LINQ : Dynamic select - c#

Consider we have this class :
public class Data
{
public string Field1 { get; set; }
public string Field2 { get; set; }
public string Field3 { get; set; }
public string Field4 { get; set; }
public string Field5 { get; set; }
}
How do I dynamically select for specify columns ? something like this :
var list = new List<Data>();
var result= list.Select("Field1,Field2"); // How ?
Is this the only solution => Dynamic LINQ ?
Selected fields are not known at compile time. They would be specified at runtime

You can do this by dynamically creating the lambda you pass to Select:
Func<Data,Data> CreateNewStatement( string fields )
{
// input parameter "o"
var xParameter = Expression.Parameter( typeof( Data ), "o" );
// new statement "new Data()"
var xNew = Expression.New( typeof( Data ) );
// create initializers
var bindings = fields.Split( ',' ).Select( o => o.Trim() )
.Select( o => {
// property "Field1"
var mi = typeof( Data ).GetProperty( o );
// original value "o.Field1"
var xOriginal = Expression.Property( xParameter, mi );
// set value "Field1 = o.Field1"
return Expression.Bind( mi, xOriginal );
}
);
// initialization "new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var xInit = Expression.MemberInit( xNew, bindings );
// expression "o => new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var lambda = Expression.Lambda<Func<Data,Data>>( xInit, xParameter );
// compile to Func<Data, Data>
return lambda.Compile();
}
Then you can use it like this:
var result = list.Select( CreateNewStatement( "Field1, Field2" ) );

In addition for Nicholas Butler and the hint in comment of Matt(that use T for type of input class), I put an improve to Nicholas answer that generate the property of entity dynamically and the function does not need to send field as parameter.
For Use add class as below:
public static class Helpers
{
public static Func<T, T> DynamicSelectGenerator<T>(string Fields = "")
{
string[] EntityFields;
if (Fields == "")
// get Properties of the T
EntityFields = typeof(T).GetProperties().Select(propertyInfo => propertyInfo.Name).ToArray();
else
EntityFields = Fields.Split(',');
// input parameter "o"
var xParameter = Expression.Parameter(typeof(T), "o");
// new statement "new Data()"
var xNew = Expression.New(typeof(T));
// create initializers
var bindings = EntityFields.Select(o => o.Trim())
.Select(o =>
{
// property "Field1"
var mi = typeof(T).GetProperty(o);
// original value "o.Field1"
var xOriginal = Expression.Property(xParameter, mi);
// set value "Field1 = o.Field1"
return Expression.Bind(mi, xOriginal);
}
);
// initialization "new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var xInit = Expression.MemberInit(xNew, bindings);
// expression "o => new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var lambda = Expression.Lambda<Func<T, T>>(xInit, xParameter);
// compile to Func<Data, Data>
return lambda.Compile();
}
}
The DynamicSelectGenerator method get entity with type T, this method have optional input parameter Fields that if you want to select special field from entity send as a string such as "Field1, Field2" and if you don't send anything to method, it returns all of the fields of entity, you could use this method as below:
using (AppDbContext db = new AppDbContext())
{
//select "Field1, Field2" from entity
var result = db.SampleEntity.Select(Helpers.DynamicSelectGenerator<SampleEntity>("Field1, Field2")).ToList();
//select all field from entity
var result1 = db.SampleEntity.Select(Helpers.DynamicSelectGenerator<SampleEntity>()).ToList();
}
(Assume that you have a DbContext with name AppDbContext and the context have an entity with name SampleEntity)

You must use reflection to get and set property value with it's name.
var result = new List<Data>();
var data = new Data();
var type = data.GetType();
var fieldName = "Something";
for (var i = 0; i < list.Count; i++)
{
foreach (var property in data.GetType().GetProperties())
{
if (property.Name == fieldName)
{
type.GetProperties().FirstOrDefault(n => n.Name == property.Name).SetValue(data, GetPropValue(list[i], property.Name), null);
result.Add(data);
}
}
}
And here is GetPropValue() method
public static object GetPropValue(object src, string propName)
{
return src.GetType().GetProperty(propName).GetValue(src, null);
}

