The use of C# extension methods to show intention - c#

Say I have a class, A, which holds some state:
class A
{
// Ctor etc.
string Foo { get; private set; }
string Bar { get; private set; }
}
This class is used thoughout my codebase to hold application state. Ultimately, this state gets written into an XML file to save it. Naturally, I'll write a method to do just that:
class A
{
// Ctor, the state, etc.
public string ToXml()
{
// Writer implementation goes here
return xmlString;
}
}
ToXml does not require access to any of A's private/protected instance variables, it only uses uses A's public interface. Since that's the case, I can implement ToXml as an extension method:
class A
{
// Ctor, the state, etc.
public static string ToXml(this A instance)
{
// Same deal as above
return xmlString;
}
}
An extension method can only use the outer interface of the class it is extending. So, ignoring extension methods' main uses (extending a locked class, semantic helpers), what's the SO community's opinion on using an extension method for the sole purpose of communicating that a method only uses the outer interface of a class?
I ask this because I personally use extension methods alot--perhaps because I enjoy functional programming--but my coworkers dislike the rationale that I do so because I want to communicate that "this particular method definitely only uses the public interface of the class".
Note: These extension methods will appear as a substitute for their instance equivalents. Because of that, there will not be any of the usual namespace issues that occur with extension methods. This question focuses entirely on the "communicate intent" aspect.

Extension methods are an example of the Open/Closed Principle. That is, it's open for extension, but closed for modification.
The major benefit of using Extension methods is that you do not have to recompile the class that is being extended, and thus force dependent code to be recompiled. Also, by not changing the interface, you don't have to worry about any code depending on it breaking.
If you're serious about SOLID principles, then this is a valid argument. Most developers don't see what the fuss is about.

You have a class, A, that has a specific responsibility: holding a set of immutable data. If you now add a new method, ToXml, your class no longer has a specific responsibility; it has two loosely related responsibilities: holding data and translating that data into another form.
So to preserve the single responsibility principle, such lossely related functionality should exist in another class, eg DataTransformationsOnA. As the method is a pure function (it creates a deterministic output from an input with no side affects, it should be made a static method. Therefore, it follows that it can be made an extension method:
static class DataTransformationsOnA
{
public static string ToXml(this A instance)
{
// generate xmlSTring from instance
return xmlString;
}
// other transformation methods can also be placed in this class
}

