Cancel ThreadPool .QueueUserWorkItem Task - c#

I need to cancel a background task started using ThreadPool.QueueUserWorkItem(...). I know a BackgroundWorker has constructs especially for this sort of thing, but I believe it's overkill in this case, since no user interface is involved. By cancellation, I simply mean force the completion of the callback method.
What are the pitfalls of adding something like the following to my class?
// Cancellation Property.
private bool _canceled;
public bool CancelTask
{
get { return _canceled; }
set { _canceled = value; }
}
public void DoSomeTask()
{
int iterations = 50;
ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadPoolCallback), iterations);
}
private void ThreadPoolCallback(object state)
{
if (_canceled)
return; // don't even start.
int iterations = (int)state;
for (int i = 0; !_canceled && i < iterations; i++)
{
//
// do work ...
//
// This allows you to cancel in the middle of an iteration...
if (_canceled)
break;
}
}
Is there a better way?

I'd use a method CancelTask() rather than a property. The point is that callers should be able to cancel a task, but no one should be able to un-cancel a task.
Then you need to be sure that the read and the write of _cancelled have the appropriate memory barriers otherwise one thread might not ever observe the change made by the other thread. For this I'd use Thread.VolatileWrite (inside CancelTask) and Thread.VolatileRead (inside your loop)

