized JSON for a given class in different scenarios - c#

Update 1: for reasons I won't go into, I want to avoid having anything other than the properties to be persisted in my entity objects. This means no extra properties or methods...
I have an entity called Entity1 with (say) 10 public properties. In
one place in my code I want to output serialized JSON with (say) 3 of
those fields, in a second place I need to output 7 fields and in a
third place I might need to output (say) all 10 fields. How do I do
this using Newtonsoft's JSON library?
I can't use [JsonIgnore] or [DataMember] as that will apply to all
cases, so I won't be able to create "custom views" of the data (my own
terminology :-).
I tried to achieve this using an interface:
public interface Entity1View1
{
string Property1;
string Property2;
string Property5;
}
had Entity1 implement Entity1View1 and I passed an
IList<Entity1View1> to the JSON serializer (the objects were
actually just Entity1 objects). Didn't work: the serializer output
all the 10 public properties of Entity1.
The only other way I could think of was to implement
Entity1Wrapper1, Entity1Wrapper2 etc. type of classes where each
object would hold a corresponding instance of Entity1 and in turn
expose only those public properties that correspond to the properties
I want to show in "View1", "View2" etc. Then I pass lists of these
wrapper objects to the serializer (should work, haven't tried it yet).
Is there a better way?
If it matters, here's my configuration:
.Net 4.5
MVC 5

Don't know it that's the best way... but that's one.
One good point is that it will work either with json serialization or xml serialization, for example (which you may don't mind at all).
You can use ShouldSerialize<yourpropertyName> to manage what is serialized or not. <yourpropertyName> must match exactly the name of the property you wanna manage.
For example
public class Entity {
//assuming you want the default behavior to be "serialize all properties"
public Entity() {
ShouldSerializeProperty1 = true;
ShouldSerializeProperty2 = true;
ShouldSerializeProperty3 = true;
}
public string Property1 {get;set;}
public bool ShouldSerializeProperty1 {get;set;}
public string Property2 {get;set;}
public bool ShouldSerializeProperty2 {get;set;}
public int Property3 {get;set;}
public bool ShouldSerializeProperty3 {get;set;}
}
Then you could do, before all your serialization (of course, this could / should be extension methods).
var list = myListOfEntity;
//serialization1
foreach (var element in list) {
element.ShouldSerializeProperty3 = false;
}
//or serialization2
foreach (var element in list) {
element.ShouldSerializeProperty2 = false;
element.ShouldSerializeProperty3 = false;
}

I just wanted to make sure that this was the final step in processing.
You can create anonymous objects to serialize based on circumstance:
var json1Source1 = new {
Property1 = entityView1.Property1,
Property3 = entityView1.Property3
};
var json1Source2 = new {
Property2 = entityView1.Property2,
Property3 = entityView1.Property3
};
You can create jsonSource1 (or 2, 3, 4 etc) as anonymous objects that capture just what you need and then serialize them. The serializer will not care that they are anonymous.

Update 1:
To conditionally serialize a property, add a method that returns boolean with the same name as the property and then prefix the method name with ShouldSerialize..
This means that the solution suggested by Raphaël Althaus doesn't work as it relies on properties, whereas the serializer's documentation mentions that it has to be a method. I have verified that only a method returning a bool works as expected.
Original:
I finally went with a mix of Wrapper classes and the methodology suggested by Raphaël Althaus (with modifications): use Wrappers where some amount of sophistication may be required and use Raphaël's suggestion when simplicity will do.
Here's how I am using wrappers (intentionally left out null checks):
public class Entity1View1
{
protected Entity1 wrapped;
public Entity1View1(Entity1 entity)
{
wrapped = entity;
}
public String Property1
{
get { return wrapped.Property1; }
}
public String Property2
{
get { return wrapped.Property2; }
}
public String Property3
{
get { return wrapped.Property3.ToUpper(); }
}
}
This allows me to modify properties as their values are returned (as done with Property3 above) and lets me leverage inheritance to create new ways of serialization. For example, I can flatten the structure/hierarchy:
public class Entity1View2 : Entity1View1
{
pulic Entity1View2(Entity1 entity) : base(entity) { }
public long? SubEntityID
{
get { return wrapped.SubEntity.ID; }
}
}
For simpler cases where complexity/transformation of this sort is not required, I can simply use the ShouldSerialize* methods.
Same entity classes, different serialization outputs.

