I have a list and I am trying to find a particular element and then I want to edit that element.
storage.First(item => item.dirty == true).dirty = false;
However this doesn't appear to work since I am guessing First is creating another list and populating it. Is there a function to do what I am I am trying to do?
Here is the data type I am using:
class BaseRegister {
public bool dirty {set;get;}
}
List <BaseRegister> storage = new List <BaseRegister> ();
This will work, but only if your type (that contains .dirty) is a class.
If this is a struct, you will not be able to mutate the struct this way. With a struct, you'd need to replace the entire struct in the collection, which is very difficult using the LINQ extensions, as they are designed for queries, not edits.
If the type (of storage) implements IList<T>, such as List<YourClass>, you could use:
int index = storage.FindIndex(item => item.dirty);
var item = storage[index];
item.dirty = false;
storage[index] = item;
Note that it's messy, but mostly because it has to completely reset the value of the struct in the list.
This, btw, is partly why mutable structs are a bad idea. If you find that this is a pattern you think you need with your type, you may want to consider a class. In general, any item that's going to have a "dirty" flag is likely mutable, and as such, should be a class and not a struct.
There must be something else wrong with your program which is confusing you. For the avoidance of doubt, here is a complete program using your data types. The output is:
---Before---
True
False
True
---After---
False
False
True
The code is:
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Text;
namespace ConsoleApplication40 {
internal class Program {
private static List<BaseRegister> storage=new List<BaseRegister>();
private static void Main(string[] args) {
storage.Add(new BaseRegister {dirty=true});
storage.Add(new BaseRegister {dirty=false});
storage.Add(new BaseRegister {dirty=true});
Dump("---Before---");
storage.First(item => item.dirty==true).dirty=false;
Dump("---After---");
}
private static void Dump(string title) {
Debug.WriteLine(title);
foreach(var br in storage) {
Debug.WriteLine(br.dirty);
}
}
private class BaseRegister {
public bool dirty { set; get; }
}
}
}
If item is a reference type, this should change the dirty property/field.
If item is a value type, First returns a copy, and this should not even compile.
First is not creating a list, it returns the first item in the sequence that fulfills the condition.
Related
What is the elegant solution to access nested property values?
Example:
In some cases it could look as follows:
public void someFunction()
{
this.Device.ResponseHandler.Process(this.Device.TcpClient.responseMessage, this.Device.TcpClient.responseType)
}
My solution was to copy objects, just to shorten the names afterwards.
public void someFuntion()
{
// Just for shorten the access name afterwards
ResponseHandler responseHandler = this.Device.RepsonseHandler;
TcpClient tcpClient = this.Device.TcpClient;
responseHandler.Process(tcpClient.responseMessage, tcpClient.responseType);
}
It is mostly opinion based, but there are generally two ways:
The one you are using.
List every argument in new line:
public void someFunction()
{
this.Device.ResponseHandler.Process(
this.Device.TcpClient.responseMessage,
this.Device.TcpClient.responseType
);
}
IMO both are equally readable and in second approach you don't need another variables :)
You could add a usings at the top if you don't like long names:
using ResponseHandler = this.Device.ResponseHandler;
using TcpClient = this.Device.TcpClient;
public void someFunction()
{
ResponseHandler.Process(TcpClient.responseMessage, TcpClient.responseType);
}
In general terms, a program I'm making involves storing a small number of entries (probably less than 30 at any given time) which can be categorized. I want to allow these entries to be seen but not altered from outside the class using them. I made a class called Entry which could be modified and another called ReadOnlyEntry which is a wrapper for an Entry object. The easiest way to organize these Entry objects it seems is to create a List<List<Entry>>, where each List<Entry> is a category. But then exposing that data in a readonly way became messy and complicated. I realized I would have to have one object of each of the following types:
List<List<Entry>> data;
List<List<ReadOnlyEntry>> // Where each ReadOnlyEntry is a wrapper for the Entry in the same list and at the same index as its Entry object.