Using Reflection and Expression bulid can do what you say.
Example:
var list = new List<Data>();
//bulid a expression tree to create a paramter
ParameterExpression param = Expression.Parameter(typeof(Data), "d");
//bulid expression tree:data.Field1
Expression selector = Expression.Property(param,typeof(Data).GetProperty("Field1"));
Expression pred = Expression.Lambda(selector, param);
//bulid expression tree:Select(d=>d.Field1)
Expression expr = Expression.Call(typeof(Queryable), "Select",
new Type[] { typeof(Data), typeof(string) },
Expression.Constant(list.AsQueryable()), pred);
//create dynamic query
IQueryable<string> query = list.AsQueryable().Provider.CreateQuery<string>(expr);
var result=query.ToList();

I writing the method in following line for you can work with nested fields taking advantage of Nicholas Butler and Ali.
You can use this method for dynamically creating to lambda for pass to select and also works for nested fields. You can also work with IQueryable cases.
/// <param name="Fields">
/// Format1: "Field1"
/// Format2: "Nested1.Field1"
/// Format3: "Field1:Field1Alias"
/// </param>
public static Expression<Func<T, TSelect>> DynamicSelectGenerator<T, TSelect>(params string[] Fields)
{
string[] EntityFields = Fields;
if (Fields == null || Fields.Length == 0)
// get Properties of the T
EntityFields = typeof(T).GetProperties().Select(propertyInfo => propertyInfo.Name).ToArray();
// input parameter "x"
var xParameter = Expression.Parameter(typeof(T), "x");
// new statement "new Data()"
var xNew = Expression.New(typeof(TSelect));
// create initializers
var bindings = EntityFields
.Select(x =>
{
string[] xFieldAlias = x.Split(":");
string field = xFieldAlias[0];
string[] fieldSplit = field.Split(".");
if (fieldSplit.Length > 1)
{
// original value "x.Nested.Field1"
Expression exp = xParameter;
foreach (string item in fieldSplit)
exp = Expression.PropertyOrField(exp, item);
// property "Field1"
PropertyInfo member2 = null;
if (xFieldAlias.Length > 1)
member2 = typeof(TSelect).GetProperty(xFieldAlias[1]);
else
member2 = typeof(T).GetProperty(fieldSplit[fieldSplit.Length - 1]);
// set value "Field1 = x.Nested.Field1"
var res = Expression.Bind(member2, exp);
return res;
}
// property "Field1"
var mi = typeof(T).GetProperty(field);
PropertyInfo member;
if (xFieldAlias.Length > 1)
member = typeof(TSelect).GetProperty(xFieldAlias[1]);
else member = typeof(TSelect).GetProperty(field);
// original value "x.Field1"
var xOriginal = Expression.Property(xParameter, mi);
// set value "Field1 = x.Field1"
return Expression.Bind(member, xOriginal);
}
);
// initialization "new Data { Field1 = x.Field1, Field2 = x.Field2 }"
var xInit = Expression.MemberInit(xNew, bindings);
// expression "x => new Data { Field1 = x.Field1, Field2 = x.Field2 }"
var lambda = Expression.Lambda<Func<T, TSelect>>(xInit, xParameter);
return lambda;
}
Usage:
var s = DynamicSelectGenerator<SalesTeam, SalesTeamSelect>(
"Name:SalesTeamName",
"Employee.FullName:SalesTeamExpert"
);
var res = _context.SalesTeam.Select(s);
public class SalesTeam
{
public string Name {get; set; }
public Guid EmployeeId { get; set; }
public Employee Employee { get; set; }
}
public class SalesTeamSelect
{
public string SalesTeamName {get; set; }
public string SalesTeamExpert {get; set; }
}