Related

How to reduce frequency of continuously fired event's event handling

I am learning about tasks and async/await in c#. So please consider the stupidity of my question.
There is an event DummyEvent in a class. An event handler DummyEventHandler is subscribed to this event and it handles a large amount of CPU bound task, which is actually not needed to be used so frequently.
For that reason, if DummyEvent is fired continuously, I want DummyEventHandler to respond either at a reduced frequency, or respond at the end of that continuity.
So, my idea is to extract the large task into a separate Task and made it to delay 500 millisecond before it proceeds. After the delay ends, it will check whether the same Task has been scheduled again (continuous event fire) or not and avoid the large calculation if true.
Here is my naive implementation of that idea:
int ReducedCall = 0;
int TotalCallActual = 0;
protected void DummyEventHandler(object sender, bool arg)
{
TotalCallActual++;
LargeCPUBoundTask(); // there is a green underline here, but I think it's ok, or.. is it?
}
async Task LargeCPUBoundTask()
{
ReducedCall = TotalCallActual;
await Task.Delay(500);
// if this task is called again in this time, TotalCallActual will increase
if (ReducedCall == TotalCallActual)
{
// do all the large tasks
……
ReducedCall = 0;
TotalCallActual = 0;
}
}
But the problem is, I am not getting what I want. The line Task.Delay(500) doesn't actually await , or, if it does wait, there is something wrong because I experience staggering .
Any better idea, or any improvement / correction?
Ask for any additional information.
Thanks
You can leverage Reactive Extensions to do this:
void Main()
{
var generator = new EventGenerator();
var observable = Observable.FromEventPattern<EventHandler<bool>, bool>(
h => generator.MyEvent += h,
h => generator.MyEvent -= h);
observable
.Throttle(TimeSpan.FromSeconds(1))
.Subscribe(s =>
{
Console.WriteLine("doing something");
});
// simulate rapid firing event
for(int i = 0; i <= 100; i++)
generator.RaiseEvent();
// when no longer interested, dispose the subscription
subscription.Dispose();
}
public class EventGenerator
{
public event EventHandler<bool> MyEvent;
public void RaiseEvent()
{
if (MyEvent != null)
{
MyEvent(this, false);
}
}
}
The Throttle operator as coded above will allow a value (event) getting true every second.
So in the above code example the text doing something will only be printed once (after a second) even while the event is fired many times.
Edit
By the way, the reason for the green line is that your Task is not awaited. To fix it alter the code to:
protected async void DummyEventHandler(object sender, bool arg)
{
TotalCallActual++;
await LargeCPUBoundTask(); // there is no more green underline here
}
Unfortunately this will still not solve your issue as an event cannot be awaited so if the event is raised again while LargeCPUBoundTask is still running another call to LargeCPUBoundTask will be made so the work is overlapping if you get what I mean. In other words, that is why your code does not work.
I would use the timer event handler instead of your DummyEventHandler
Just adjust the frequency in milisencond of the timer and that will be it. You can create a timer via code without adding it to a form as a control. I think it is in the common controls lib.
Hope this helps. Good luck.
I spent some more time thinking about this problem and the assumption I made with my first solution was that the event is continuously firing, when it could just be firing part of the time for a while and then stop in the real problem.
In cases like this, the CPU bound task would only occur on the first event firing and then if the events finish firing before that CPU bound task completes, the remaining events would not get handled. But you wouldn't want to handle all of them, just the "last" one (not necessarily the actual last one, just one more to take care of the "cleanup").
So I've updated my answer to include the use case where there are frequent yet intermittent (i.e. burst of events then quiet) the correct thing would occur and a final run of the CPU bound task would happen (but still no more than 1 CPU bound task running at a time).
using System;
using System.Threading;
using System.Threading.Tasks;
class Program
{
static void Main(string[] args)
{
Sender s = new Sender();
using (Listener l = new Listener(s))
{
s.BeginDemonstration();
}
}
}
class Sender
{
const int ATTEMPTED_CALLS = 1000000;
internal EventHandler frequencyReducedHandler;
internal int actualCalls = 0;
internal int ignoredCalls = 0;
Task[] tasks = new Task[ATTEMPTED_CALLS];
internal void BeginDemonstration()
{
int attemptedCalls;
for (attemptedCalls = 0; attemptedCalls < ATTEMPTED_CALLS; attemptedCalls++)
{
tasks[attemptedCalls] = Task.Run(() => frequencyReducedHandler.Invoke(this, EventArgs.Empty));
//frequencyReducedHandler?.BeginInvoke(this, EventArgs.Empty, null, null);
}
if (tasks[0] != null)
{
Task.WaitAll(tasks, Timeout.Infinite);
}
Console.WriteLine($"Attempted: {attemptedCalls}\tActual: {actualCalls}\tIgnored: {ignoredCalls}");
Console.ReadKey();
}
}
class Listener : IDisposable
{
enum State
{
Waiting,
Running,
Queued
}
private readonly AutoResetEvent m_SingleEntry = new AutoResetEvent(true);
private readonly Sender m_Sender;
private int m_CurrentState = (int)State.Waiting;
internal Listener(Sender sender)
{
m_Sender = sender;
m_Sender.frequencyReducedHandler += Handler;
}
private async void Handler(object sender, EventArgs args)
{
int state = Interlocked.Increment(ref m_CurrentState);
try
{
if (state <= (int)State.Queued) // Previous state was WAITING or RUNNING
{
// Ensure only one run at a time
m_SingleEntry.WaitOne();
try
{
// Only one thread at a time here so
// no need for Interlocked.Increment
m_Sender.actualCalls++;
// Execute CPU intensive task
await Task.Delay(500);
}
finally
{
// Allow a waiting thread to proceed
m_SingleEntry.Set();
}
}
else
{
Interlocked.Increment(ref m_Sender.ignoredCalls);
}
}
finally
{
Interlocked.Decrement(ref m_CurrentState);
}
}
public void Dispose()
{
m_SingleEntry?.Dispose();
}
}