Related

A way to extend existing class without creating new class in c#

I have a good complete class which is doing awesome things. I need to allow users to use this class by replacing some methods in it, but inheritance is not allowed, because this class also used in other application classes.
It is like you have a class which creating a table, but you need to allow users to redefine method which is creating table cell to let the user print something custom in this cell. The class, however, has a default way to print the cell content (in case the user do not need to customize it).
Is there any common-used or standartized way to achieve this?
Updated
Having had "the peanut gallery" point out that my approach (at bottom) wouldn't fit the bill, here's another way:
Use delegation. Define certain public properties with type Action or Func. Where these behaviors need to be invoked in your code, compare the properties to null. If null, use your default behavior. If not, invoke the values.
Your calling code MAY set the properties, but doesn't have to.
(first try) Alternative approaches:
You are describing an extension method, or the use of inheritance if that's available.
Extension methods enable you to "add" methods to existing types without creating a new derived type, recompiling, or otherwise modifying the original type. Extension methods are a special kind of static method, but they are called as if they were instance methods on the extended type. For client code written in C# and Visual Basic, there is no apparent difference between calling an extension method and the methods that are actually defined in a type.
https://msdn.microsoft.com/en-us//library/bb383977.aspx
Inheritance, together with encapsulation and polymorphism, is one of the three primary characteristics (or pillars) of object-oriented programming. Inheritance enables you to create new classes that reuse, extend, and modify the behavior that is defined in other classes. The class whose members are inherited is called the base class, and the class that inherits those members is called the derived class. A derived class can have only one direct base class. However, inheritance is transitive. If ClassC is derived from ClassB, and ClassB is derived from ClassA, ClassC inherits the members declared in ClassB and ClassA.
https://msdn.microsoft.com/en-us/library/ms173149.aspx
You can't derive from all .NET types, but you can write extension methods for them.
Assuming you are able to modify the existing class, you should be marking your method as virtual.
This will allow you to provide a default implementation (which is what your existing code will use) and be able to override it with a custom one where needed.
Your base class could be something along the lines of:
public class TableMaker
{
public virtual string MakeTable()
{
//Provide default implementation used by existing code here
}
}
Your inheriting class can then override the virtual method:
public class SpecialTableMaker : TableMaker
{
public override string MakeTable()
{
//Provide specific implementation for cell text here
}
}
You existing code will work just fine and you can use this other class where you need it.
I've finally ended with this solution. It was proposed by #codenoir, however I also have a code which demonstrates a whole mechanism.
public class MyTable
{
public delegate string OnInsertHandler();
public event OnInsertHandler OnInsert;
public string Show()
{
string res = "-BEGIN-";
if (OnInsert != null) {
res += OnInsert ();
} else {
res += "#default insert#";
}
res += "-END-";
return res;
}
}
public class DelegateTester
{
public void OnTest()
{
MyTable mt = new MyTable();
Debug.Log("Default output: " + mt.Show()); // Shows "-BEGIN-#default insert#-END-"
// Changing functionality via delegate
mt.OnInsert += MyCustomInsert;
Debug.Log("Customized output: " + mt.Show()); // Shows "-BEGIN-#custom insert#-END-"
// Remove delegate
mt.OnInsert -= MyCustomInsert;
Debug.Log("Rollbacked output: " + mt.Show()); // Shows "-BEGIN-#default insert#-END-"
}
public string MyCustomInsert()
{
return "#custom insert#";
}
}
In this example I am using MyTable class which is extended using Func delegate. This way I can allow to users of my software module to extend only one method without make any mess with others classes and objects.

Is there any benefit (semantic or other) to using a static method that calls a constructor?

I just updated Visual Studio 2013 and I noticed that in the project template for an MVC application the ApplicationDbContext class now has a static method that just calls the constructor:
public static ApplicationDbContext Create()
{
return new ApplicationDbContext();
}
This seems like clutter to me but I imagine that there is some semantic reason that I should now start using ApplicationDbContext.Create() instead of new ApplicationDbContext(). Are there any benefits to doing so?
Actually. yes.
In your specific case, wrapping it thusly allows you to quickly start bolting on logic, such as making the ApplicationDbContext and singleton or handling an exception in a common way for the whole application. Since a constructor cannot return null, this can be very important to be able to catch an exception and return null.
Tuple.Create is the prime example of generic inference, which does not work with Constructors. This allows you say
Tuple.Create(Item1, Item2.. ItemN);
And the let the compiler infer types, rather than
new Tuple<T1, T2...Tn>(Item1, Item2...ItemN);
Which is more verbose, and takes a bit more work if you want to switch out one of those types.
There is also the case of Anonymous types, which cannot be specified explicitly and thus cannot be used in new statements. I have specifically had occasion where, while searching assemblies for a specific Attribute to link a command structure for, I wanted to make an enumerable (a Queue, in this case) out of an anonymous type during the search to pair class references with their constructor and string arguments, rather than looking these up every time they're needed. Since I can again use Generic inference in a method, I was able to wrap the constructor in an extension method and get the job done.
There are also cases for singleton patterns, wherein you want the "GetInstance" method to usually create a value, or get one if it exists. May not qualify since it does slightly more than wrap a constructor.
In addition, there are plenty of cases where you may want to control implementation procedures, such as forcing them onto other threads, logging them in a database to be undone later, or bolting on a permissions system, all of which can be done by making a constructor wrapper and adding a few more lines of logic, and then privatizing the constructor to avoid it being called directly.
There are also cases where I've created a factory method which delegates to known children in order to provide a different implementation of a returned interface or abstract based on provided parameters. This has the added benefit of being able to hide the implementing classes - the Type class and IEnumerable interface make use of this pattern.
This pattern can be very useful, especially if you use a private constructor, and return an interface type from the Create, rather than the concrete type.
private ApplicationDbContext()
{
}
public static IApplicationDbContext Create()
{
return new ApplicationDbContext();
}
Now consumers of your class are prevented from depending on the concrete implementation - they can only rely on the abstraction.
Wrapping the constructor with static methods (creation methods) allows you to chose a specific name that conveys information. You can also create several methods with the same parameter signature such as CreateX(float f) and CreateY(float f), which you cannot do with constructors.
A situation where this is really useful is e.g. for creating structs that represent physical quantities that may have several units, such as time, length or weight. Here, you could use creation methods to force the programmer to always explicitly specify the unit instead of just passing a unit-less number to a single constructor (which assumes a certain unit, and getting it wrong might have huge consequences).
Example:
public struct Length
{
private const double MetersPerYard = 0.9144;
private double _meters;
private Length(double meters)
{
_meters = meters;
}
public static Length FromMeters(double meters)
{
return new Length(meters);
}
public static Length FromYards(double yards)
{
return new Length(yards*MetersPerYard);
}
public double Meters
{
get { return _meters; }
}
public double Yards
{
get { return _meters / MetersPerYard; }
}
}
Or take a look at TimeSpan and methods like FromMinutes, FromSeconds etc.

