How check whether class members are not null or empty - c#

I have a class with only string members like this :
public class MyClass
{
public string MyProp1 { get; set; }
public string MyProp2 { get; set; }
}
I create an instance :
Var myClass = new MyClass();
Later in the code, I’d like to know if all the member (MyProp1 and MyProp2) are not null or empty. I know I can use a if of course but there is much more properties than 2 in my real code.
Is there a way to do this ?
Thanks,

Using a dictionary based store for your properties is probably the easiest way of doing this:
public class MyClass
{
private IDictionary<String, String> _store;
public MyClass()
{
_store = new Dictionary<String, String>();
}
public string MyProp1 {
get { return GetOrDefault("MyProp1"); }
set { _store["MyProp1"] = value; }
}
public string MyProp2 {
get { return GetOrDefault("MyProp2"); }
set { _store["MyProp2"] = value; }
}
public Boolean HasData()
{
return _store.Any(x => !String.IsNullOrWhiteSpace(x.Value));
}
public Boolean IsEmpty()
{
return _store.All(x => String.IsNullOrWhiteSpace(x.Value));
}
private String GetOrDefault(String propertyName)
{
if (_store.ContainsKey(propertyName))
{
return _store[propertyName];
}
return String.Empty;
}
}
Another method for doing this would be to compare it with a default instance:
public class MyClass
{
public string MyProp1 { get; set; }
public string MyProp2 { get; set; }
public static readonly MyClass Empty = new MyClass();
public Boolean HasData()
{
return !Empty.Equals(this);
}
public Boolean IsEmpty()
{
return Empty.Equals(this);
}
}

You can try to use the reflect to check the properties. You should need confirm that all the properties are public, and the type is string. Here is the code.
public static bool IsNullOrEmpty(MyClass prop)
{
bool result = true;
PropertyInfo[] ps = prop.GetType().GetProperties();
foreach (PropertyInfo pi in ps)
{
string value = pi.GetValue(prop, null).ToString();
if (string.IsNullOrEmpty(value))
{
result = false;
break;
}
}
return result;
}

To check if your class contains 'any' properties which are null:
System.Reflection.PropertyInfo[] properties = myClass.GetType().GetProperties
(BindingFlags.Public | BindingFlags.Instance);
bool hasNullProperty = properties.Any(y => y.GetValue(x, null) == null);

You can always initialize your class like
public class MyClass
{
public MyClass() {
this.MyProp1 = this.MyProp2 = String.Empty;
}
public string MyProp1 { get; set; }
public string MyProp2 { get; set; }
}
and, unless your programmatically assign a null value to it, the new MyClass() will always have String.Empty in their 2 properties...
from comment:
What I do in those cases is call a helper, for example: string name = myHelper.CheckNode(xmlNode); and in that helper I check if it's null, any other check, I can easily tweek the helper method and it will be available to all elements, and you can extend it to support not only strings but all other data types as well
So, imagine that you are reading nodes from your XML, you write them like:
string name = myHelper.CheckNode(node);
in your helper, you could have something like:
XmlNodeList datasourceNodes = rootNode.SelectNodes("dataSources/dataSource");
foreach (XmlNode datasourceNode in datasourceNodes)
{
DataSource dataSource = new DataSource();
dataSource.Name = myHelper.CheckAttr(datasourceNode.Attributes["name"]);
dataSource.ODBC = myHelper.CheckNode(datasourceNode.SelectSingleNode("odbc"));
// or a variant (Extension Method)
dataSource.UID = datasourceNode.CheckNode("user");
dataSource.PWD = datasourceNode.CheckAttr("password");
ds.Add(dataSource);
}
your helper then could have a method like:
public static string CheckAttr(XmlAttribute attr)
{
return attr == null ? "" : attr.Value.Trim();
}
public static string CheckNode(XmlNode node)
{
return node == null ? "" : node.InnerText.Trim();
}
or for the variant (Extension Method)
public static string CheckAttr(this XmlNode, string attrName)
{
return attrName[attrName] == null ? "" : attrName[attrName].Value.Trim();
}
public static string CheckNode(this XmlNode, string nodeName)
{
return node.SelectSingleNode(nodeName) == null ?
"" :
node.SelectSingleNode(nodeName).InnerText.Trim();
}

If there are many properties in the class, one way of handling this is storing them in a collection, such as an array or a dictionary, instead of declaring each property as a separate member of the class.
Then you can access data in the dictionary by key, which is as easy as accessing a property of a class. And the advantage is that you can loop over the dictionary and check all the properties in a loop.

