Let's say I have some classes defined as follows:
class Security
{
Boolean AuthenticateUser(String username, String password);
Boolean AddUser(String username, String password);
// many more methods
}
class NetworkedDevice
{
void Stop();
void Start();
// many more methods
}
Then I have another class that contains instances of the above classes. How can I avoid code like the following? I want all the methods of class1 and class2 exposed via this class.
class MyWindowsService
{
Security _security = new Security();
NetworkDevice _netDevice = new NetworkDevice();
Boolean AuthenticateUser(String username, String password)
{
return _security.AuthenticateUser(username, password);
}
// all the rest of "Security" methods implemented here
void StopNetworkDevice()
{
_netDevice.Stop();
}
void StartNetorkDevice()
{
_netDevice.Start();
}
// all the rest of "NetDevice" methods implemented here
}
Edit
I've updated the code to be more real to what I am doing. I am hosting a WCF service within a windows service. The windows service does several things including user authentication and communication to networked devices to name a few. The implementation of my WCF interface calls methods of the "MyWindowsService" class. Exposing the underlying objects as properties is the answer I was looking for. The above class then looks something like:
class MyWindowsService
{
SecurityClass _security = new SecurityClass();
NetworkDevice _netDevice = new NetworkDevice();
Public NetworkDevice NetDevice
{
get { return _netDevice; }
}
Public SecurityClass Security
{
get { return _security; }
}
}
Well, if you're using composition (as you are) there is no "easier way"; you just have to wrap the methods you want to expose. If you want to expose all of the methods of the composed type, then why are you using composition in the first place? You may as well just expose SecurityClass and NetworkDevice via public properties as it is functionally no different than wrapping every method and property/public field.
If it makes sense that they belong in the inheritance chain then SuperClass (oddly named as it would be a sub class...) should inherit from one of those classes. Of course you can't inherit from both in C#, but this design makes me suspect that there may be a better overall approach. It is impossible to tell from your code sample though as you don't tell us what you are actually trying to accomplish with these types.
There is one more way: T4 Templates.
See here: http://msdn.microsoft.com/en-us/data/gg558520
The resulting CS file is generated at build time. This means you could potentially loop your classes using refelection and the result would be what you have now manually created in your "SuperClass".
The cool thing really is that the resulting code is generated on the fly and it is typesafe.
Is it worth the effort? I don't know. It really depends what you are doing and why you are doing it.
We use it for instance to translate Func<T1, T2> into "real" delegates and auto-generate wrapper classes that way.
Unfortunately there is no magic ways to do that as multiple type inheritance is not allowed in .NET.
You cannot do this easily in C#. You could inherit from one of the classes, and create delegates for the other, or you can manually create delegates for both (by delegate, I just mean a method that delegates to the member object, not anything to do with the delegate keyword or class).
If you use a product such a Resharper, there is an option in the Refactor menu that will automate this process, called "Create delegates..."
You can make class1 public and then reference them directly:
SuperClass.class1.MethodFirst();
Of course, static methods will be ok, you will have to construct class1 for instance methods.
in C#, you cannot combine class hierarchies the way you can in Java but you can enforce a contract through iterfaces.
Create an interface for Class1 and Class2 then have SuperClass implement those interfaces. You'll still code up the method calls, but at least you'll have some compile-time checking in place. Perhaps you could also Create a method in SuperClass that dispatches to the appropriate class/method using reflection.
Another approach might be to setup an inheritance chain where SuperClass extends Class2 which extends Class1.
The question is rather old already, and there's one more solution available today: Expose.Fody. This is a plugin for Fody, which is a general-purpose IL-weaving tool. To quote the Expose's description,
Exposes members and optionally implements interface of a field declared in class.
All it takes is just decorating the field with an attribute.