Is there any point to making public-facing methods for private methods in a class?

Sorry if the question sounds confusing. What I mean is that if I have a class that has a method that does a bunch of calculations and then returns a value, I can either make that method public (which gives my other classes access), or I can make it private and make a public get method.
Something like this:
public publicmethod{
return privatemethod();
}
private privatemethod{
//do stuff
return value;
}
Is this a futile exercise or does it provide additional program security?
Well, there is no additional security here. However, such a usage can sometimes make sense.
For example, the private and public method may have different semantics.
// base class
public virtual BuyFood()
{
BuyPizza();
BuyCoke();
}
private void BuyPizza()
{
// ...
}
// derived class
public override void BuyFood()
{
BuyChopSuey();
}
private void BuyChopSuey()
{
// ...
}
So your implementation is just calling to a private method -- but what is important, you expose the semantics: your BuyFood operation is just BuyChopSuey(). Your code says: "in this class, buying food is just buying chop suey" in a clear way. You are able to add BuyTsingtaoBeer() into BuyFood() any time without changing the semantics of the both methods.
It is completely redundant. It does not provide anything except another name for the same thing and another indirection for readers to follow. Simply make a single implementation, and make it public. On the same note, getX() { return x; } setX(T newX) { x = newX; } does not encapsulate anything, at best it's future-proofing.
You may end up implementing a particular function required by an interface in a single line, largely delegating to (possibly private) methods which exist for other good reasons. This is different, and more justified (but again, if it's only return someMethod(); you should probably abolish the private implementation and assume the common name). A particular case if when you need two implement two methods which do the same thing (e.g. from separate interfaces).
I think either way is fine, it's more a matter of style assuming the method doesn't change the state of the class. If you have a class that has a bunch of properties and very few methods, it probably makes more sense to define another property. If you have a lot of methods in the class but few properties, then a method is more consistent with your overall class design.
If the method changes a bunch of other class variables than I'd expose it as a public method instead of a property.
I don't think either way, property or method, is necessarily more secure. It depends on what checks you do - is the caller allowed to perform the calculation? Are all variables used in the calculations within acceptable ranges? Etc. All of these checks can be performed whether you are using a property or a method.
Well, actually the question is What code do I want to be able to call this method?
Any code in general, even from other assemblies? Make the method public.
Any code from the same assembly? Make it internal.
Only code from this class? Make it private.
Having a private method directly aliased to a public method only makes the private method callable from the outside, which contradicts its private status.
If the method only does some calculation and doesn't use or change anything in the object, make it a public static method:
public static CalculationMethod(int input) {
//do stuff
return value;
}
That way any code can use the method without having the create an instance of the class:
int result = ClassName.CalculationMethod(42);
Instead of public consider internal, which would give access only to code in the same assembly.