List<IReadOnlyCollection<ReadOnlyEntry>> // Where each IReadOnlyCollection is a wrapper for the List<ReadOnlyEntry> at the same index in data.
IReadOnlyCollection<IReadOnlyCollection<ReadOnlyList>> readOnlyList // Which is a wrapper for the first item I listed.
The last item in the list would be exposed as public. The first lets me change entries, the second lets me add or delete entries, and the third lets me add or delete categories. I would have to keep these wrappers accurate whenever the data changes. This seems convoluted to me, so I'm wondering if there's a blatantly better way to handle this.
Edit 1:
To clarify, I know how to use List.asReadOnly(), and the stuff I proposed doing above will solve my problem. I'm just interested in hearing a better solution. Let me give you some code.
class Database
{
// Everything I described above takes place here.
// The data will be readable by this property:
public IReadOnlyCollection<IReadOnlyCollection<ReadOnlyList>> Data
{
get
{
return readOnlyList;
}
}
// These methods will be used to modify the data.
public void AddEntry(stuff);
public void DeleteEntry(index);
public void MoveEntry(to another category);
public void AddCategory(stuff);
public void DeleteCategory(index);
}
You can use List<T>.AsReadOnly() to return ReadOnlyCollection<T>.
Also, you're torturing the List<T> class storing the data the way you are. Build your own hierarchy of classes which store your individual lists.
.NET collections should support covariance, but they don't support it themselves (instead some interfaces support covariance https://msdn.microsoft.com/ru-ru/library/dd233059.aspx). Covariance means List<Conctrete> behaves like subclass of List<Base> if Concrete is subclass of Base. You can use interfaces covariation or just use casting like this:
using System.Collections.Generic;
namespace MyApp
{
interface IEntry
{
}
class Entry : IEntry
{
}
class Program
{
private List<List<Entry>> _matrix = null;
public List<List<IEntry>> MatrixWithROElements
{
get
{
return _matrix.ConvertAll(row => row.ConvertAll(item => item as IEntry));
}
}
public IReadOnlyList<List<IEntry>> MatrixWithRONumberOfRows
{
get
{
return _matrix.ConvertAll(row => row.ConvertAll(item => item as IEntry));
}
}
public List<IReadOnlyList<IEntry>> MatrixWithRONumberOfColumns
{
get
{
return _matrix.ConvertAll(row => row.ConvertAll(item => item as IEntry) as IReadOnlyList<IEntry>);
}
}
public IReadOnlyList<IReadOnlyList<IEntry>> MatrixWithRONumberOfRowsAndColumns
{
get
{
return _matrix.ConvertAll(row => row.ConvertAll(item => item as IEntry));
}
}
public void Main(string[] args)
{
}
}
}
Thanks to Matthew Watson for pointing on errors in my previous answer version.
You could make an interface for Entry which contains only getters; you would expose elements via this interface to provide read-only access:
public interface IEntry
{
int Value { get; }
}
The writable implementation would be simply:
public sealed class Entry : IEntry
{
public int Value { get; set; }
}
Now you can take advantage of the fact that you can return a List<List<Entry>> as a IReadOnlyCollection<IReadOnlyCollection<IEntry>> without having to do any extra work:
public sealed class Database
{
private readonly List<List<Entry>> _list = new List<List<Entry>>();
public Database()
{
// Create your list of lists.
List<Entry> innerList = new List<Entry>
{
new Entry {Value = 1},
new Entry {Value = 2}
};
_list.Add(innerList);
}
public IReadOnlyCollection<IReadOnlyCollection<IEntry>> Data => _list;
}
Note how simple the implementation of the Data property is.
If you need to add new properties to IEntry you would also have to add them to Entry, but you wouldn't need to change the Database class.
If you're using C#5 or earlier, Data would look like this:
public IReadOnlyCollection<IReadOnlyCollection<IEntry>> Data
{
get { return _list; }
}
I'm having some problems with encapsulation in C#. There are two specific scenarios that are causing me problems and I believe the issue is related.