I would suggest creating a function in your class where you check String.IsNullOrEmpty(MyProp1) etc. for all your properties. This way you at least have gathered all the ckecking functionality in a single place. And you only have this place to modify whenever you add new properties.

To check if all the elements are set you could add a IsEmpty() method to your class that would check the internal properties. Then you wouldn't have to duplicate the if statements everywhere trough your code.
In your IsEmpty() method you can use a regular if statement to check all the fields or you can use reflection to automaticaly retrieve all string properties and check their values. The performance of reflection will be worse then a normal if check but if that's not a problem you can reuse the reflection code in all your entities to check their values.

By using Attribute Base programming you can achieve this. In this approach you will need to place attribute over the class member, and validation is can be done. You can also use Microsoft Enterprise Library for this.

Probably the best way would be to :
Restructure your properties in the form of a Dictionary of strings. Loop through the dictionary to test the strings using string.IsNullOrEmpty(). You could replace the N getter/setters by a single Indexer property which sets and retrieves the strings directly from the dictionary based on a key

You can use try the following style. I haven't tried it before but you might see if it helps
If (String.IsNullOrEmpty(string1 && string2 && string3))

Related

C# Dynamically assign a specific default value to all fields of a certain type in new object instances?

I have a class that contains multiple string fields. Whenever an object of this class is instantiated, I'd like those fields to be automatically assigned with the same specific default value (something like "Undefined"). The reason is:
If I have to serialize the object before all fields are populated with real data, I want those fields to display as this default value rather than being null or string.Empty.
String fields may be added/removed from this class as the project progresses. I'd like to not have to touch the constructor every time that occurs.
Is there any way to do this other than explicitly assigning the default value to each of the string fields one by one in the class constructor?
In C# 6.0 and above, you can use Auto-Property Initializer:
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-6#auto-property-initializers
Basically:
public string Property { get; set; } = "UNDEFINED";
You would have to use reflection. Something like this
Type type = obj.GetType();
PropertyInfo[] properties = type.GetProperties();
foreach (PropertyInfo property in properties)
{
if (property.PropertyType == typeof(string)) property.setValue(obj, "UNDEFINED");
}
First of all: I don't see how it could be best practice to do what you want.
If you want something like this to show up in your code:
public string Property { get; set; } = "UNDEFINED";
You should probably look into creating custom snippets that simply write exactly that. e.g. https://msdn.microsoft.com/en-us/library/ms165394.aspx
If you don't want that, you could use reflection to find all fields (e.g. strings) in the constructor and set them.
C# Reflection - Get field values from a simple class
FieldInfo[] fields = data.GetType().GetFields(BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Instance);
Setting a property by reflection with a string value
Ship ship = new Ship();
string value = "5.5";
PropertyInfo propertyInfo = ship.GetType().GetProperty("Latitude");
propertyInfo.SetValue(ship, Convert.ChangeType(value, propertyInfo.PropertyType), null);
Well, why not have an extension method like
public static class MyClass
{
public static string GetDefault(this str, string defaultVal)
{
return string.IsNullOrEmpty(str) ? defaultVal : str;
}
}
For a type
public class SomeClass
{
public string str = string.Empty;
}
You can call
SomeClass s = new SomeClass();
s.str.GetDefault("UNDEFINED");
You can initialize values to fields directly instead of in the constructor.
private string myStringVariable = "UNDEFINED";
Perhaps you should reconsider the structure of your program though if it permits many fields to be initialized to undefined.
Maybe I am misunderstanding this but why not do word for word what you described in the question in your constructor?
public class Weee
{
public string name { get; set; }
public int order { get; set; }
public string whatever { get; set; }
public Weee()
{
foreach(var p in typeof(Weee).GetProperties().Where(a => a.PropertyType == typeof(string)))
{
p.SetValue(this, "wut");
}
}
}
You can create a property initializer and have a base class use it. Your classes can then inherit from the base and have their properties automatically initialized:
public class PropertyInitializer
{
public void Initialize<T>(object obj, T value)
{
PropertyInfo[] properties = obj.GetType().GetProperties();
foreach (PropertyInfo property in properties)
{
if (property.PropertyType == typeof(T))
{
property.SetValue(obj, value);
}
}
}
}
public class InitializedBase
{
protected InitializedBase()
{
var initializer = new PropertyInitializer();
//Initialize all strings
initializer.Initialize<string>(this, "Juan");
//Initialize all integers
initializer.Initialize<int>(this, 31);
}
}
//Sample class to illustrate
public class AutoInitializedClass : InitializedBase
{
public string Name { get; set; }
public int Age { get; set; }
public override string ToString()
{
return string.Format("My name is {0} and I am {1} years old", Name, Age);
}
}
Sample usage:
AutoInitializedClass sample = new AutoInitializedClass();
Console.WriteLine(sample);
Console output:
My name is Juan and I am 31 years old
Notice the base class is using the PropertyInitializer class to initialize fields. This is a simplified example. You can expand it as it fits you (it may not work out of the box with all types).
I personally don't recommend this. It's called a constructor for a reason but you asked a question and I provided an answer.
Here is a simple class from which you can inherit that does exactly what you want:
Example usage:
public class MyClass : DefaultedObject<string>
{
public string MyStringField;
protected override string Default => "UNDEFINED";
}
var myClass = new MyClass();
// myClass.MyStringField == "UNDEFINED"
Implementation:
public abstract class DefaultedObject<T>
{
protected DefaultedObject()
{
T defaultValue = Default;
FieldInfo[] fields = GetType().GetFields(BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance);
foreach(FieldInfo field in fields) {
if(field.FieldType == typeof(T)) {
field.SetValue(this, defaultValue);
}
}
}
protected abstract T Default { get; }
}
I appreciate all the feedback to this question. Here's what ended up working. First, for any string attributes in the class that I wanted to receive an automatic default value, I established as a property:
public string attribute1 {get; set;}
public string attribute2 {get; set;}
And so on. Then, in the class constructor, I included the following loop which iterates through each property of type string:
foreach(PropertyInfo property in GetType().GetProperties())
{
if (property.PropertyType == typeof(string))
property.SetValue(this, "UNDEFINED"));
}
This produced the desired outcome for me.