readonly class design when a non-readonly class is already in place

I have a class that upon construction, loads it's info from a database. The info is all modifiable, and then the developer can call Save() on it to make it Save that information back to the database.
I am also creating a class that will load from the database, but won't allow any updates to it. (a read only version.) My question is, should I make a separate class and inherit, or should I just update the existing object to take a readonly parameter in the constructor, or should I make a separate class entirely?
The existing class is already used in many places in the code.
Thanks.
Update:
Firstly, there's a lot of great answers here. It would be hard to accept just one. Thanks everyone.
The main problems it seems are:
Meeting expectations based on class names and inheritance structures.
Preventing unnecessary duplicate code
There seems to be a big difference between Readable and ReadOnly. A Readonly class should probably not be inherited. But a Readable class suggests that it might also gain writeability at some point.
So after much thought, here's what I'm thinking:
public class PersonTestClass
{
public static void Test()
{
ModifiablePerson mp = new ModifiablePerson();
mp.SetName("value");
ReadOnlyPerson rop = new ReadOnlyPerson();
rop.GetName();
//ReadOnlyPerson ropFmp = (ReadOnlyPerson)mp; // not allowed.
ReadOnlyPerson ropFmp = (ReadOnlyPerson)(ReadablePerson)mp;
// above is allowed at compile time (bad), not at runtime (good).
ReadablePerson rp = mp;
}
}
public class ReadablePerson
{
protected string name;
public string GetName()
{
return name;
}
}
public sealed class ReadOnlyPerson : ReadablePerson
{
}
public class ModifiablePerson : ReadablePerson
{
public void SetName(string value)
{
name = value;
}
}
Unfortunately, I don't yet know how to do this with properties (see StriplingWarrior's answer for this done with properties), but I have a feeling it will involve the protected keyword and asymmetric property access modifiers.
Also, fortunately for me, the data that is loaded from the database does not have to be turned into reference objects, rather they are simple types. This means I don't really have to worry about people modifying the members of the ReadOnlyPerson object.
Update 2:
Note, as StriplingWarrior has suggested, downcasting can lead to problems, but this is generally true as casting a Monkey to and Animal back down to a Dog can be bad. However, it seems that even though the casting is allowed at compile time, it is not actually allowed at runtime.
A wrapper class may also do the trick, but I like this better because it avoids the problem of having to deep copy the passed in object / allow the passed in object to be modified thus modifying the wrapper class.
The Liskov Substitution Principle says that you shouldn't make your read-only class inherit from your read-write class, because consuming classes would have to be aware that they can't call the Save method on it without getting an exception.
Making the writable class extend the readable class would make more sense to me, as long as there is nothing on the readable class that indicates its object can never be persisted. For example, I wouldn't call the base class a ReadOnly[Whatever], because if you have a method that takes a ReadOnlyPerson as an argument, that method would be justified in assuming that it would be impossible for anything they do to that object to have any impact on the database, which is not necessarily true if the actual instance is a WriteablePerson.
Update
I was originally assuming that in your read-only class you only wanted to prevent people calling the Save method. Based on what I'm seeing in your answer-response to your question (which should actually be an update on your question, by the way), here's a pattern you might want to follow:
public abstract class ReadablePerson
{
public ReadablePerson(string name)
{
Name = name;
}
public string Name { get; protected set; }
}
public sealed class ReadOnlyPerson : ReadablePerson
{
public ReadOnlyPerson(string name) : base(name)
{
}
}
public sealed class ModifiablePerson : ReadablePerson
{
public ModifiablePerson(string name) : base(name)
{
}
public new string Name {
get {return base.Name;}
set {base.Name = value; }
}
}
This ensures that a truly ReadOnlyPerson cannot simply be cast as a ModifiablePerson and modified. If you're willing to trust that developers won't try to down-cast arguments in this way, though, I prefer the interface-based approach in Steve and Olivier's answers.
Another option would be to make your ReadOnlyPerson just be a wrapper class for a Person object. This would necessitate more boilerplate code, but it comes in handy when you can't change the base class.
One last point, since you enjoyed learning about the Liskov Substitution Principle: By having the Person class be responsible for loading itself out of the database, you are breaking the Single-Responsibility Principle. Ideally, your Person class would have properties to represent the data that comprises a "Person," and there would be a different class (maybe a PersonRepository) that's responsible for producing a Person from the database or saving a Person to the database.