Scenario #1
I have a class definition that looks something like this
class MyClass
{
private int _someField;
private OtherClass _otherClass;
public int someField
{
get { return _someField; }
set { _someField = value; }
}
public OtherClass otherClass
{
get { return _otherClass; }
set { _otherClass = value; }
}
}
If I then try and do something like this in a new piece of code
MyClass theClass = new MyClass();
theClass.otherClass.XYZ += 1;
I get told Cannot Modify the return value of 'MyClass.otherClass' because it is not a variable.
Scenario 2#
public partial class trksegType
{
private wptType[] trkptField;
private extensionsType extensionsField;
/// <remarks/>
[System.Xml.Serialization.XmlElementAttribute("trkpt")]
public wptType[] trkpt
{
get
{
return this.trkptField;
}
set
{
this.trkptField = value;
}
}
}
If I now try and foreach through the wptType array:
foreach (wptType way in trk.trkseg[i])
I get told - foreach statement cannot operate on variables of type 'trksegType' because 'trksegType' does not contain a public definition for 'GetEnumerator'
Even though an array should implicitly allow enumeration.
Can anyone explain what's going on and what I can do to get around this problem, whilst still maintaining best practices.
For scenario 1, I suspect that OtherClass has been defined as a struct. When a struct is accessed from a property accessor a new copy of the struct is created and returned (structs are value types). Changing a property on this new copy will have no effect on the original struct.
The C# compiler detects this and raises that slightly obscure error.
Scenario 1:
The reason is very likely because your OtherClass is a struct and not a class. Value sematics are a bit tricky and mutable value types are considered harmful. So you either want to make OtherClass a class and not a struct or you do something along those lines:
struct OtherClass
{
public int XYZ { get; }
public OtherClass(int xyz)
{
XYZ = xyz;
}
public OtherClass AddToXYZ(int count)
{
return new OtherClass(this.XYZ + count);
}
}
Then you can do
myClass.otherClass = myClass.otherClass.AddToXYZ(1);
Scenario 2:
You either need to implement IEnumerable on trksegType to enumerate over trkpt or actually access trkpt for the enumeration.
In General:
You have violated encapsulation in both scenarios by accessing objects through other objects. Have a look here: http://www.csharp-station.com/Tutorials/lesson19.aspx
You also should consider using better (more explicit) names for your objects. mttng vwls ds nt ncrs rdblty.
(You really shouldn’t post two questions in one.)
Scenario 1
Cannot Modify the return value of 'MyClass.otherClass' because it is not a variable.
This error happens because OtherClass is not a class, but a struct — also called a value type. This means that accessing MyClass.otherClass copies the value instead of returning a reference. You would be modifying this copy, which would be pointless. The compiler catches this because it is always a bug and never useful.
Scenario 2
foreach (wptType way in trk.trkseg[i])
You haven’t told us what trkseg[i] is, but if it is of the type trksegType, then the answer is: because trksegType doesn’t allow any enumeration. It does not implement IEnumerable, IEnumerable<T>, nor does it have a GetEnumerator method of its own.
Perhaps you meant to write:
foreach (wptType way in trk.trkseg[i].trkpt)
because trkpt is an array of wptType. (You might have found this error sooner if you used more meaningful variable names instead of weird combinations of letters that make no sense.)
I can't see anything wrong with your first example - so double check that the sample that errors really does and correct if not.
In the second instance, it looks like you're trying to iterate on an instance of trksegType, rather than the contained trkpt property. Try foreach (wptType way in trk.trkseg[i].trkpt) instead.
Before posting my question, I would like to tell you that I have no prior experience in .Net technologies and have recently started to learn C# (and WPF). My company is looking to move onto .Net technologies and I am the only one in my team learning it, so have noone apart from you guys to discuss or ask something. So if my questions are too stupid or basic at best, please bear with me.
I was trying to create a generic linked list class to allow creation of linked lists of different types. I wrote the following code and would like to have your advise on whether I have written this code properly or not. Any suggestions to improve the code in any way is most welcome.