The OP mentioned Dynamic Linq library, so I'd like to lay out an explanation on its usage.
1. Dynamic Linq Built-In Select
Dynamic Linq has a built-in Select method, which can be used as follows:
var numbers = new List<int> { 1, 2, 3 };
var wrapped = numbers.Select(num => new { Value = num }).ToList();
// the "it" keyword functions as the lambda parameter,
// so essentialy it's like calling: numbers.Select(num => num)
var selectedNumbers = numbers.Select("it");
// the following is the equivalent of calling: wrapped.Select(num => num.Value)
var selectedValues = wrapped.Select("Value");
// the following is the equivalent of calling: numbers.Select(num => new { Value = num })
var selectedObjects = numbers.Select("new(it as Value)");
foreach (int num in selectedNumbers) Console.WriteLine(num);
foreach (int val in selectedValues) Console.WriteLine(val);
foreach (dynamic obj in selectedObjects) Console.WriteLine(obj.Value);
The Downside
There's somewhat a downside using the built-in Select:
Since it's an IQueryable - not IQueryable<T> - extension method, with IQueryable as its return type, common materialization methods - like ToList or FirstOrDefault - can't be used. This is why the above example uses foreach - it's simply the only convenient way of materializing the results.
So to make things more convenient, let's support these methods.
2. Supporting Select<T> in Dynamic Linq (to enable using ToList and alike)
To support Select<T>, it needs to be added into the Dynamic Linq file. The simple steps for doing that are explained in this answer and in my comment on it.
After doing so, it can be used in the following way:
var numbers = new List<int> { 1, 2, 3 };
var wrapped = numbers.Select(num => new { Value = num }).ToList();
// the following is the equivalent of calling: numbers.Select(num => num).ToList()
var selectedNumbers = numbers.Select<int>("it").ToList();
// the following is the equivalent of calling: wrapped.Select(num => num.Value).ToList()
var selectedValues = wrapped.Select<int>("Value").ToList();
// the following is the equivalent of calling: numbers.Select(num => new { Value = num }).ToList()
var selectedObjects = numbers.Select<object>("new(it as Value)").ToList();
The Downside
Arguably, this implementation introduces yet another kind of downside: By having to explicitly parameterize the Select<T> call (e.g., having to call Select<int>), we're losing the dynamic nature of the library.
Nevertheless, since we can now call any materialization Linq method, this usage may still be quite useful.

I simplified the amazing method DynamicSelectGenerator() created by Ali and made this extension method that overrides the LINQ Select() to take a column separated parameters to simplify the usage and for more readability:
public static IEnumerable<T> Select<T>(this IEnumerable<T> source, string parameters)
{
return source.Select(DynamicSelectGenerator<T>(parameters));
}
So instead of:
var query = list.Select(Helpers.DynamicSelectGenerator<Data>("Field1,Field2")).ToList();
Will be:
var query = list.Select("Field1,Field2").ToList();

Another approach I've used is a nested ternary operator:
string col = "Column3";
var query = table.Select(i => col == "Column1" ? i.Column1 :
col == "Column2" ? i.Column2 :
col == "Column3" ? i.Column3 :
col == "Column4" ? i.Column4 :
null);
The ternary operator requires that each field be the same type, so you'll need to call .ToString() on any non-string columns.