Related

C# + MongoDB - ObjectId without using MongoDB DataTypes/Attributes

Using MongoDB as my data store makes me to have ObjectID type as primary key by Default. It also can be changed by using Guid with [BsonId] attribute. Which is also defined in MongoDB C# Driver library. I would like to have my Entities independent from Data layer.
Can I just use name Id for the property to identify primary key? What else I can try?
You can use BsonClassMap instead of using attributes to keep your classes "clean".
// 'clean' entity with no mongo attributes
public class MyClass
{
public Guid Id { get; set; }
}
// mappings in data layer
BsonClassMap.RegisterClassMap<MyClass>(cm =>
{
cm.AutoMap();
cm.MapIdMember(c => c.Id).SetIdGenerator(CombGuidGenerator.Instance);
});
OPTION 1: Stick with BsonId and use the Facade Pattern
The [BsonId] property is what you'd use to indicate that the _id property should be linked to a specific property. There isn't a way around that (short of ignoring _id entirely in your crud operations which seems like a bad idea).
So, if you want to separate your "entity" object from your "data layer" then just use a poco class.
-- Use a poco class as a substitute for a record. That class is only for data storage: a quick way to get data in/out of mongo, and a great alternative to working with bson documents.
-- Use a facade on top of that poco class for your entity layer. I don't find it useful to re-invent the wheel, so I typically ask our devs have the entity interface inherit the data-layer (poco) interface, but you can do it however you'd like
Breaking up a sample MyObject class
IMyObjectRecord (declared at the dal and contains only properties and mongo-specific attributes)
IMyObject:IMyObjectRecord (declared at the entity level and may include added properties and methods)
MyObjectRecord:IMyObjectRecord (declared inside the dal, contains mongo-specific attributes. Could be declared internal if you wanted to be really strict about separation).
MyObject:IMyObject (could be, for example, a facade on top of the IMyObjectRecord class you pull from the dal).
Now - you get all the benefits of the facade, and you have a hard-coded link between the properties BUT, you get to keep Bson attributes contained in your dal.
OK, fine. But I really really really HATE that answer.
Yeah. I can accept that. OK, so how about a Convention Pack? If you ABSOLUTELY PROMISE that you'll call your Id's "Id" and you SWEAR that you'll type them as strings (or -- use some other convention that is easy to identify), then we could just use a convention pack like the one I stole from here
namespace ConsoleApp {
class Program {
private class Foo {
// Look Ma! No attributes!
public string Id { get; set; }
public string OtherProperty { get; set; }
}
static void Main(string[] args) {
//you would typically do this in the singleton routine you use
//to create your dbClient, so you only do it the one time.
var pack = new ConventionPack();
pack.Add(new StringObjectIdConvention());
ConventionRegistry.Register("MyConventions", pack, _ => true);
// Note that we registered that before creating our client...
var client = new MongoClient();
//now, use that client to create collections
var testDb = client.GetDatabase("test");
var fooCol = testDb.GetCollection<Foo>("foo");
fooCol.InsertOne(new Foo() { OtherProperty = "Testing", Id="TEST" });
var foundFoo = fooCol.Find(x => x.OtherProperty == "Testing").ToList()[0];
Console.WriteLine("foundFooId: " + foundFoo.Id);
}
//obviously, this belongs in that singleton namespace where
//you're getting your db client.
private class StringObjectIdConvention : ConventionBase, IPostProcessingConvention {
public void PostProcess(BsonClassMap classMap) {
var idMap = classMap.IdMemberMap;
if (idMap != null && idMap.MemberName == "Id" && idMap.MemberType == typeof(string)) {
idMap.SetIdGenerator(new StringObjectIdGenerator());
}
}
}
}
}
What's a Convention Pack
It's a little set of mongo "rules" that get applied during serialize/deserialize. You register it once (when you setup your engine). In this case, the sample pack is telling mongo "if you see a field called 'Id', then save it as a string to _id, please."
These can get really complex and fun. I'd dig into convention packs if you really really really hate the other approach. It's a good way to force all your mongo "attribute driven" logic into one self-contained location.
I have stumbled on the same problem myself, and I didn't want to have mongo attributes inside my classes.
I have created a small wrapper example to show how I save and find elements without having an Id property on the data classes of my business logic.
The wrapper class:
public static class Extensions
{
public static T Unwrap<T>(this MongoObject<T> t)
{
return t.Element;
}
}
public class MongoObject<T>
{
[BsonId]
private ObjectId _objectId;
public T Element { get; }
public MongoObject(T element)
{
Element = element;
_objectId = new ObjectId();
}
}
I have also added an extension method to easily unwrap.
Saving an element is simple
public void Save<T>(T t)
{
_collection.InsertOne(new MongoObject<T>(t));
}
To find an element we can do a linq-like query:
Say we have a data class:
public class Person
{
public string Name { get; set; }
}
then we can find such an element by
public Person FindPersonByName(string name)
{
return _collection.AsQueryable().FirstOrDefault(
personObject => personObject.Element.Name == name).Unwrap();
}
We can also generalize by making MongoObject implement IQueryable<T> and this would make the use of the wrapper even more convenient
If i understand correctly. You want to put your entity to other layer without attribute.
I think you can try this
public object Id { get; set; }
after that you can put your Id which is coming from mongodb without attribute