Main program
class Program
{
static void Main(string[] args)
{
GenLinkedList<string> list = new GenLinkedList<string>("abc");
list.AddtoList("def");
int i = 0;
string[] arr = new string[10];
list.LinkedList.CopyTo(arr,0);
for (i = 0; i < list.LinkedList.Count; i++)
{
Console.WriteLine(arr[i]);
}
GenLinkedList<int> listInt = new GenLinkedList<int>(1);
listInt.AddtoList(2);
i = 0;
int[] arrInt = new int[10];
listInt.LinkedList.CopyTo(arrInt, 0);
for (i = 0; i < listInt.LinkedList.Count; i++)
{
Console.WriteLine(arrInt[i]);
}
}
}
Class GenLinkedList
public class GenLinkedList<T>
{
private LinkedList<T> _linkedlist;
public GenLinkedList(T a)
{
_linkedlist = new LinkedList<T>();
_linkedlist.AddLast(a);
}
public LinkedList<T> LinkedList
{
get
{
return _linkedlist;
}
}
public void AddtoList(T a)
{
LinkedList.AddLast(a);
}
}
Why not use System.Collections.Generic.LinkedList<T>? You're using it internally in your GenLinkedList<T> already and it's already Generic for you.
It's the Framework Provided Generic Doubly Linked List implementation. Read up on it at:
MSDN - LinkedList(T) Class
If you're creating a Generic Linked List as an exercise, you shouldn't base your implementation of of an existing Generic Linked List. You're really not going to be learning anything by wrapping something that already does exactly what you need to do.
1
A generic linked list implementation already exists in the .NET framework: LinkedList<T>. But you already know that; your code wraps it.
2
OK, so you know that. Why would you wrap it, then? The only functionality you appear to have implemented is AddtoList, which doesn't do anything the LinkedList<T> doesn't already do itself (after all, this is only a thin wrapper around LinkedList<T>.AddLast). What this means is that your GenLinkedList<T> class really doesn't offer the functionality of a linked list; it's basically an add-only collection (which could just as easily have been implemented with a List<T>, or a Stack<T>, or a Queue<T> -- anything, really).
3
Assuming you do have a good reason to wrap a LinkedList<T> (e.g., you're planning to add more functionality down the line that would actually leverage the behavior of a LinkedList<T> and/or -- here's a key ingredient -- you want to restrict the way calling code is able to interact with the list (e.g., no removals)), you really shouldn't expose your LinkedList<T> member at all. The purpose of a wrapper is just that: to wrap. You take an existing class and basically give it a new kind of interface. By exposing the underlying object directly, you cripple your wrapper. Any additional restrictions/validation/logic you have in your wrapper can be bypassed.
So, for example, if you want to be able to copy your list to an array, instead of doing this:
list.LinkedList.CopyTo(arr,0);
You would implement a CopyTo method within your GenLinkedList<T> class (which could simply call _linkedlist.CopyTo) and use that.
But I really think the first question you should be asking yourself is what you want to accomplish by wrapping LinkedList<T> in the first place.
The obvious question is why you don't just use LinkedList<T> directly, although it looks like you're trying to emulate a singly-linked list.
In this case, you should avoid exposing the underlying LinkedList<T> instance, since any client could manipulate it directly. I would also implement IEnumerable<T> which will make your list usable by linq.
I got this from http://msdn.microsoft.com/en-us/library/0x6a29h6.aspx
Works fine with me.
namespace GenLinkedList
{
class Program
{
static void Main(string[] args)
{
GenericList<object> list = new GenericList<object>();
// Add items to list.
list.AddHead("some string here");
list.AddHead(DateTime.Today.ToLongDateString());
list.AddHead(13);
list.AddHead(13.005);
for (int x = 0; x < 10; x++)
{
list.AddHead(x);
}
// Enumerate list.
foreach (object i in list)
{
Console.WriteLine(i + " " + i.GetType());
}
Console.WriteLine("\nDone");
}
}
}
namespace GenLinkedList
{
// type parameter T in angle brackets
class GenericList<T>
{
// The nested class is also generic on T.