Sequentially call asynchronous methods in a loop

I'm working with some code, that has an approach I've never dealt with before, and am hoping someone might be able to provide a spark of knowledge:
Effectively the class is setup like this:
void Loop()
{
for (int i = 0; i < 100; i++)
{
//need to block calls to this until UpdateComplete is hit
Update(i);
}
}
void Update(int i)
{
//asynchronous - returns immediately
}
void UpdateComplete()//called from another thread
{
//unblock further calls to Update();
}
The big caveat is that it's not possible to call Update() before UpdateComplete() has 'returned' or been calledback.
Ignoring any UI side effects, is there a neat solution to this problem?
I've currently got two strategies - one hacky and one I feel is over-complicated:
1 - Hacky: Set a global class boolean IsBlocked, that Update() sets to true and UpdateComplete() sets to false, and inside my for loop (in Loop()), just put in a while (IsBlocked){}.
2 - Over-complicated: Get rid of the loop altogether. Call Update(0); from inside Loop() instead, and have UpdateComplete() call Update(1);, Update(2); and so on.
I guess I'm hoping for something like a Thread.Pause that can then be remotely 'resumed' by another thread (the separate one that calls UpdateComplete()
Any ideas appreciated!
Async/await can also be used here
TaskCompletionSource<object> tcs = null;
async void Loop()
{
for (int i = 0; i < 100; i++)
{
tcs = new TaskCompletionSource<object>();
Update(i);
await tcs.Task;
}
}
void Update(int i)
{
//asynchronous - returns immediately
}
void UpdateComplete()//called from another thread
{
tcs.TrySetResult(null);
//unblock further calls to Update();
}
Post the updates into the thread pool using QueueUserWorkItem
Have a counter of the number of posted items.
Have main thread wait on AutoResetEvent
When Each update finishes decrement the count under lock.
When the count hits 0 Set the AutoResetEvent to awake the main thread
I didn't post any code cos I assumed you can google how to do each bit, if not comment and I can add code

Using "thread" in c#

I read somewhere that using Thread.Abort() method is one of the worst way to kill a thread because it does not free the memory assigned to this thread. (I don't know if that's true, correct me if it's wrong and Abort() method is the one I should use.) Therefore the best way to call killing a thread would be creating a variable that defiles if thread can run, ie:
bool threadResult;
t = new System.Threading.Thread(() => doSomeStuff());
t.Start();
abortThread();
//***************************************************
bool threadCanRun = true;
void doSomeStuff()
{
while(threadCanRun)
// do work
}
void abortThread()
{
threadCanRun = false;
}
But... what if the thread cannot be stopped like that? Ie:
void doSomeStuff()
{
WebClient wc = new Webclient();
string url = "www.mywebsite.com";
string content = wc.DownloadString(url);
}
Let's say that I want to spend less than 100ms on doing this thread^. If it won't end until the time passes (I'm using the following construction: if (t.Join(100)) ) I should abort it somehow to keep my program running. So, what's the proper way to end up the working thread?
Sure, in this particular case I can use try-catch to handle most of exceptions, but this is just an example. Also, if my connection is really slow and the webpage is really big it would take more that 100ms and no exception will be thrown.
PS. I'm almost sure that it does not matter, but I'm working on WPF app with some Forms references. The target FW is NET 4.0.
If you want your thread to be able to end in 100ms, you should design thread to check for running condition (threadCanRun) at least once per 100ms. Your question is too general so I cannot give you more precise answer.
Also, it is good programming practice to join with your thread immediately after threadCanRun = false; although somebody could disagree with that.
In my opinion using the BackgroundWorker class is safer but if you want to use a Thread then you have to implement a flag cancellation pattern.
If you are using .Net Framework 4.0 the you can use the CancellationTokenSource class like this:
public partial class Form1 : Form
{
CancellationTokenSource cancelSource = new CancellationTokenSource();
int threadCounter = 0;
int mainCounter = 0;
public void doSomeStuff(CancellationToken cancelToken)
{
cancelToken.ThrowIfCancellationRequested();
for (int i = 0; i < 100; i++)
{
threadCounter = i;
// If you want to cancel the thread just call the Cancel method of the cancelSource.
if (i == 88)
{
cancelSource.Cancel();
}
if (cancelSource.IsCancellationRequested)
{
// Do some Thread clean up here
}
}
}
private void button1_Click(object sender, EventArgs e)
{
new Thread(() => doSomeStuff(cancelSource.Token)).Start();
// Do something else while the thread has not been cancelled
while (!cancelSource.IsCancellationRequested)
{
mainCounter++;
}
textBox1.Text = "The thread was cancelled when 'mainCounter' was at: " + mainCounter.ToString();
}
}
Also you can use the CancellationToken which has the IsCancellationRequested property and ThrowIfCancellationRequested method.