List custom class members and type

This seems like the most basic thing ever but somehow I couldnt find the answer and couldnt figure it out.
Lets say I have a custom class:
public class WineCellar
{
public string year;
public string wine;
public double nrbottles;
}
Now I would like a function:
WineCellar ex = new WineCellar();
ex.members();
This should return: year, wine, nrbootles.
And:
ex.members().types();
Should return: string, string, double
I guess on the same note, lets say you have one instance {2010, Rioja, 6}. Is there syntax that returns these by indexing? i.e.
ex[1]
or
ex.{1}
that returns 2010?
Sorry for the basic question.
As Michelle said in the comments, this sounds like a wrong approach to a bigger problem.
However, if you do need this kind of things, you can get the using reflection:
//returns a list of propertyInfo objects for the class
// with all kinds of usefull information
public List<PropertyInfo> GetMemberInfos()
{
return this.GetType().GetProperties().ToList();
}
//returns a list of property names
public List<string> GetMemberNames
{
return this.GetType().GetProperties().Select(pi => pi.Name).ToList();
}
//returns a list of names of the property types
public List<string> GetMemberTypeNames
{
return this.GetType().GetProperties().Select(pi => pi.PropertyType.Name).ToList();
}
//indexer that uses the property name to get the value
//since you are mixing types, you can't get more specific than object
public object this[string property]
{
get { return this.GetType().GetProperty(property).GetValue(this); }
set { this.GetType().GetProperty(property).SetValue(this, value); }
}
//indexer that uses the property index in the properties array to get the value
public object this[int index]
{
get { return this.GetType().GetProperties()[index].GetValue(this); }
set { this.GetType().GetProperties()[index].SetValue(this, value); }
}
Note that all of these methods are very slow, because in general, reflection is slow. You can try to cache some thing to speed it up.
Also, the last method is downright dangerous. It will (try to) read and write to an array that does not have a guaranteed order. In fact, the documentation specifies:
The GetProperties method does not return properties in a particular
order, such as alphabetical or declaration order. Your code must not
depend on the order in which properties are returned, because that
order varies.
For example, if you change your class to:
public class WineCellar
{
public string year;
public string region;
public string wine;
public double nrbottles;
}
and you were used to using winecellar[1] = "Pinot Noir" that will most likely now update the region property, instead of the wine property.
This is how you would implement Members method (In case if you wanted property names as strings)
public List<string> Members()
{
List<string> propNames = new List<string>();
foreach (var prop in typeof(WineCellar).GetProperties())
{
propNames.Add(prop.Name);
}
return propNames;
}
And this is how you would implement Types (In same case)
public List<string> Types()
{
List<string> propTypes = new List<string>();
foreach (var prop in typeof(WineCellar).GetProperties())
{
propTypes.Add(prop.PropertyType.ToString());
}
return propTypes ;
}
And the last thing if you want to get values of the parameters like this ex[n] you can just make a simple indexer in you class like this
public string this[int n]
{
get
{
int current = 0;
foreach (var prop in typeof(WineCellar).GetProperties())
{
if (current == n)
return prop.GetValue(this, null).ToString();
current++;
}
return null;
}
}
but for these methods to work you should change your variables into properties like this
public class WineCellar
{
public string Year { get; set; }
public string Wine { get; set; }
public double Nrbottles { get; set; }
}
You can use reflection
foreach (var prop in typeof(WineCellar).GetProperties())
{
if (prop.PropertyType == typeof(double) || prop.PropertyType == typeof(double?))
{
}
}
to get the value, you can do:
prop.GetValue(obj);

Is there a way of comparing all the values within 2 entities?