Should I use multiple constructors or an interface?

I have a class called Package, in this class I have around 10 attributes, let's call them 1,2,3,4.. etc to 10. The types of these attributes are strings, ints and some DateTimes. When making a new object of Package sometimes I just need attribute 1, sometimes I need 5, 6 and 9, and sometimes I need 3 and 10 etc.
So just two examples: new Package("bla", "bla bla",100) or new Package(2983)
I've read:
An interface looks like a class, but has no implementation. The only
thing it contains are declarations of events, indexers, methods and/or
properties. The reason interfaces only provide declarations is because
they are inherited by classes and structs, which must provide an
implementation for each interface member declared.
Since there are no other methods in the class and just a constructor and attributes, is it better to use like 20 constructors or should I make an interface for this situation?
EDIT:
I should've probably mentioned that I also have some enums to 'kind of' determine what kind of Package it is.
An interface doesn't help you in any way here.
If you want to force that specific variables are filled in together, like 1, 2 and 3 should always be filled together but in another case just 4 is enough, you could use separate constructors, or static methods with helpful names that create the objects (like CreateFromId, CreateFromNameAndAge).
If you don't care at all, you can simply make a parameterless constructor (or a constructor with optional fields) and set the fields required with object initializers:
var x = new Class() { Field1 = 1, Field2 = "2" };
Maybe this is a sign you are doing too much in a single object, but without actual information about your class design, we can't tell that much.
Inheritance seems to be a decent solution here too, if the packages have distinct uses (like ProductPackage, PersonPackage, etc.). The shared properties reside in the base class, and all specific properties can reside in the deriving classes.
Constructors provide guidelines as to how can an object be created. Assuming that by using an interface you mean specify the properties which need to exist, you are not giving any guidelines as to how properties need to be initialized.
Having multiple constructors should be better since you are providing means in which users can instantiate your objects. This will allow you to initialize your other parameters accordingly.
You could still use an interface if you require to stipulate what fields need to exist.
Besides above points, consider using Builder pattern - https://en.wikipedia.org/wiki/Builder_pattern
Here is the example:
class Package
{
public string Name { get; set; }
public string Description { get; set; }
public string Prop1 { get; set; }
public string Prop2 { get; set; }
public static PackageBuilder Create()
{
return new PackageBuilder(new Package());
}
}
class PackageBuilder
{
private readonly Package _package;
public PackageBuilder(Package package)
{
_package = package;
}
public PackageBuilder WithName(string name)
{
_package.Name = name;
return this;
}
public PackageBuilder WithDescription(string description)
{
_package.Description = description;
return this;
}
public PackageBuilder Prop1(string prop)
{
_package.Prop1 = prop;
return this;
}
public PackageBuilder Prop2(string prop)
{
_package.Prop2 = prop;
return this;
}
public static implicit operator Package(PackageBuilder pb)
{
return pb._package;
}
}
class Client
{
Package BuildPackage()
{
var package =
Package.Create().WithName("My Package").WithDescription("Description").Prop1("foo").Prop2("bar");
return package;
}
}