Update 2
Responding to your comments:
While you can technically answer your own question, StackOverflow is largely about getting answers from other people. That's why it won't let you accept your own answer until a certain grace period has passed. You are encouraged to refine your question and respond to comments and answers until someone has come up with an adequate solution to your initial question.
I made the ReadablePerson class abstract because it seemed like you'd only ever want to create a person that is read-only or one that is writeable. Even though both of the child classes could be considered to be a ReadablePerson, what would be the point of creating a new ReadablePerson() when you could just as easily create a new ReadOnlyPerson()? Making the class abstract requires the user to choose one of the two child classes when instantiating them.
A PersonRepository would sort of be like a factory, but the word "repository" indicates that you're actually pulling the person's information from some data source, rather than creating the person out of thin air.
In my mind, the Person class would just be a POCO, with no logic in it: just properties. The repository would be responsible for building the Person object. Rather than saying:
// This is what I think you had in mind originally
var p = new Person(personId);
... and allowing the Person object to go to the database to populate its various properties, you would say:
// This is a better separation of concerns
var p = _personRepository.GetById(personId);
The PersonRepository would then get the appropriate information out of the database and construct the Person with that data.
If you wanted to call a method that has no reason to change the person, you could protect that person from changes by converting it to a Readonly wrapper (following the pattern that the .NET libraries follow with the ReadonlyCollection<T> class). On the other hand, methods that require a writeable object could be given the Person directly:
var person = _personRepository.GetById(personId);
// Prevent GetVoteCount from changing any of the person's information
int currentVoteCount = GetVoteCount(person.AsReadOnly());
// This is allowed to modify the person. If it does, save the changes.
if(UpdatePersonDataFromLdap(person))
{
_personRepository.Save(person);
}
The benefit of using interfaces is that you're not forcing a specific class hierarchy. This will give you better flexibility in the future. For example, let's say that for the moment you write your methods like this:
GetVoteCount(ReadablePerson p);
UpdatePersonDataFromLdap(ReadWritePerson p);
... but then in two years you decide to change to the wrapper implementation. Suddenly ReadOnlyPerson is no longer a ReadablePerson, because it's a wrapper class instead of an extension of a base class. Do you change ReadablePerson to ReadOnlyPerson in all your method signatures?
Or say you decide to simplify things and just consolidate all your classes into a single Person class: now you have to change all your methods to just take Person objects. On the other hand, if you had programmed to interfaces:
GetVoteCount(IReadablePerson p);
UpdatePersonDataFromLdap(IReadWritePerson p);
... then these methods don't care what your object hierarchy looks like, as long as the objects you give them implement the interfaces they ask for. You can change your implementation hierarchy at any time without having to change these methods at all.
Definitely do not make the read-only class inherit from the writable class. Derived classes should extend and modify the capabilities of the base class; they should never take capabilities away.
You may be able to make the writable class inherit from the read-only class, but you need to do it carefully. The key question to ask is, would any consumers of the read-only class rely on the fact that it is read-only? If a consumer is counting on the values never changing, but the writable derived type is passed in and then the values are changed, that consumer could be broken.
I know it is tempting to think that because the structure of the two types (i.e. the data that they contain) is similar or identical, that one should inherit from the other. But that is often not the case. If they are being designed for significantly different use cases, they probably need to be separate classes.
A quick option might be to create an IReadablePerson (etc) interface, which contains only get properties, and does not include Save(). Then you can have your existing class implement that interface, and where you need Read-only access, have the consuming code reference the class through that interface.
In keeping with the pattern, you probably want to have a IReadWritePerson interface, as well, which would contain the setters and Save().
Edit On further thought, IWriteablePerson should probably be IReadWritePerson, since it wouldn't make much sense to have a write-only class.