I have generate my own class for same purpose of usage.
github gist : https://gist.github.com/mstrYoda/663789375b0df23e2662a53bebaf2c7c
It generates dynamic select lambda for given string and also support for two level nested properties.
Example of usage is :
class Shipment {
// other fields...
public Address Sender;
public Address Recipient;
}
class Address {
public string AddressText;
public string CityName;
public string CityId;
}
// in the service method
var shipmentDtos = _context.Shipments.Where(s => request.ShipmentIdList.Contains(s.Id))
.Select(new SelectLambdaBuilder<Shipment>().CreateNewStatement(request.Fields)) // request.Fields = "Sender.CityName,Sender.CityId"
.ToList();
It compiles the lambda as below:
s => new Shipment {
Sender = new Address {
CityId = s.Sender.CityId,
CityName = s.Sender.CityName
}
}
You can also find my quesion and answer here :c# - Dynamically generate linq select with nested properties
public class SelectLambdaBuilder<T>
{
// as a performence consideration I cached already computed type-properties
private static Dictionary<Type, PropertyInfo[]> _typePropertyInfoMappings = new Dictionary<Type, PropertyInfo[]>();
private readonly Type _typeOfBaseClass = typeof(T);
private Dictionary<string, List<string>> GetFieldMapping(string fields)
{
var selectedFieldsMap = new Dictionary<string, List<string>>();
foreach (var s in fields.Split(','))
{
var nestedFields = s.Split('.').Select(f => f.Trim()).ToArray();
var nestedValue = nestedFields.Length > 1 ? nestedFields[1] : null;
if (selectedFieldsMap.Keys.Any(key => key == nestedFields[0]))
{
selectedFieldsMap[nestedFields[0]].Add(nestedValue);
}
else
{
selectedFieldsMap.Add(nestedFields[0], new List<string> { nestedValue });
}
}
return selectedFieldsMap;
}
public Func<T, T> CreateNewStatement(string fields)
{
ParameterExpression xParameter = Expression.Parameter(_typeOfBaseClass, "s");
NewExpression xNew = Expression.New(_typeOfBaseClass);
var selectFields = GetFieldMapping(fields);
var shpNestedPropertyBindings = new List<MemberAssignment>();
foreach (var keyValuePair in selectFields)
{
PropertyInfo[] propertyInfos;
if (!_typePropertyInfoMappings.TryGetValue(_typeOfBaseClass, out propertyInfos))
{
var properties = _typeOfBaseClass.GetProperties();
propertyInfos = properties;
_typePropertyInfoMappings.Add(_typeOfBaseClass, properties);
}
var propertyType = propertyInfos
.FirstOrDefault(p => p.Name.ToLowerInvariant().Equals(keyValuePair.Key.ToLowerInvariant()))
.PropertyType;
if (propertyType.IsClass)
{
PropertyInfo objClassPropInfo = _typeOfBaseClass.GetProperty(keyValuePair.Key);
MemberExpression objNestedMemberExpression = Expression.Property(xParameter, objClassPropInfo);
NewExpression innerObjNew = Expression.New(propertyType);
var nestedBindings = keyValuePair.Value.Select(v =>
{
PropertyInfo nestedObjPropInfo = propertyType.GetProperty(v);
MemberExpression nestedOrigin2 = Expression.Property(objNestedMemberExpression, nestedObjPropInfo);
var binding2 = Expression.Bind(nestedObjPropInfo, nestedOrigin2);
return binding2;
});
MemberInitExpression nestedInit = Expression.MemberInit(innerObjNew, nestedBindings);
shpNestedPropertyBindings.Add(Expression.Bind(objClassPropInfo, nestedInit));
}
else
{
Expression mbr = xParameter;
mbr = Expression.PropertyOrField(mbr, keyValuePair.Key);
PropertyInfo mi = _typeOfBaseClass.GetProperty( ((MemberExpression)mbr).Member.Name );
var xOriginal = Expression.Property(xParameter, mi);
shpNestedPropertyBindings.Add(Expression.Bind(mi, xOriginal));
}
}
var xInit = Expression.MemberInit(xNew, shpNestedPropertyBindings);
var lambda = Expression.Lambda<Func<T,T>>( xInit, xParameter );
return lambda.Compile();
}