Solution for CA2227 or better approach?

I'm only using Code Analysis for cleaning, organizing and ensuring these changes are globally performed for all instances of a particular warning. I'm down to the final, and it's CA2227.
CA2227 Collection properties should be read only Change '' to be
read-only by removing the property setter.
Note this is for mapping of EDI documents. These classes are to represent a whole or part of an EDI document.
public class PO1Loop
{
public SegmentTypes.PO1LoopSegmentTypes.PO1 PO1 { get; set; }
public Collection<SegmentTypes.PO1LoopSegmentTypes.PID1> PIDRepeat1 { get; set; }
public Collection<SegmentTypes.PO1LoopSegmentTypes.PID2> PIDRepeat2 { get; set; }
public SegmentTypes.PO1LoopSegmentTypes.PO4 PO4 { get; set; }
/* Max Use: 8 */
public Collection<SegmentTypes.PO1LoopSegmentTypes.ACK> ACKRepeat { get; set; }
}
You can see all of the Collection properties will give me this warning, and there are hundreds of them. When using the above class I instantiate it without any data. Then externally I add the data and set each individual variable through its public accessor. I do not instantiate this class with all the data prepared and passed using a constructor method (IMO for the size these can reach it can easily wreak havoc on the eyes). When complete and all properties are assigned the class as a whole is then used to generate that part of a document it represents.
My question is, for the usage described above, what would be a better approach for setting this up correctly? Do I keep the public accessors and suppress this warning entirely, or is there a entirely different solution that would work?
Here's what MSDN says about the error, and also how you can avoid it.
Here's my take on the issue.
Consider, the following class:
class BigDataClass
{
public List<string> Data { get; set; }
}
This class will throw that exact same issue. Why? Because Collections do not need a setter. Now, we can do anything with that object: assign Data to an arbitrary List<string>, add elements to Data, remove elements from Data, etc. If we remove the setter, we only lose the ability to directly assign to that property.
Consider the following code:
class BigDataClass
{
private List<string> data = new List<string>();
public List<string> Data { get { return data; } } // note, we removed the setter
}
var bigData = new BigDataClass();
bigData.Data.Add("Some String");
This code is perfectly valid and in fact the recommended way to do things. Why? Because the List<string> is a reference to a memory location, that contains the remainder of the data.
Now, the only thing you cannot now do with this, is directly set the Data property. I.e. the following is invalid:
var bigData = new BigDataClass();
bigData.Data = new List<string>();
This is not necessarily a bad thing. You'll notice that on many .NET types this model is used. It's the basics of immutability. You usually do not want direct access to the mutability of Collections, as this can cause some accidental behavior that has strange issues. This is why Microsoft recommends you omit setters.
Example:
var bigData = new BigDataClass();
bigData.Data.Add("Some String");
var l2 = new List<string>();
l2.Add("String 1");
l2.Add("String 2");
bigData.Data = l2;
Console.WriteLine(bigData.Data[0]);
We might be expecting Some String, but we'll get String 1. This also means that you cannot reliably attach events to the Collection in question, so you cannot reliably determine if new values are added or values are removed.
A writable collection property allows a user to replace the collection with a completely different collection.
Essentially, if you only ever need to run the constructor, or assignment, once, then omit the set modifier. You won't need it, direct assignment of collections is against best-practices.
Now, I'm not saying never use a setter on a Collection, sometimes you may need one, but in general you should not use them.
You can always use .AddRange, .Clone, etc. on the Collections, you only lose the ability of direct assignment.
Serialization