Example:
public interface IReadablePerson
{
string Name { get; }
}
public interface IReadWritePerson : IReadablePerson
{
new string Name { get; set; }
void Save();
}
public class Person : IReadWritePerson
{
public string Name { get; set; }
public void Save() {}
}
The question is, "how do you want to turn a modifiable class into a read-only class by inheriting from it?"
With inheritance you can extend a class but not restrict it. Doing so by throwing exceptions would violate the Liskov Substitution Principle (LSP).
The other way round, namely deriving a modifiable class from a read-only class would be OK from this point of view; however, how do you want to turn a read-only property into a read-write property? And, moreover, is it desirable to be able to substitute a modifiable object where a read-only object is expected?
However, you can do this with interfaces
interface IReadOnly
{
int MyProperty { get; }
}
interface IModifiable : IReadOnly
{
new int MyProperty { set; }
void Save();
}
This class is assignment compatible to the IReadOnly interface as well. In read-only contexts you can access it through the IReadOnly interface.
class ModifiableClass : IModifiable
{
public int MyProperty { get; set; }
public void Save()
{
...
}
}
UPDATE
I did some further investigations on the subject.
However, there is a caveat to this, I had to add a new keyword in IModifiable and you can only access the getter either directly through the ModifiableClass or through the IReadOnly interface, but not through the IModifiable interface.
I also tried to work with two interfaces IReadOnly and IWriteOnly having only a getter or a setter respectively. You can then declare an interface inheriting from both of them and no new keyword is required in front of the property (as in IModifiable). However when you try to access the property of such an object you get the compiler error Ambiguity between 'IReadOnly.MyProperty' and 'IWriteOnly.MyProperty'.
Obviously, it is not possible to synthesize a property from separate getters and setters, as I expected.
I had the same problem to solve when creating an object for user security permissions, that in certain cases must be mutable to allow high-level users to modify security settings, but normally is read-only to store the currently logged-in user's permissions information without allowing code to modify those permissions on the fly.
The pattern I came up with was to define an interface which the mutable object implements, that has read-only property getters. The mutable implementation of that interface can then be private, allowing code that directly deals with instantiating and hydrating the object to do so, but once the object is returned out of that code (as an instance of the interface) the setters are no longer accessible.
Example:
//this is what "ordinary" code uses for read-only access to user info.
public interface IUser
{
string UserName {get;}
IEnumerable<string> PermissionStrongNames {get;}
...
}
//This class is used for editing user information.
//It does not implement the interface, and so while editable it cannot be
//easily used to "fake" an IUser for authorization
public sealed class EditableUser
{
public string UserName{get;set;}
List<SecurityGroup> Groups {get;set;}
...
}
...
//this class is nested within the class responsible for login authentication,
//which returns instances as IUsers once successfully authenticated
private sealed class AuthUser:IUser
{
private readonly EditableUser user;
public AuthUser(EditableUser mutableUser) { user = mutableUser; }
public string UserName {get{return user.UserName;}}
public IEnumerable<string> PermissionNames
{
//GetPermissions is an extension method that traverses the list of nestable Groups.
get {return user.Groups.GetPermissions().Select(p=>p.StrongName);
}
...
}
A pattern like this allows you to use code you've already created in a read-write fashion, while not allowing Joe Programmer to turn a read-only instance into a mutable one. There are a few more tricks in my actual implementation, mainly dealing with persistence of the editable object (since editing user records is a secured action, an EditableUser cannot be saved with the Repository's "normal" persistence method; it instead requires calling an overload that also takes an IUser which must have sufficient permissions).
One thing you simply must understand; if it is possible for your program to edit the records in any scope, it is possible for that ability to be abused, whether intentionally or otherwise. Regular code reviews of any usage of the mutable or immutable forms of your object will be necessary to make sure other coders aren't doing anything "clever". This pattern also isn't enough to ensure that an application used by the general public is secure; if you can write an IUser implementation, so can an attacker, so you'll need some additional way to verify that your code and not an attacker's produced a particular IUser instance, and that the instance hasn't been tampered with in the interim.