I'm using EF4.3 so I'm referring to entities, however it could apply to any class containing properties.
I'm trying to figure out if its possible to compare 2 entities. Each entity has properties that are assigned values for clarity let say the entity is 'Customer'.
public partial class Customer
{
public string Name { get; set; }
public DateTime DateOfBirth { get; set; }
...
...
}
The customer visits my website and types in some details 'TypedCustomer'. I check this against the database and if some of the data matches, I return a record from the database 'StoredCustomer'.
So at this point I've identified that its the same customer returning but I wan't to valid the rest of the data. I could check each property one by one, but there are a fair few to check. Is it possible to make this comparison at a higher level which takes into account the current values of each?
if(TypedCustomer == StoredCustomer)
{
.... do something
}
If you're storing these things in the database, it is logical to assume you'd also have a primary key called something like Id.
public partial class Customer
{
public int Id { get; set; }
public string Name { get; set; }
public DateTime DateOfBirth { get; set; }
...
...
}
Then all you do is:
if(TypedCustomer.Id == StoredCustomer.Id)
{
}
UPDATE:
In my project, I have a comparer for these circumstances:
public sealed class POCOComparer<TPOCO> : IEqualityComparer<TPOCO> where TPOCO : class
{
public bool Equals(TPOCO poco1, TPOCO poco2)
{
if (poco1 != null && poco2 != null)
{
bool areSame = true;
foreach(var property in typeof(TPOCO).GetPublicProperties())
{
object v1 = property.GetValue(poco1, null);
object v2 = property.GetValue(poco2, null);
if (!object.Equals(v1, v2))
{
areSame = false;
break;
}
});
return areSame;
}
return poco1 == poco2;
} // eo Equals
public int GetHashCode(TPOCO poco)
{
int hash = 0;
foreach(var property in typeof(TPOCO).GetPublicProperties())
{
object val = property.GetValue(poco, null);
hash += (val == null ? 0 : val.GetHashCode());
});
return hash;
} // eo GetHashCode
} // eo class POCOComparer
Uses an extension method:
public static partial class TypeExtensionMethods
{
public static PropertyInfo[] GetPublicProperties(this Type self)
{
self.ThrowIfDefault("self");
return self.GetProperties(BindingFlags.Public | BindingFlags.Instance).Where((property) => property.GetIndexParameters().Length == 0 && property.CanRead && property.CanWrite).ToArray();
} // eo GetPublicProperties
} // eo class TypeExtensionMethods
Most simple seems to use reflexion : get the properties and/or fields you want to compare, and loop through them to compare your two objects.
This will be done with getType(Customer).getProperties and getType(Customer).getFields, then using getValue on each field/property and comparing.
You might want to add custom informations to your fields/properties to define the ones that needs
comparing. This could be done by defining a AttributeUsageAttribute, that would inherit from FlagsAttribute for instance. You'll then have to retrieve and handle those attributes in your isEqualTo method.
I don't think there's much of a purpose to checking the entire object in this scenario - they'd have to type every property in perfectly exactly as they did before, and a simple "do they match" doesn't really tell you a lot. But assuming that's what you want, I can see a few ways of doing this:
1) Just bite the bullet and compare each field. You can do this by overriding the bool Equals method, or IEquatable<T>.Equals, or just with a custom method.
2) Reflection, looping through the properties - simple if your properties are simple data fields, but more complex if you've got complex types to worry about.
foreach (var prop in typeof(Customer).GetProperties()) {
// needs better property and value validation
bool propertyMatches = prop.GetValue(cust1, null)
.Equals(prop.GetValue(cust2, null));
}
3) Serialization - serialize both objects to XML or JSON, and compare the strings.
// JSON.NET
string s1 = JsonConvert.SerializeObject(cust1);
string s2 = JsonConvert.SerializeObject(cust2);
bool match = s1 == s2;