Lastly, what do we do if we wish to Serialize or Deserialize a class that contains our Collection without a set? Well, there is always more than one way to do it, the simplest (in my opinion) is to create a property that represents the serialized collection.
Take our BigDataClass for example. If we wished to Serialize, and then Deserialize this class with the following code, the Data property would have no elements.
JavaScriptSerializer jss = new JavaScriptSerializer();
BigDataClass bdc = new BigDataClass();
bdc.Data.Add("Test String");
string serd = jss.Serialize(bdc);
Console.WriteLine(serd);
BigDataClass bdc2 = jss.Deserialize<BigDataClass>(serd);
So, to fix this, we can simply modify our BigDataClass a bit to make it use a new string property for Serialization purposes.
public class BigDataClass
{
private List<string> data = new List<string>();
[ScriptIgnore]
public List<string> Data { get { return data; } } // note, we removed the setter
public string SerializedData { get { JavaScriptSerializer jss = new JavaScriptSerializer(); return jss.Serialize(data); } set { JavaScriptSerializer jss = new JavaScriptSerializer(); data = jss.Deserialize<List<string>>(value); } }
}
Another option is always the DataContractSerializer (which is really a better option, in general.) You can find information about it on this StackOverflow question.
With current VS2019 we can simply do this:
public List<string> Data { get; } = new List<string>();
This satisfies CA2227 and can be serialized/deserialized.
The deserialization works because List<> has an "Add" method, and the serializer knows how to handle a read-only collection property with an Add method (the property is read-only but not the elements) (I use Json.Net, other serializers may behave differently).
Edit:
As pointed out it should be "=" and not "=>" (compiler will prevent you using "=>"). If we used "public List Data => new List();" then it would create a new list every time the property was accessed which is not what we want either.
Edit:
Note that this will NOT work if the type of the property is an interface, such as IList
Edit:
I think the handling of interfaces is determined by the serializer used. The following works perfectly. I'm sure all common serializers know how to handle ICollection. And if you have some custom interface that does not implement ICollection then you should be able to configure the serializer to handle it, but in that case CA2227 probably won't be triggered making it irrelevant here. (As it is a read-only property you have to assign a concrete value within the class so it should always be serializing and de-serializing a non-null value)
public class CA2227TestClass
{
public IList Data { get; } = new List<string>();
}
[TestMethod]
public void CA2227_Serialization()
{
var test = new CA2227TestClass()
{
Data = { "One", "Two", "Three" }
};
var json = JsonConvert.SerializeObject(test);
Assert.AreEqual("{\"Data\":[\"One\",\"Two\",\"Three\"]}", json);
var jsonObject = JsonConvert.DeserializeObject(json, typeof(CA2227TestClass)) as CA2227TestClass;
Assert.IsNotNull(jsonObject);
Assert.AreEqual(3, jsonObject.Data.Count);
Assert.AreEqual("One", jsonObject.Data[0]);
Assert.AreEqual("Two", jsonObject.Data[1]);
Assert.AreEqual("Three", jsonObject.Data[2]);
Assert.AreEqual(typeof(List<string>), jsonObject.Data.GetType());
}
💡 Alternative Solution 💡
In my situation, making the property read-only was not viable because the whole list (as a reference) could change to a new list.
I was able to resolve this warning by changing the properties' setter scope to be internal.
public List<Batch> Batches
{
get { return _Batches; }
internal set { _Batches = value; OnPropertyChanged(nameof(Batches)); }
}
Note one could also use private set...
The hint's (achilleas heal) of this warning seems really pointed to libraries for the documentation says (Bolding mine):
An externally visible writable property is a type that implements
System.Collections.ICollection.
For me it was, "Ok, I won't make it viewable externally...." and internal was fine for the app.
Thanks to #Matthew, #CraigW and #EBrown for helping me understanding the solution for this warning.
public class PO1Loop
{
public SegmentTypes.PO1LoopSegmentTypes.PO1 PO1 { get; set; }