Thank you #morio. Your comment about Expression<Func<T, T>> is exactly what I needed to make this work.
I do not know how to perform an anonymous projection which seems like what most want. I say I want Field1 and Field2 from Data and I get back something like: new { Field1 = o.Field1, Field2 = o.Field2 };
But I have a need similar to many where I want to plot x and y values, but don't know until run time which ones they are.
So rather than use an anonymous object, I create one that has the properties I want. In this case, X and Y.
Here are the source and target classes:
public class Source
{
public int PropertyA { get; set; }
public double PropertyB { get; set; }
public double PropertyC { get; set; }
}
public class Target
{
public double X { get; set; }
public double Y { get; set; }
}
And here is the code that does the mapping between the Source and the Target.
public static class SelectBuilder
{
/// <summary>
/// Creates a Func that can be used in a Linq Select statement that will map from the source items to a new target type.
/// Typical usage pattern is that you have an Entity that has many properties, but you want to dynamically set properties
/// on a smaller target type, AND, you don't know the mapping at compile time.
/// For example, you have an Entity that has a year and 10 properties. You want to have time (year) as the X axis, but
/// the user can chose any of the 10 properties to plot on the y axis. This would allow you to map one of the entity
/// properties to the Y value dynamically.
/// </summary>
/// <typeparam name="TSource">Type of the source, for example, and Entity Framework entity.</typeparam>
/// <typeparam name="TTarget">Type of the target, a projection of a smaller number of properties than the entity has.</typeparam>
/// <param name="propertyMappings">A list of named tuples that map the sourceProperty to the targetProperty.</param>
/// <returns>A func that can be used inside the Select.
/// So if
/// var select = SelectBuilder.GetSelectStatement<Source, Target>(propertyMappings), then
/// you can perform the select,
/// var results = items.Select(select);</returns>
public static Expression<Func<TSource, TTarget>> GetSelectStatement<TSource, TTarget>(IEnumerable<(string sourceProperty, string targetProperty)> propertyMappings)
{
// Get the source parameter, "source". This will allow the statement to be "X = source.SourceA".
// It needs to be of the source type, and the name is what will be used in the Select lambda.
var sourceParameter = Expression.Parameter(typeof(TSource), "source");
// Now define the ability to create a new Target type.
var newTarget = Expression.New(typeof(TTarget));
// Now develop the bindings or member assignments for each property.
var bindings = new List<MemberAssignment>();
foreach (var propertyMapping in propertyMappings)
{
var sourceMemberInfo = typeof(TSource).GetProperty(propertyMapping.sourceProperty);
var targetMemberInfo = typeof(TTarget).GetProperty(propertyMapping.targetProperty);
// This allows getting the value. Source parameter will provide the "source" part and sourceMemberInfo the property name.
// For example, "source.SourceA".
var sourceValue = Expression.Property(sourceParameter, sourceMemberInfo);
// Provide conversion in the event there is not a perfect match for the type.
// For example, if SourceA is int and the target X is double?, we need to convert from int to double?
var convertExpression = Expression.Convert(sourceValue, targetMemberInfo.PropertyType);
// Put together the target assignment, "X = Convert(source.SourcA, double?)" (TODO: How does the convert actually happen?)
var targetAssignment = Expression.Bind(targetMemberInfo, convertExpression);
bindings.Add(targetAssignment);
}
var memberInit = Expression.MemberInit(newTarget, bindings);
// Here if we map SourceA to X and SourceB to Y the lambda will be:
// {source => new Target() {X = Convert(source.SourceA, Nullable`1), Y = Convert(source.SourceB, Nullable`1)}}
var lambda = Expression.Lambda<Func<TSource, TTarget>>(memberInit, sourceParameter);
return lambda;//.Compile();
}
}
And finally a unit test that works.
[Fact(DisplayName = "GetSelectStatement works")]
public void Test2()
{
// Arrange
var source = new Source { PropertyA = 1, PropertyB = 2, PropertyC = 3 };
var expectedX = Convert.ToDouble(source.PropertyA);
var expectedY = Convert.ToDouble(source.PropertyB);
var items = new List<Source> { source }.AsQueryable();
// Let's map SourceA to X and SourceB to Y.
var propertyMappings = new List<(string sourceProperty, string targetProperty)>
{
("PropertyA", "X"), ("PropertyB", "Y")
//(nameof(Source.PropertyA), nameof(Target.X)),
//(nameof(Source.PropertyB), nameof(Target.Y))
};
// Act
var select = SelectBuilder.GetSelectStatement<Source, Target>(propertyMappings);
var actual = items.Select(select).First();
// Assert
actual.X.Should().Be(expectedX);
actual.Y.Should().Be(expectedY);
}
I've edited my previous answer since now I know how to convert from int to double. I've also made the unit test easier to understand.
I hope this helps others.