Accessing C# property name or attributes

I would like to automatically generate SQL statements from a class instance. The method should look like Update(object[] Properties, object PrimaryKeyProperty). The method is part of an instance (class, base method - generic for any child). Array of properties is an array of class properties, that will be used in update statement. Property names are equal to table field names.
The problem is that I can't get property names.
Is there any option to get a property name inside class instance?
sample:
public class MyClass {
public int iMyProperty { get; set; }
public string cMyProperty2 { get; set; }
{
main() {
MyClass _main = new MyClass();
_main.iMyProperty.*PropertyName* // should return string "iMyProperty"
{
I am aware of PropertyInfo, but I don't know hot to get the ID of a property from GetProperties() array.
Any suggestion?
Just wrote an implementation of this for a presentation on lambdas for our usergroup last Tuesday.
You can do
MembersOf<Animal>.GetName(x => x.Status)
Or
var a = new Animal()
a.MemberName(x => x.Status)
the code:
public static class MembersOf<T> {
public static string GetName<R>(Expression<Func<T,R>> expr) {
var node = expr.Body as MemberExpression;
if (object.ReferenceEquals(null, node))
throw new InvalidOperationException("Expression must be of member access");
return node.Member.Name;
}
}
Link to the presentation and code samples.
Also in SVN (more likely to be updated): http://gim-projects.googlecode.com/svn/presentations/CantDanceTheLambda
I found a perfect solution in This Post
public static string GetPropertyName<T>(Expression<Func<T>> propertyExpression)
{
return (propertyExpression.Body as MemberExpression).Member.Name;
}
And then for the usage :
var propertyName = GetPropertyName(
() => myObject.AProperty); // returns "AProperty"
Works like a charm
You can do something like this:
Type t = someInstance.getType();
foreach (MemberInfo mi in t.GetMembers())
{
if (mi.MemberType == MemberTypes.Property)
{
Console.WriteLine(mi.Name);
}
}
to get all the property names for instance's type.
You can get the name (I assume that's what you meant by ID) of a property using PropertyInfo.Name. Just loop through the PropertyInfo[] returned from typeof(className).GetProperties()
foreach (PropertyInfo info in typeof(MyClass).GetProperties())
{
string name = info.Name;
// use name here
}
Since you already have an explicit handle to the specific property you want, you know the name - can you just type it?
Not 100% sure if this will get you what you're looking for, this will fetch all properties with [Column] attribute inside your class:
In the datacontext I have:
public ReadOnlyCollection<MetaDataMember> ColumnNames<TEntity>( )
{
return this.Mapping.MappingSource.GetModel(typeof(DataContext)).GetMetaType(typeof(TEntity)).DataMembers;
}
Fetching the table column-names that are properties inside the class:
MyDataContext db = GetDataContext();
var allColumnPropertyNames = db.ColumnNames<Animal>().Where(n => n.Member.GetCustomAttributes(typeof(System.Data.Linq.Mapping.ColumnAttribute), false).FirstOrDefault() != null).Select(n => n.Name);
Let's say (from the first sample, method update of a class MyClass):
public class MyClass {
public int iMyStatusProperty { get; set; }
public int iMyKey { get; set; }
public int UpdateStatusProperty(int iValue){
this.iMyStatusProperty = iValue;
return _Update( new[iMyStatusProperty ], iMyKey); // this should generate SQL: "UPDATE MyClass set iMyStatusProperty = {iMyStatusProperty} where iMyKey = {iMyKey}"
}
{iMyStatusProperty} and {iMyKey} are property values of a class instance.
So, the problem is how to get property name (reflection) from a property without using names of properties as strings (to avoid field name typos).