public Collection<SegmentTypes.PO1LoopSegmentTypes.PID1> PIDRepeat1 { get; private set; }
public Collection<SegmentTypes.PO1LoopSegmentTypes.PID2> PIDRepeat2 { get; private set; }
public SegmentTypes.PO1LoopSegmentTypes.PO4 PO4 { get; set; }
/* Max Use: 8 */
public Collection<SegmentTypes.PO1LoopSegmentTypes.ACK> ACKRepeat { get; private set; }
public PO1Loop()
{
PIDRepeat1 = new Collection<SegmentTypes.PO1LoopSegmentTypes.PID1>();
PIDRepeat2 = new Collection<SegmentTypes.PO1LoopSegmentTypes.PID2>();
ACKRepeat = new Collection<SegmentTypes.PO1LoopSegmentTypes.ACK>();
}
}
When wanting to assign data to the collection types use AddRange, Clear or any other variation of method for modifying a collection.
Only while binding DTO, you need to suppress warnings.
otherwise a custom ModelBinder is required custom ModelBinder to bind collections.
quoting the rule documentation:
When to suppress warnings
You can suppress the warning if the property is part of a Data Transfer Object (DTO) class.
Otherwise, do not suppress warnings from this rule.
https://learn.microsoft.com/pt-br/visualstudio/code-quality/ca2227?view=vs-2019
DTOs often require serialization and deserialization. Thus, they are required to be mutable.
Having to create an alternate backing property is a pain.
Simply change the property type from List<string> to IReadOnlyList<string> then this works as expected without CA2227.
The collection is set via the property but you can also cast to List<string> if you wish to append or delete items.
class Holder
{
public IReadOnlyList<string> Col { get; set; } = new List<string>();
}
var list = new List<string> { "One", "Two" };
var holder = new Holder() { Col = list } ;
var json = JsonConvert.SerializeObject(holder);
// output json {"Col":["One","Two"]}
var deserializedHolder = JsonConvert.DeserializeObject<Holder>(json);
I had to fix some of the CA2227 violations, so i had to add the "readonly" keyword to the collection field and then of course, had to remove the setter property. Some code that have used the setter, just created a new collection object which initially was empty. This code sure did not compile so i had to add a SetXxx() method in order to realize the missing setter's functionality. I did it like this:
public void SetXxx(List<string> list)
{
this.theList.Clear();
this.theList.AddRange(list);
}
The code of callers using the setter has been replaced with a call to the method SetXxx().
Instead of creating a complete new list, the existing list now will be cleared and filled with new items from another list, passed in as a parameter. The original list, due to the fact it is readonly and created only once, will always remain.
I believe this is also a good way to avoid that the garbagae collector has to delete old objects that got out of scope and second, to create new collection objects although there is already one.
As an addition to Der Kommissar's excellent answer.
Starting with .NET 5 (C# 9.0) there are init-only properties. These properties are only settable under specific circumstances, see here for reference.
The following example should not raise a warning CA2227, yet still allow for the collection being set during object initialization.
using System.Collections.Generic;
namespace BookStore
{
public class BookModel
{
public ICollection<string> Chapters { get; init; }
}
}
Note that the current version of the .NET SDK still raises a warning when using the built-in analyzer (not the NuGet package). This is a known bug and should be fixed in the future.
To cover all the possible scenarios to resolve CA2227 error:
This covers the Entity relationship mapping when we use Entity Framework.
class Program
{
static void Main(string[] args)
{
ParentClass obj = new ParentClass();
obj.ChildDetails.Clear();
obj.ChildDetails.AddRange();
obj.LstNames.Clear();
obj.LstNames.AddRange();
}
}
public class ChildClass
{ }
public class ParentClass
{
private readonly ICollection<ChildClass> _ChildClass;
public ParentClass()
{
_ChildClass = new HashSet<ChildClass>();
}
public virtual ICollection<ChildClass> ChildDetails => _ChildClass;
public IList<string> LstNames => new List<string>();
}