Using ExpandoObject you can build a dynamic objects or return the full object from the example below.
public object CreateShappedObject(object obj, List<string> lstFields)
{
if (!lstFields.Any())
{
return obj;
}
else
{
ExpandoObject objectToReturn = new ExpandoObject();
foreach (var field in lstFields)
{
var fieldValue = obj.GetType()
.GetProperty(field, BindingFlags.IgnoreCase | BindingFlags.Public | BindingFlags.Instance)
.GetValue(obj, null);
((IDictionary<string, object>)objectToReturn).Add(field, fieldValue);
}
return objectToReturn;
}
}
The following is an example of how to use this from your controller.
http://localhost:12345/api/yourapi?fields=field1,field2
public IHttpActionResult Get(string fields = null)
{
try
{
List<string> lstFields = new List<string>();
if (fields != null)
{
lstFields = fields.ToLower().Split(',').ToList();
}
// Custom query
var result = db.data.Select(i => CreateShappedObject(new Data()
, lstFields)).ToList();
return Ok(result);
}
catch(Exception)
{
return InternalServerError();
}
}

var result = from g in list.AsEnumerable()
select new {F1 = g.Field1,F2 = g.Field2};

Related

How can we select fields from one list i.e. List<TEntity> on the basis of fields in another list i.e. List<string> [duplicate]