Related
In the below adapter design pattern sample code, why a new class is introduced instead of using multiple interface in the client?
interface ITarget
{
List<string> GetProducts();
}
public class VendorAdaptee
{
public List<string> GetListOfProducts()
{
List<string> products = new List<string>();
products.Add("Gaming Consoles");
products.Add("Television");
products.Add("Books");
products.Add("Musical Instruments");
return products;
}
}
class VendorAdapter:ITarget
{
public List<string> GetProducts()
{
VendorAdaptee adaptee = new VendorAdaptee();
return adaptee.GetListOfProducts();
}
}
class ShoppingPortalClient
{
static void Main(string[] args)
{
ITarget adapter = new VendorAdapter();
foreach (string product in adapter.GetProducts())
{
Console.WriteLine(product);
}
Console.ReadLine();
}
}
I have the below queries related to the above code.
What, if ShoppingPortalClient directly inherits VendorAdaptee?
In which scenario we need adapter class?
why instead of simple inheritance a needed class, creating this pattern to access another class method?
Sometimes you have a given API that you can't change (legacy/external-library/etc...) and you want to make your classes be able to work with that API without changing their code.
Lets say you use an API which has an ISomethingToSerialize
public interface ISomethingToSerialize
{
object[] GetItemsToSerialize();
}
That API also has a Serialize function:
public class SerializationServices
{
byte[] Serialize(ISomethingToSerialize objectToSerialize);
}
Now you have a class in your code, and you don't want or not able to change it, let's call it MyUnchangeableClass.
This class doesn't implement ISomethingToSerialize but you want to serialize it using the API so you create AdapterClass which implement ISomethingToSerialize to allow MyUnchangeableClass to use it without implementing it by itself:
public class AdapterClass : ISomethingToSerialize
{
public AdapterClass(MyUnchangeableClass instance)
{
mInstance = instance;
}
MyUnchangeableClass mInstance;
public object[] GetItemsToSerialize()
{
return mInstance.SomeSpecificGetter();
}
}
Now you can use
MyUnchangeableClass instance = ... //Constructor or factory or something...
AdapterClass adapter = new AdapterClass(instance)
SerializationServices.Serialize(adapter);
to serialize an instance of MyUnchangeableClass even though it doesn't meet the requirements of the API by itself.
You've got the idea totally wrong. The VendorAdaptee is the instance of code that produce data, where the ShoppingPortalClient is the one who wants to consume it.
Let me explain what would be the real world situation. You are implementing the shop, and someone else has been implemented a service to give you data about their products(VendorAdaptee). The simple way of doing it is to simply call their methods and use the data, right? But it is their service and they might want to change it later while you don't want to upload your whole solution and release a new version. Therefore, you need an adapter in between to make sure that the data will be send to your real code with the format that you need, and you simply don't care about the address, method name or data format that has been supported by your vendor.
about your questions:
Inheritance is not in any way the case. Conceptually speaking, a shop is not a vendor in any way. considering the code, you have nothing similar in any of those 2, and the behavior is totally different. one is providing data while the other use it.
The main reason you would use an adapter is for legacy code that you don't want to mess with - or a third party that you won't to fit into a certain interface.
There are other reasons, usually depending on how you find easier to develop and if using the adapter design pattern makes sense to you. I don't see it as very useful in other cases though.
First of all I also don't think this is a good example for Adapter pattern. Adapter pattern is much meaningful when you can't directly use one particular kind of class(say A) in your class(say B), instead you implement another class(say C) which can be directly used inside your class (B) and it(C) can directly use the first one(A).
You might ask what will be the examples where B cannot directly use A. There's few.
A's methods don't return the type which is ideally needed by B.
So we don't to mess up with adding the conversion need by B inside B. Instead we give responsibility to C to do it for B.
It might not look natural for B to contain A. etc.
Back to your questions
(1) It is meaningful if you ask,
What, if ShoppingPortalClient directly 'uses' VendorAdaptee?
Just because it is the main class, it has been used as a demo, not to show the structure. And one thing to add, just because you want to call another class's method, don't inherit it unless it is meaningful. In this scenario composition is preferred. For the question why not 'using', just assume it cannot. But you rather ask why cannot. The answer I can give in this example is just assume it is not natural to call Adaptee. That's why I said it is not a good example. :)
(2), (3) I think you can get the answer from the description I have provided so far.