Factory pattern with a class that can has different class sub types

I have data from multiple organisations (police, fire, office) that need output in different formats.
To achieve this, I defined the following (this is a little simplified):
Transaction class -
"Success" indicator - Boolean.
"Type of department"- String or Enum.
A class which can be of any type - Police, Fire or Office (My question is on this as you will see).
A GenerateOutput() method - to handle generation of file formats.
Police class
Age - String
VehicleNumber - Integer
Supervisor - String
Fire class
Name - String
FireEngineNumber - Integer
County - Enum
WorkTimings - Enum
Office Class
Age - String
DeskNumber - Integer
Department - String
PayScale - Enum
IsManagement - Bool
As you can see, the Police, Fire and Office classes dont share anything in common and are primarily intended as data carrying entities. I intend to use a Factory to return an appropriate generic (not a C# generic) Transaction object with the data (Transaction object with Police, Fire or Office data within it) and then pass the returned object to a Strategy pattern which determines the file format (CSV, Excel, or XML; specified in a configuration file) each one needs.
My problem is in the definition of the Transaction object.
What type does the class in "3." of the Transaction class need to be? The data for each org differs, there are no common members, I am unable to define a common class for all.
Is the overall design appropriate? What other designs should I consider?
Based on Peter's comments below:
I think using generics might work, I ran into a problem though. I would like to use a factory to return the object requested, using GetTransactionObject, as below. What should be the return type of GetTransactionObject to accomodate this.
class TransactionFactory
{
Dictionary<string, Type> typeClassLookup;
public TransactionFactory()
{
typeClassLookup = new Dictionary<string, Type>();
typeClassLookup.Add("Police", typeof(PoliceData));
typeClassLookup.Add("Fire", typeof(FireData));
}
Transaction<????> GetTransactionObject(string org)
{
if( typeClassLookup.TryGetValue(org, out typeValue))
{
switch (typeValue.ToString())
{
case "policeData":
transactionObject = new Transaction<PoliceData>() { Data = new PoliceData(), params = null};
case "FireData":
transactionObject = new Transaction<FireData>() {Data = new FireData(), params = null};
}
}
return transactionObject;
If the types really have nothing in common, then you need no explicit base class. System.Object suffices, just as with many other generic types (i.e. any generic type lacking a constraint).
In other words, you could declare as:
class Transaction<T>
{
public bool Success { get; private set; }
public T Entity { get; private set; }
public Transaction(bool success, T entity)
{
Success = success;
Entity = entity;
}
public void GenerateOutput() { /* something goes here */ }
}
Personally, I would avoid adding a "department type" member. After all, that's implicit from the type parameter T. But you could add that easily to the above if you want.
If and when you find that the types do have something in common, such that your Transaction<T> type needs to do more than simply hold onto an instance of one of those types (which is about all it can do without a constraint), then you will be able to put that commonality into an interface or base class (depending on the specific need), and specify that in a constraint for the Transaction<T> class.
Note that it's not clear what you mean for the GenerateOutput() to do, or how it should work. But assuming that you want output that is specific for each Entity value, it seems to me that that is your "something in common". I.e., it's not the Transaction<T> class at all that needs to implement that method, but rather each entity type. In that case, you have something like this:
interface IDepartmentEntity
{
void GenerateOutput();
}
class Office : IDepartmentEntity
{
public void GenerateOutput() { /* department-specific logic here */ }
}
// etc.
Then you can declare:
class Transaction<T> where T : IDepartmentEntity
{
public bool Success { get; private set; }
public T Entity { get; private set; }
public Transaction(bool success, T entity)
{
Success = success;
Entity = entity;
}
public void GenerateOutput() { Entity.GenerateOutput(); }
}
EDIT:
Per Prasant's follow-up edit, with a request for advice on the GetTransactionObject()…
The right way to do this depends on the caller and the context, a detail not provided in the question. IMHO, the best scenario is where the caller is aware of the type. This allows the full power of generics to be used.
For example:
class TransactionFactory
{
public Transaction<T> GetTransactionObject<T>()
where T : IDepartmentEntity, new()
{
return new Transaction<T>()
{
Data = new T(),