What is the best way to give a C# auto-property an initial value?

How do you give a C# auto-property an initial value?
I either use the constructor, or revert to the old syntax.
Using the Constructor:
class Person
{
public Person()
{
Name = "Initial Name";
}
public string Name { get; set; }
}
Using normal property syntax (with an initial value)
private string name = "Initial Name";
public string Name
{
get
{
return name;
}
set
{
name = value;
}
}
Is there a better way?
In C# 5 and earlier, to give auto implemented properties an initial value, you have to do it in a constructor.
Since C# 6.0, you can specify initial value in-line. The syntax is:
public int X { get; set; } = x; // C# 6 or higher
DefaultValueAttribute is intended to be used by the VS designer (or any other consumer) to specify a default value, not an initial value. (Even if in designed object, initial value is the default value).
At compile time DefaultValueAttribute will not impact the generated IL and it will not be read to initialize the property to that value (see DefaultValue attribute is not working with my Auto Property).
Example of attributes that impact the IL are ThreadStaticAttribute, CallerMemberNameAttribute, ...
Edited on 1/2/15
C# 6 :
With C# 6 you can initialize auto-properties directly (finally!), there are now other answers that describe that.
C# 5 and below:
Though the intended use of the attribute is not to actually set the values of the properties, you can use reflection to always set them anyway...
public class DefaultValuesTest
{
public DefaultValuesTest()
{
foreach (PropertyDescriptor property in TypeDescriptor.GetProperties(this))
{
DefaultValueAttribute myAttribute = (DefaultValueAttribute)property.Attributes[typeof(DefaultValueAttribute)];
if (myAttribute != null)
{
property.SetValue(this, myAttribute.Value);
}
}
}
public void DoTest()
{
var db = DefaultValueBool;
var ds = DefaultValueString;
var di = DefaultValueInt;
}
[System.ComponentModel.DefaultValue(true)]
public bool DefaultValueBool { get; set; }
[System.ComponentModel.DefaultValue("Good")]
public string DefaultValueString { get; set; }
[System.ComponentModel.DefaultValue(27)]
public int DefaultValueInt { get; set; }
}
When you inline an initial value for a variable it will be done implicitly in the constructor anyway.
I would argue that this syntax was best practice in C# up to 5:
class Person
{
public Person()
{
//do anything before variable assignment
//assign initial values
Name = "Default Name";
//do anything after variable assignment
}
public string Name { get; set; }
}
As this gives you clear control of the order values are assigned.
As of C#6 there is a new way:
public string Name { get; set; } = "Default Name";
Sometimes I use this, if I don't want it to be actually set and persisted in my db:
class Person
{
private string _name;
public string Name
{
get
{
return string.IsNullOrEmpty(_name) ? "Default Name" : _name;
}
set { _name = value; }
}
}
Obviously if it's not a string then I might make the object nullable ( double?, int? ) and check if it's null, return a default, or return the value it's set to.
Then I can make a check in my repository to see if it's my default and not persist, or make a backdoor check in to see the true status of the backing value, before saving.
In C# 6.0 this is a breeze!
You can do it in the Class declaration itself, in the property declaration statements.
public class Coordinate
{
public int X { get; set; } = 34; // get or set auto-property with initializer
public int Y { get; } = 89; // read-only auto-property with initializer
public int Z { get; } // read-only auto-property with no initializer
// so it has to be initialized from constructor
public Coordinate() // .ctor()
{
Z = 42;
}
}
Starting with C# 6.0, We can assign default value to auto-implemented properties.
public string Name { get; set; } = "Some Name";
We can also create read-only auto implemented property like:
public string Name { get; } = "Some Name";
See: C# 6: First reactions , Initializers for automatically implemented properties - By Jon Skeet