How to *easily* expose methods of underlying objects?

Let's say I have some classes defined as follows:
class Security
{
Boolean AuthenticateUser(String username, String password);
Boolean AddUser(String username, String password);
// many more methods
}
class NetworkedDevice
{
void Stop();
void Start();
// many more methods
}
Then I have another class that contains instances of the above classes. How can I avoid code like the following? I want all the methods of class1 and class2 exposed via this class.
class MyWindowsService
{
Security _security = new Security();
NetworkDevice _netDevice = new NetworkDevice();
Boolean AuthenticateUser(String username, String password)
{
return _security.AuthenticateUser(username, password);
}
// all the rest of "Security" methods implemented here
void StopNetworkDevice()
{
_netDevice.Stop();
}
void StartNetorkDevice()
{
_netDevice.Start();
}
// all the rest of "NetDevice" methods implemented here
}
Edit
I've updated the code to be more real to what I am doing. I am hosting a WCF service within a windows service. The windows service does several things including user authentication and communication to networked devices to name a few. The implementation of my WCF interface calls methods of the "MyWindowsService" class. Exposing the underlying objects as properties is the answer I was looking for. The above class then looks something like:
class MyWindowsService
{
SecurityClass _security = new SecurityClass();
NetworkDevice _netDevice = new NetworkDevice();
Public NetworkDevice NetDevice
{
get { return _netDevice; }
}
Public SecurityClass Security
{
get { return _security; }
}
}
Well, if you're using composition (as you are) there is no "easier way"; you just have to wrap the methods you want to expose. If you want to expose all of the methods of the composed type, then why are you using composition in the first place? You may as well just expose SecurityClass and NetworkDevice via public properties as it is functionally no different than wrapping every method and property/public field.
If it makes sense that they belong in the inheritance chain then SuperClass (oddly named as it would be a sub class...) should inherit from one of those classes. Of course you can't inherit from both in C#, but this design makes me suspect that there may be a better overall approach. It is impossible to tell from your code sample though as you don't tell us what you are actually trying to accomplish with these types.
There is one more way: T4 Templates.
See here: http://msdn.microsoft.com/en-us/data/gg558520
The resulting CS file is generated at build time. This means you could potentially loop your classes using refelection and the result would be what you have now manually created in your "SuperClass".
The cool thing really is that the resulting code is generated on the fly and it is typesafe.
Is it worth the effort? I don't know. It really depends what you are doing and why you are doing it.
We use it for instance to translate Func<T1, T2> into "real" delegates and auto-generate wrapper classes that way.
Unfortunately there is no magic ways to do that as multiple type inheritance is not allowed in .NET.
You cannot do this easily in C#. You could inherit from one of the classes, and create delegates for the other, or you can manually create delegates for both (by delegate, I just mean a method that delegates to the member object, not anything to do with the delegate keyword or class).
If you use a product such a Resharper, there is an option in the Refactor menu that will automate this process, called "Create delegates..."
You can make class1 public and then reference them directly:
SuperClass.class1.MethodFirst();
Of course, static methods will be ok, you will have to construct class1 for instance methods.
in C#, you cannot combine class hierarchies the way you can in Java but you can enforce a contract through iterfaces.
Create an interface for Class1 and Class2 then have SuperClass implement those interfaces. You'll still code up the method calls, but at least you'll have some compile-time checking in place. Perhaps you could also Create a method in SuperClass that dispatches to the appropriate class/method using reflection.
Another approach might be to setup an inheritance chain where SuperClass extends Class2 which extends Class1.
The question is rather old already, and there's one more solution available today: Expose.Fody. This is a plugin for Fody, which is a general-purpose IL-weaving tool. To quote the Expose's description,
Exposes members and optionally implements interface of a field declared in class.
All it takes is just decorating the field with an attribute.

Categories