params = null
}
}
}
Then you call like this:
Transaction<FireData> transaction = factory.GetTransactionObject<FireData>();
The caller, of course already knowing the type it is creating, then can fill in the appropriate properties of the transaction.Data object.
If that approach is not possible, then you will need for Transaction<T> itself to have a base class, or implement an interface. Note that in my original example, the IDepartmentEntity interface has only one method, and it's the same as the GenerateOutput() method in the Transaction class.
So maybe, that interface is really about generating output instead of being a data entity. Call it, instead of IDepartmentEntity, something like IOutputGenerator.
In that case, you might have something like this:
class Transaction<T> : IOutputGenerator
{
// all as before
}
class TransactionFactory
{
public IOutputGenerator GetTransactionObject(string org)
{
if( typeClassLookup.TryGetValue(org, out typeValue))
{
switch (typeValue.ToString())
{
case "policeData":
transactionObject = new Transaction<PoliceData>() { Data = new PoliceData(), params = null};
case "FireData":
transactionObject = new Transaction<FireData>() {Data = new FireData(), params = null};
}
}
return transactionObject;
}
}
This is an inferior solution, as it means the caller can only directly access the IOutputGenerator functionality. Anything else requires doing some type-checking and special-case code, something that really ought to be avoided whenever possible.
Note: if the Transaction type has other members which, like the GenerateOutput() method, are independent of the contained type T here, and which would be useful to callers who don't know T, then a possible variation of the above is to not reuse the interface used for the department-specific data types, but instead declare a base class for Transaction<T>, named of course Transaction, containing all those members not related to T. Then the return value can be Transaction.
What type does the class in "3." of the Transaction class need to be?
To decouple your department classes from the various export types, I recommend you make the department classes implement a common interface. Something like this:
public interface Exportable {
// return a list of attribute names, values, and types to export
IList<Tuple<String, String, Type>> GetAttributes();
}
For example:
public class Police : Exportable {
public IList<Tuple<String, String, Type>> GetAttributes() {
// return list size 3 - attribute info for Age, VehicleNumber, Supervisor
}
}
Is the overall design appropriate? What other designs should I consider?
The Transaction class design doesn't seem well suited for this problem.
Consider an Export class with a method for each export type, each method which receives the attributes returned from the Exportable interface method. Basic outline:
public static class Export {
public static boolean CSV(IList<Tuple<String, String, Type>> attributes) {
// export attributes to CSV, return whether succeeded
}
public static boolean Excel(IList<Tuple<String, String, Type>> attributes) {
// export attributes to Excel, return whether succeeded
}
// same thing for XML
}

Generate code based which populate an object

Let's say I have the following classes.
public class MyClass {
public string Data1 { get; set; }
public MyOtherClass Data2 { get; set; }
// 50+ other properties...
}
public class MyOtherClass {
public string OtherData1 { get; set; }
// More properties
}
There's somecode that instanciate that class and populates it with all the data. I'd like to use that object for my test. I could simply serialize the structure into XML and reload it later. However, what I would really like is to have the entire object tree build in the code. In other words:
MyClass myClass = new MyClass {
Data1 = "Hello",
Data2 = new MyOtherClass {
OtherData1 = "World",
// More...
},
// More...
}
I could write all that myself, but it would take hours and be error prone since there's a high number of properties and sub-classes. Here's my question: given an object how would you generate the code which populate that object?
I would write a T4 template. Check out an example that is doing something, although really remotely, similar to what you need.
I would use json for a data format and use something like http://json2csharp.com to generate classes to use to serialize and deserialize to and from json. Or given the classes already existing annotate them and serialize them out.
This will handle any arbitrary nesting and be maintainable. Values can even be edited without a recompile which is usually a good thing. The link also leads to examples for how to specify specific types, handle enums, object links, etc.
Perhaps if you specify why it absolutely has to be generated from code only we can give better answers.

Categories