In Version of C# (6.0) & greater, you can do :
For Readonly properties
public int ReadOnlyProp => 2;
For both Writable & Readable properties
public string PropTest { get; set; } = "test";
In current Version of C# (7.0), you can do : (The snippet rather displays how you can use expression bodied get/set accessors to make is more compact when using with backing fields)
private string label = "Default Value";
// Expression-bodied get / set accessors.
public string Label
{
get => label;
set => this.label = value;
}
In C# 9.0 was added support of init keyword - very useful and extremly sophisticated way for declaration read-only auto-properties:
Declare:
class Person
{
public string Name { get; init; } = "Anonymous user";
}
~Enjoy~ Use:
// 1. Person with default name
var anonymous = new Person();
Console.WriteLine($"Hello, {anonymous.Name}!");
// > Hello, Anonymous user!
// 2. Person with assigned value
var me = new Person { Name = "#codez0mb1e"};
Console.WriteLine($"Hello, {me.Name}!");
// > Hello, #codez0mb1e!
// 3. Attempt to re-assignment Name
me.Name = "My fake";
// > Compilation error: Init-only property can only be assigned in an object initializer
In addition to the answer already accepted, for the scenario when you want to define a default property as a function of other properties you can use expression body notation on C#6.0 (and higher) for even more elegant and concise constructs like:
public class Person{
public string FullName => $"{First} {Last}"; // expression body notation
public string First { get; set; } = "First";
public string Last { get; set; } = "Last";
}
You can use the above in the following fashion
var p = new Person();
p.FullName; // First Last
p.First = "Jon";
p.Last = "Snow";
p.FullName; // Jon Snow
In order to be able to use the above "=>" notation, the property must be read only, and you do not use the get accessor keyword.
Details on MSDN
In C# 6 and above you can simply use the syntax:
public object Foo { get; set; } = bar;
Note that to have a readonly property simply omit the set, as so:
public object Foo { get; } = bar;
You can also assign readonly auto-properties from the constructor.
Prior to this I responded as below.
I'd avoid adding a default to the constructor; leave that for dynamic assignments and avoid having two points at which the variable is assigned (i.e. the type default and in the constructor). Typically I'd simply write a normal property in such cases.
One other option is to do what ASP.Net does and define defaults via an attribute:
http://msdn.microsoft.com/en-us/library/system.componentmodel.defaultvalueattribute.aspx
My solution is to use a custom attribute that provides default value property initialization by constant or using property type initializer.
[AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited = true)]
public class InstanceAttribute : Attribute
{
public bool IsConstructorCall { get; private set; }
public object[] Values { get; private set; }
public InstanceAttribute() : this(true) { }
public InstanceAttribute(object value) : this(false, value) { }
public InstanceAttribute(bool isConstructorCall, params object[] values)
{
IsConstructorCall = isConstructorCall;
Values = values ?? new object[0];
}
}
To use this attribute it's necessary to inherit a class from special base class-initializer or use a static helper method:
public abstract class DefaultValueInitializer
{
protected DefaultValueInitializer()
{
InitializeDefaultValues(this);
}
public static void InitializeDefaultValues(object obj)
{
var props = from prop in obj.GetType().GetProperties()
let attrs = prop.GetCustomAttributes(typeof(InstanceAttribute), false)
where attrs.Any()
select new { Property = prop, Attr = ((InstanceAttribute)attrs.First()) };
foreach (var pair in props)
{
object value = !pair.Attr.IsConstructorCall && pair.Attr.Values.Length > 0
? pair.Attr.Values[0]
: Activator.CreateInstance(pair.Property.PropertyType, pair.Attr.Values);
pair.Property.SetValue(obj, value, null);
}
}
}
Usage example:
public class Simple : DefaultValueInitializer
{