Say I have a class, A, which holds some state:
class A
{
// Ctor etc.
string Foo { get; private set; }
string Bar { get; private set; }
}
This class is used thoughout my codebase to hold application state. Ultimately, this state gets written into an XML file to save it. Naturally, I'll write a method to do just that:
class A
{
// Ctor, the state, etc.
public string ToXml()
{
// Writer implementation goes here
return xmlString;
}
}
ToXml does not require access to any of A's private/protected instance variables, it only uses uses A's public interface. Since that's the case, I can implement ToXml as an extension method:
class A
{
// Ctor, the state, etc.
public static string ToXml(this A instance)
{
// Same deal as above
return xmlString;
}
}
An extension method can only use the outer interface of the class it is extending. So, ignoring extension methods' main uses (extending a locked class, semantic helpers), what's the SO community's opinion on using an extension method for the sole purpose of communicating that a method only uses the outer interface of a class?
I ask this because I personally use extension methods alot--perhaps because I enjoy functional programming--but my coworkers dislike the rationale that I do so because I want to communicate that "this particular method definitely only uses the public interface of the class".
Note: These extension methods will appear as a substitute for their instance equivalents. Because of that, there will not be any of the usual namespace issues that occur with extension methods. This question focuses entirely on the "communicate intent" aspect.
Extension methods are an example of the Open/Closed Principle. That is, it's open for extension, but closed for modification.
The major benefit of using Extension methods is that you do not have to recompile the class that is being extended, and thus force dependent code to be recompiled. Also, by not changing the interface, you don't have to worry about any code depending on it breaking.
If you're serious about SOLID principles, then this is a valid argument. Most developers don't see what the fuss is about.
You have a class, A, that has a specific responsibility: holding a set of immutable data. If you now add a new method, ToXml, your class no longer has a specific responsibility; it has two loosely related responsibilities: holding data and translating that data into another form.
So to preserve the single responsibility principle, such lossely related functionality should exist in another class, eg DataTransformationsOnA. As the method is a pure function (it creates a deterministic output from an input with no side affects, it should be made a static method. Therefore, it follows that it can be made an extension method:
static class DataTransformationsOnA
{
public static string ToXml(this A instance)
{
// generate xmlSTring from instance
return xmlString;
}
// other transformation methods can also be placed in this class
}
I've got several C# classes each with similar properties.
(They're part of an SDK and their code can’t be changed.)
Person.Name
Product.Name
Order.Name
I want to use these classes polymorphically, but they don’t implement a common interface or derive from a common base class, so that’s not possible.
To get around this, I’d like to wrap each one in another class that does implement a common interface, and wire-up each class property to its corresponding interface property.
What would be a suitable name for the wrapper classes? Wrapper, Decorator, Adaptor, Proxy? Does this pattern have a name? Is there a better approach?
(I don't want to use dynamic duck-typing or an impromptu interface.)
It looks like Adapter, because you are adapting the existing interfaces to the specific requirements.
(I don't want to use dynamic duck-typing or an impromptu interface.)
So what is wrong with a NamedObject?
public class NamedObject
{
public string Name { get; set; }
}
It literally says what it is, nothing less, nothing more.
I'd stick with CodeCaster's idea, and perhaps with a dash of Func<T> for no other reason than I get withdrawal symptoms when I don't use angle brackets...
public class NamedEntity
{
public string Name { get { return _getName(); } }
private Func<string> _getName;
public NamedObject(Func<string> getName)
{
_getName = getName;
}
}
And then call thus:
var named = new[]
{
new NamedEntity(() => person.Name),
new NamedEntity(() => product.Name),
new NamedEntity(() => order.Name)
};
The added benefit with this is when the value of the property changes on the target object, it changes within the NamedEntity reference too via the Func, this means within the life span of the objects you can get away with wrapping them once. You can also do the inverse with Funcs that set values as well as get, and can adapt more properties.
I am not immediately sure what pattern this represents (if any), though I would guess Adapter pattern (which is a type of wrapper pattern). However, it could also be argued to be a Proxy pattern. Not sure really.