Exit a loop if another thread enter in the

I've a multi-threading issue.
I've a method that is called to make refresh on several items.
In this method, I iterate on a list of items and refresh one of it's property.
The list has a lot of elements and we have to do some math to compute it's property.
The current code of this operation look like this:
public void AddItemsWithLayoutRefresh(IEnumerable<MyItem> items){
_control.Invoke(()=>{
AddItems(items);
for(int i =0;i<_guiItems.Count;i++){
//The goal is to have a condition here to "break" the loop and let the next call to RefreshLayout proceed
_guiItems[i].Propriety = ComputePropriety(_guiItems[i]);
}
});
}
The problem is that I may have 4 call, which are currently just blocking on the Invoke.
I've to finish the "AddItems" methods, but concerning everything that is in the "for" loop, I can abort this without any issue if I know that it will be executed just after.
But how to do this in a thread-safe way?
If I put a private bool _isNewRefreshHere;, set to true before entering the Invoke, then checking in the Invoke, I've no warranty that there is not already two call that have reach the Invoke BEFORE I check it in the for loop.
So how can I break when being in my loop when a new call is made to my method?
Solution
Based on Andrej Mohar's answer, I did the following:
private long m_refreshQueryCount;
public void AddItemsWithLayoutRefresh(IEnumerable<MyItem> items){
Interlocked.Increment(ref m_refreshQueryCount);
_control.Invoke(()=>{
Interlocked.Decrement(ref m_refreshQueryCount);
AddItems(items);
for(int i =0;i<_guiItems.Count;i++){
if (Interlocked.Read(ref m_refreshQueryCount) > 0)
{
break;
}
_guiItems[i].Propriety = ComputePropriety(_guiItems[i]);
}
});
}
Which seems to work very nicely
If I were you, I'd try to make a thread-safe waiting counter. You can use Interlocked methods like Increment and Decrement. What these basically do is they increment the value as an atomic operation, which is considered to be thread-safe. So you increase the variable before the Invoke call. This will allow you to know how many threads are in the waiting queue. You decrement the variable after the for loop finishes and before the ending of the Invoke block. You can then check inside the for statement for the number of waiting threads and break the for if the number is greater than 1. This way you should know exactly how many threads are in the execution chain.
I would do it in the following way:
private readonly object _refresherLock = new object();
private bool _isNewRefreshHere = false;
private AutoResetEvent _refresher = new AutoResetEvent(true);
public void AddItemsWithLayoutRefresh(IEnumerable<MyItem> items)
{
lock (_refresherLock)
{
if (_isNewRefreshHere)
{
return;
}
_isNewRefreshHere = true;
}
_refresher.WaitOne();
_isNewRefreshHere = false;
_control.Invoke(() =>
{
AddItems(items);
for (int i = 0; i < _guiItems.Count && !_isNewRefreshHere; i++)
{
_guiItems[i].Propriety = ComputePropriety(_guiItems[i]);
}
_refresher.Set();
});
}
That is:
You can always cancel the current updation with a new one.
You cannot queue up more than one updation at a time.
You are guaranteed to have no cross-threading conflicts.
You should test that code since I did not. :)

How to ensure run of a thread exactly after end of running of a specifc number of other threads?