public class Node
{
private Node next;
// T as private member data type.
private T data;
// T used in non-generic constructor.
public Node(T t)
{
next = null;
data = t;
}
public Node Next
{
get { return next; }
set { next = value; }
}
public T Data
{
get { return data; }
set { data = value; }
}
}
private Node head;
// constructor
public GenericList()
{
head = null;
}
// T as method parameter type
public void AddHead(T t)
{
Node n = new Node(t);
n.Next = head;
head = n;
}
public IEnumerator<T> GetEnumerator()
{
Node current = head;
while (current != null)
{
yield return current.Data;
current = current.Next;
}
}
}
}
So I've got a whole bunch of options, every different page/tab can have their own local options. We'll have maybe 10-15 pages tabs open tops. I need to implement a way to show the global defaults, weather the all the tabs have consistent values. I'm working on the model/viewmodel portion of a WPF app.
I'd love to find a way that is more elegant since I'm having to cut and past roughly the same code 20+ times and just change property names. Maybe this is the problem Dynamics solve, but right now this feels both wrong and painful.
Here is an example of my current solution:
public class Foo
{
private bool fooVar1;
private bool fooVar2;
//lots of these
private decimal fooVar23;
public Foo()
{
}
public bool FooVar1
{
get;
set;
}
//you get the picture...
}
public class FooMonitor
{
private Foo defaultFoo;
private List<Foo> allFoos;
public FooMonitor(Foo DefaultFoo)
{
defaultFoo = DefaultFoo;
}
public void AddFoo(Foo newFoo)
{
allFoos.Add(newFoo);
}
public void AddFoo(Foo oldFoo)
{
allFoos.Remove(oldFoo);
}
public bool IsFooVar1Consistent
{
get
{
Foo[] tempFoos = allFoos.ToArray();
foreach (Foo tempFoo in tempFoos)
{
if (tempFoo.FooVar1 != defaultFoo.FooVar1) return false;
}
return true;
}
}
}
Or am I approaching this problem entirely incorrectly.
As I'm writing this question (After about 2000 lines of code) I'm thinking of how I read that WPF itself implements Dictionary look ups that crawl up to the parent to see if a Property is present and what the value should be.
Well, for a start you are defining both backing fields which will never be used and automatic properties. This is enough for a simple bool property:
public bool FooVar1 { get; set; }
No need for the private field. This greatly reduces the number of lines in your example.
I'd love to find a way that is more
elegant since I'm having to cut and
past roughly the same code 20+ times
and just change property names.
Code generators exist for exactly this purpose. But if you don't want to go that route, you can shorten your code to this:
return allFoos.All(foo => foo.FooVar1 == defaultFoo.FooVar1);
I'm not quite sure what the question is, but if you're looking for some way to unify the IsFoorVarXConsistent code, you could do it using reflection or by passing in an expression:
public bool IsConsistent(Func<Foo, bool> property)
{
foreach (Foo tempFoo in allFoos)
{
if (property(tempFoo) != property(defaultFoo))
return false;
}
return true;
}
Called like this:
bool is1Consistent = IsConsistent(f => f.FooVar1);
As shown this will only work for boolean properties. To extend it to other types, we can make it generic in the property type. However, in this case we cannot use != to test for inequality because not all types define a != operator. Instead we can use the .Equals method and the ! operator:
public bool IsConsistent<T>(Func<Foo, T> property)
where T : struct
{
foreach (Foo tempFoo in allFoos)
{
if (!property(tempFoo).Equals(property(defaultFoo)))
return false;
}
return true;
}
The where T : struct clause restricts this to value types like int, bool and decimal. In particular it will not work on strings. Removing the where constraint allows it to work on strings and other reference types, but creates the possibility of property(tempFoo) being null, which would cause a NullReferenceException when we called .Equals on it. So if you remove the value types constraint then you will need to add error handling for this scenario.