Maybe you can just change the namespace and keep the names of the original classes.
Technically, I think the most correct name would be Adapter, see this question.
Adapter is used when you have an abstract interface, and you want to map that interface to another object which has similar functional role, but a different interface.
You don't have abstract interface, but "similar functional role, but a different interface".
I've built a reusable Class Library to encapsulate my Authentication logic. I want to be able to reuse the compiled *.dll across multiple projects.
What I've got works. But, something about how I'm making the reference, or how my Class Library is structured isn't quite right. And I need your help to figure out what I'm doing-wrong/not-understanding...
I've got a Class Library (Authentication.dll) which is structured like this:
namespace AUTHENTICATION
{
public static class authentication
{
public static Boolean Authenticate(long UserID, long AppID) {...}
//...More Static Methods...//
}
}
In my dependent project I've added a reference to Authentication.dll, and I've added a using directive...
using AUTHENTICATION;
With this structure I can call my Authenticate method, from my dependent project, like so...
authentication.Authenticate(1,1)
I'd like to be able to not have to include that "authentication." before all calls to methods from this Class Library. Is that possible? If so, what changes do I need to make to my Class Library, or how I'm implementing it in my dependent project?
In C# a function cannot exist without a class. So you always need to define something for it, being a class for a static method or an object for an object method.
The only option to achieve that would be to declare a base class in the Authentication assembly from which you inherit in the dependent projects.
You could expose Authenticate as a protected method (or public works too), and call it without specifying the class name.
public class MyClassInDependentProject : authentication
{
public void DoSomething(int userId, long appId)
{
var success = Authenticate(userId, appId);
…
}
}
That said, you'll quickly find this to be a bad design. It conflates a cross-cutting concern with all sorts of other classes, and those classes are now precluded from inheriting from any other class.
Composition is a core principle of object-oriented programming, and we have the idiom "Favor composition over inheritance." This simply means that we break down complexity into manageable chunks (classes, which become instantiated as objects), and then compose those objects together to handle complex processing. So, you have encapsulated some aspect of authentication in your class, and you provide that to other classes compositionally so they can use it for authentication. Thinking about it as an object with which you can do something helps, conceptually.
As an analogy, think about needing to drill a hole in the top of your desk. You bring a drill (object) into your office (class). At that point, it wouldn't make sense to simply say "On," because "On" could be handled by your fan, your lamp, your PC, etc. (other objects in your class). You need to specify, "Drill On."
If you are making a class library in C# you should learn to use the naming conventions that exists: Design Guidelines for Developing Class Libraries
Here is how you should name namespaces: https://learn.microsoft.com/en-us/dotnet/standard/design-guidelines/interface
C# is also an object oriented language, hence the need of classes (using Authentication as you should name your class).
It also seems like the data source is hard coded. Your class library users (even if it's just you) might want to configure the data source.
Google about singleton and why it's considered to be an anti pattern today (in most cases).
You are obliged to use Class in order to invoke your method, just
When is static class just NameClass.Method
When is not static, you must create instance, ClassName ob = new ClassName(); ob.Method();
The format of a call like this is class.method, and you really can't escape using the "class" moniker even with the "using" designation. Something has to "host" the function.
I don't think what you are asking for is possible without using the base class method Jay mentioned. If all you want is to simplify the syntax whenever you call Authenticate() however, this silly solution (adding an extra method in each class that needs to do authentication) may be just what you want:
private static void DoAuth(long UserID, long AppID){
authentication.Authenticate(UserID, AppID)
}
If the ID's are always the same within some context, you could also overload it:
private static void DoAuth(){
DoAuth(1,1)
}
Yes, this does mean you have to add more code wherever you want to do the authentication (that's why it's silly! ;) ). It does also however, also reduce this:
authentication.Authenticate(1,1);
...into this:
DoAuth();
I leave the cost / benefit analysis of this up to you..
I know I am some 3 years late but here goes nothing.
To keep your code cleaner and more readable you should create a new namespace for all the re-usable code that you want to have. Then in that namespace have the Authentication Class and Authenticate Function.