I have a class in C# like this:
public MyClass
{
public void Start() { ... }
public void Method_01() { ... }
public void Method_02() { ... }
public void Method_03() { ... }
}
When I call the "Start()" method, an external class start to work and will create many parallel threads that those parallel threads call the "Method_01()" and "Method_02()" form above class. after end of working of the external class, the "Method_03()" will be run in another parallel thread.
Threads of "Method_01()" or "Method_02()" are created before creation of thread of Method_03(), but there is no guaranty to end before start of thread of "Method_03()". I mean the "Method_01()" or the "Method_02()" will lost their CPU turn and the "Method_03" will get the CPU turn and will end completely.
In the "Start()" method I know the total number of threads that are supposed to create and run "Method_01" and "Method_02()". The question is that I'm searching for a way using semaphore or mutex to ensure that the first statement of "Method_03()" will be run exactly after end of all threads which are running "Method_01()" or "Method_02()".
Three options that come to mind are:
Keep an array of Thread instances and call Join on all of them from Method_03.
Use a single CountdownEvent instance and call Wait from Method_03.
Allocate one ManualResetEvent for each Method_01 or Method_02 call and call WaitHandle.WaitAll on all of them from Method_03 (this is not very scalable).
I prefer to use a CountdownEvent because it is a lot more versatile and is still super scalable.
public class MyClass
{
private CountdownEvent m_Finished = new CountdownEvent(0);
public void Start()
{
m_Finished.AddCount(); // Increment to indicate that this thread is active.
for (int i = 0; i < NUMBER_OF_THREADS; i++)
{
m_Finished.AddCount(); // Increment to indicate another active thread.
new Thread(Method_01).Start();
}
for (int i = 0; i < NUMBER_OF_THREADS; i++)
{
m_Finished.AddCount(); // Increment to indicate another active thread.
new Thread(Method_02).Start();
}
new Thread(Method_03).Start();
m_Finished.Signal(); // Signal to indicate that this thread is done.
}
private void Method_01()
{
try
{
// Add your logic here.
}
finally
{
m_Finished.Signal(); // Signal to indicate that this thread is done.
}
}
private void Method_02()
{
try
{
// Add your logic here.
}
finally
{
m_Finished.Signal(); // Signal to indicate that this thread is done.
}
}
private void Method_03()
{
m_Finished.Wait(); // Wait for all signals.
// Add your logic here.
}
}
This appears to be a perfect job for Tasks. Below I assume that Method01 and Method02 are allowed to run concurrently with no specific order of invocation or finishing (with no guarantee, just typed in out of memory without testing):
int cTaskNumber01 = 3, cTaskNumber02 = 5;
Task tMaster = new Task(() => {
for (int tI = 0; tI < cTaskNumber01; ++tI)
new Task(Method01, TaskCreationOptions.AttachedToParent).Start();
for (int tI = 0; tI < cTaskNumber02; ++tI)
new Task(Method02, TaskCreationOptions.AttachedToParent).Start();
});
// after master and its children are finished, Method03 is invoked
tMaster.ContinueWith(Method03);
// let it go...
tMaster.Start();
What it sounds like you need to do is to create a ManualResetEvent (initialized to unset) or some other WatHandle for each of Method_01 and Method_02, and then have Method_03's thread use WaitHandle.WaitAll on the set of handles.
Alternatively, if you can reference the Thread variables used to run Method_01 and Method_02, you could have Method_03's thread use Thread.Join to wait on both. This assumes however that those threads are actually terminated when they complete execution of Method_01 and Method_02- if they are not, you need to resort to the first solution I mention.
Why not use a static variable static volatile int threadRuns, which is initialized with the number threads Method_01 and Method_02 will be run.
Then you modify each of those two methods to decrement threadRuns just before exit:
...
lock(typeof(MyClass)) {
--threadRuns;
}
...
Then in the beginning of Method_03 you wait until threadRuns is 0 and then proceed:
while(threadRuns != 0)
Thread.Sleep(10);
Did I understand the quesiton correctly?
There is actually an alternative in the Barrier class that is new in .Net 4.0. This simplifies the how you can do the signalling across multiple threads.
You could do something like the following code, but this is mostly useful when synchronizing different processing threads.
public class Synchro
{
private Barrier _barrier;
public void Start(int numThreads)
{
_barrier = new Barrier((numThreads * 2)+1);
for (int i = 0; i < numThreads; i++)
{
new Thread(Method1).Start();
new Thread(Method2).Start();
}
new Thread(Method3).Start();
}
public void Method1()
{
//Do some work
_barrier.SignalAndWait();
}
public void Method2()
{
//Do some other work.
_barrier.SignalAndWait();
}
public void Method3()
{
_barrier.SignalAndWait();
//Do some other cleanup work.
}
}
I would also like to suggest that since your problem statement was quite abstract, that often actual problems that are solved using countdownevent are now better solved using the new Parallel or PLINQ capabilities. If you were actually processing a collection or something in your code, you might have something like the following.
public class Synchro
{
public void Start(List<someClass> collection)
{
new Thread(()=>Method3(collection));
}
public void Method1(someClass)
{
//Do some work.
}
public void Method2(someClass)
{
//Do some other work.
}
public void Method3(List<someClass> collection)
{
//Do your work on each item in Parrallel threads.
Parallel.ForEach(collection, x => { Method1(x); Method2(x); });
//Do some work on the total collection like sorting or whatever.
}
}

Categories