[Instance("StringValue")]
public string StringValue { get; set; }
[Instance]
public List<string> Items { get; set; }
[Instance(true, 3,4)]
public Point Point { get; set; }
}
public static void Main(string[] args)
{
var obj = new Simple
{
Items = {"Item1"}
};
Console.WriteLine(obj.Items[0]);
Console.WriteLine(obj.Point);
Console.WriteLine(obj.StringValue);
}
Output:
Item1
(X=3,Y=4)
StringValue
little complete sample:
using System.ComponentModel;
private bool bShowGroup ;
[Description("Show the group table"), Category("Sea"),DefaultValue(true)]
public bool ShowGroup
{
get { return bShowGroup; }
set { bShowGroup = value; }
}
You can simple put like this
public sealed class Employee
{
public int Id { get; set; } = 101;
}
In the constructor. The constructor's purpose is to initialized it's data members.
private string name;
public string Name
{
get
{
if(name == null)
{
name = "Default Name";
}
return name;
}
set
{
name = value;
}
}
Have you tried using the DefaultValueAttribute or ShouldSerialize and Reset methods in conjunction with the constructor? I feel like one of these two methods is necessary if you're making a class that might show up on the designer surface or in a property grid.
Use the constructor because "When the constructor is finished, Construction should be finished". properties are like states your classes hold, if you had to initialize a default state, you would do that in your constructor.
To clarify, yes, you need to set default values in the constructor for class derived objects. You will need to ensure the constructor exists with the proper access modifier for construction where used. If the object is not instantiated, e.g. it has no constructor (e.g. static methods) then the default value can be set by the field. The reasoning here is that the object itself will be created only once and you do not instantiate it.
#Darren Kopp - good answer, clean, and correct. And to reiterate, you CAN write constructors for Abstract methods. You just need to access them from the base class when writing the constructor:
Constructor at Base Class:
public BaseClassAbstract()
{
this.PropertyName = "Default Name";
}
Constructor at Derived / Concrete / Sub-Class:
public SubClass() : base() { }
The point here is that the instance variable drawn from the base class may bury your base field name. Setting the current instantiated object value using "this." will allow you to correctly form your object with respect to the current instance and required permission levels (access modifiers) where you are instantiating it.
public Class ClassName{
public int PropName{get;set;}
public ClassName{
PropName=0; //Default Value
}
}
This is old now, and my position has changed. I'm leaving the original answer for posterity only.
Personally, I don't see the point of making it a property at all if you're not going to do anything at all beyond the auto-property. Just leave it as a field. The encapsulation benefit for these item are just red herrings, because there's nothing behind them to encapsulate. If you ever need to change the underlying implementation you're still free to refactor them as properties without breaking any dependent code.
Hmm... maybe this will be the subject of it's own question later
class Person
{
/// Gets/sets a value indicating whether auto
/// save of review layer is enabled or not
[System.ComponentModel.DefaultValue(true)]
public bool AutoSaveReviewLayer { get; set; }
}
I know this is an old question, but it came up when I was looking for how to have a default value that gets inherited with the option to override, I came up with
//base class
public class Car
{
public virtual string FuelUnits
{
get { return "gasoline in gallons"; }
protected set { }
}
}
//derived
public class Tesla : Car
{
public override string FuelUnits => "ampere hour";
}
I think this would do it for ya givng SomeFlag a default of false.
private bool _SomeFlagSet = false;
public bool SomeFlag
{
get
{
if (!_SomeFlagSet)
SomeFlag = false;
return SomeFlag;
}
set
{
if (!_SomeFlagSet)
_SomeFlagSet = true;
SomeFlag = value;
}
}

Categories