To use this you can easily set a using on your namespace and use the function as you are doing like
Authentication.Authenticate()
But to use
Authenticate()
by itself you can always do
using MyNamespace.Authentication;
and in your code use Authenticate Function directly.
I have a class:
public class MyClass {
private List<string> folderList;
// .... a lot of useful public methods here.....
}
Everything is fine. The list of folders is encapsulated, the class is accessible through public methods. OK. Now I need an "options" form that allows a user to choose folders for MyClass. There is a catch: new Setup class must have access to private folderList field (or I have to provide public methods to get and set the folder list - it's essentially the same). In old good C++ I would use 'friend' feature because nobody but Setup class may access folderList. But there is no 'friend' feature in C# (I'm a newbie in the C# world).
P.S. Actually I just made folderList public, but I feel there is a better solution.
Thanks.
You can use "internal" keyword to make your method available only within your assembly/project and if you want to access your internal methods in other project or assembly then you can use "InternalsVisibleTo" attribute, where you can access your internals only in that assembly for which you define this attribute.
MSDN Internal Keyword
I believe the keyword you're looking for is internal. It is loosely equivilent to C++'s friend.
Internal provides assembly-level visibility.
Paired with Femaref's suggestion of using a Property, and you should have your full solution.
I am not sure if this is what he/she wanted. He/she did not put the requirement that the potential client will be in current assembly... Accordingly, when using friend in c++ (which was never considered a good style) you must know the exact type of the class which will be entitled to access the member. If this class is not part of the program you are writing, you cannot grant access this way.
If you want conditional access to some property or method of an instance of a class, you will need to implement some kind of entitlement mechanism, for example:
public IList<Folder> GetFolderList(Object pClient, IEntitlementService pService) {
if (pService.IsEntitledToAccess(this, pClient) {
return folderList;
} else {
throw new AccessNotGrantedException("...");
}
}
I believe there are built-in utilities in the .Net framwork for that purpose, just go and google (or bing)...
As an exact answer to the question I would suggest the following - create a separate interface IFolderList:
interface IFolderList
{
IList<string> FolderList { get; }
...
}
Well, you can add other required members to interface
In the class MyClass implement this interface explicitly.
As a result, the class Setup can gain access to data through an explicit cast to an interface IFolderList or work only with these interface.
An alternative to making an internal method to be used by your Setup class would be to use the Visitor pattern and add a method that takes a Setup class instance as a parameter, then uses the private folderList to initialize/change Setup state as required. Of course that would require the appropriate public methods on the Setup class, so might not fit your needs.
Making folderList field public is the worst case. Exposing implementation details through public fields or through poorly designed public property (there are no differences for collections between public fields and public property with getter and setter).
With public fields you can't promote a field to be a property when you want to add validation, change notification, put it into an interface or change your collection type from one type to another.
BTW, Jeffrey Richter in annotation to Framework Design Guideline mentioned that "Personally, I always make my fields private. I don't even expose fields as internal, because doing so would give me no protection from code in my own assembly"
I think the best way to add explicit interface that expose strict abstraction to MyClass clients.
For example, you may add two separate methods to retrieving folders and to adding new folder to this storage:
class MyClass {
//You should return IList<string>
public IList<string> MyList {get {return myList;} }
//Or even IEnumerable<string>, because you should return
//as minimal interface as your clients needs
public IEnumerable<string> MyList {get {return myList;} }
//You may expose this functionality through internal
//method, or through protected internal method,
//but you should avoid direct access to your implementation
//even for descendants or another classes in your assembly
public void AddElement(string s) {myList.Add(s);}
private List<string> myList;
}
That's what properties are for in C#:
public class MyClass
{
private List folderList;
public List FolderList
{
get {return folderList;}
set {folderList = value;}
}
}
Properties encapsulate the private fields, provide possibilites for validation while setting. Also, you should read up on Generics (abit like templates in c++) and use List<T> instead of List to have a strongly typed collection.
However, you probably wont be able to achieve what you plan unless Setup derives from MyClass. In that case, you can use a protected field.