Consider we have this class :
public class Data
{
public string Field1 { get; set; }
public string Field2 { get; set; }
public string Field3 { get; set; }
public string Field4 { get; set; }
public string Field5 { get; set; }
}
How do I dynamically select for specify columns ? something like this :
var list = new List<Data>();
var result= list.Select("Field1,Field2"); // How ?
Is this the only solution => Dynamic LINQ ?
Selected fields are not known at compile time. They would be specified at runtime
You can do this by dynamically creating the lambda you pass to Select:
Func<Data,Data> CreateNewStatement( string fields )
{
// input parameter "o"
var xParameter = Expression.Parameter( typeof( Data ), "o" );
// new statement "new Data()"
var xNew = Expression.New( typeof( Data ) );
// create initializers
var bindings = fields.Split( ',' ).Select( o => o.Trim() )
.Select( o => {
// property "Field1"
var mi = typeof( Data ).GetProperty( o );
// original value "o.Field1"
var xOriginal = Expression.Property( xParameter, mi );
// set value "Field1 = o.Field1"
return Expression.Bind( mi, xOriginal );
}
);
// initialization "new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var xInit = Expression.MemberInit( xNew, bindings );
// expression "o => new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var lambda = Expression.Lambda<Func<Data,Data>>( xInit, xParameter );
// compile to Func<Data, Data>
return lambda.Compile();
}
Then you can use it like this:
var result = list.Select( CreateNewStatement( "Field1, Field2" ) );
In addition for Nicholas Butler and the hint in comment of Matt(that use T for type of input class), I put an improve to Nicholas answer that generate the property of entity dynamically and the function does not need to send field as parameter.
For Use add class as below:
public static class Helpers
{
public static Func<T, T> DynamicSelectGenerator<T>(string Fields = "")
{
string[] EntityFields;
if (Fields == "")
// get Properties of the T
EntityFields = typeof(T).GetProperties().Select(propertyInfo => propertyInfo.Name).ToArray();
else
EntityFields = Fields.Split(',');
// input parameter "o"
var xParameter = Expression.Parameter(typeof(T), "o");
// new statement "new Data()"
var xNew = Expression.New(typeof(T));
// create initializers
var bindings = EntityFields.Select(o => o.Trim())
.Select(o =>
{
// property "Field1"
var mi = typeof(T).GetProperty(o);
// original value "o.Field1"
var xOriginal = Expression.Property(xParameter, mi);
// set value "Field1 = o.Field1"
return Expression.Bind(mi, xOriginal);
}
);
// initialization "new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var xInit = Expression.MemberInit(xNew, bindings);
// expression "o => new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var lambda = Expression.Lambda<Func<T, T>>(xInit, xParameter);
// compile to Func<Data, Data>
return lambda.Compile();
}
}
The DynamicSelectGenerator method get entity with type T, this method have optional input parameter Fields that if you want to select special field from entity send as a string such as "Field1, Field2" and if you don't send anything to method, it returns all of the fields of entity, you could use this method as below:
using (AppDbContext db = new AppDbContext())
{
//select "Field1, Field2" from entity
var result = db.SampleEntity.Select(Helpers.DynamicSelectGenerator<SampleEntity>("Field1, Field2")).ToList();
//select all field from entity
var result1 = db.SampleEntity.Select(Helpers.DynamicSelectGenerator<SampleEntity>()).ToList();
}
(Assume that you have a DbContext with name AppDbContext and the context have an entity with name SampleEntity)
You must use reflection to get and set property value with it's name.
var result = new List<Data>();
var data = new Data();
var type = data.GetType();
var fieldName = "Something";
for (var i = 0; i < list.Count; i++)
{
foreach (var property in data.GetType().GetProperties())
{
if (property.Name == fieldName)
{
type.GetProperties().FirstOrDefault(n => n.Name == property.Name).SetValue(data, GetPropValue(list[i], property.Name), null);
result.Add(data);
}
}
}
And here is GetPropValue() method
public static object GetPropValue(object src, string propName)
{
return src.GetType().GetProperty(propName).GetValue(src, null);
}
Using Reflection and Expression bulid can do what you say.
Example:
var list = new List<Data>();
//bulid a expression tree to create a paramter
ParameterExpression param = Expression.Parameter(typeof(Data), "d");
//bulid expression tree:data.Field1
Expression selector = Expression.Property(param,typeof(Data).GetProperty("Field1"));
Expression pred = Expression.Lambda(selector, param);
//bulid expression tree:Select(d=>d.Field1)
Expression expr = Expression.Call(typeof(Queryable), "Select",
new Type[] { typeof(Data), typeof(string) },
Expression.Constant(list.AsQueryable()), pred);
//create dynamic query
IQueryable<string> query = list.AsQueryable().Provider.CreateQuery<string>(expr);
var result=query.ToList();
I writing the method in following line for you can work with nested fields taking advantage of Nicholas Butler and Ali.
You can use this method for dynamically creating to lambda for pass to select and also works for nested fields. You can also work with IQueryable cases.
/// <param name="Fields">
/// Format1: "Field1"
/// Format2: "Nested1.Field1"
/// Format3: "Field1:Field1Alias"
/// </param>
public static Expression<Func<T, TSelect>> DynamicSelectGenerator<T, TSelect>(params string[] Fields)
{
string[] EntityFields = Fields;
if (Fields == null || Fields.Length == 0)
// get Properties of the T
EntityFields = typeof(T).GetProperties().Select(propertyInfo => propertyInfo.Name).ToArray();
// input parameter "x"
var xParameter = Expression.Parameter(typeof(T), "x");
// new statement "new Data()"
var xNew = Expression.New(typeof(TSelect));
// create initializers
var bindings = EntityFields
.Select(x =>
{
string[] xFieldAlias = x.Split(":");
string field = xFieldAlias[0];
string[] fieldSplit = field.Split(".");
if (fieldSplit.Length > 1)
{
// original value "x.Nested.Field1"
Expression exp = xParameter;
foreach (string item in fieldSplit)
exp = Expression.PropertyOrField(exp, item);
// property "Field1"
PropertyInfo member2 = null;
if (xFieldAlias.Length > 1)
member2 = typeof(TSelect).GetProperty(xFieldAlias[1]);
else
member2 = typeof(T).GetProperty(fieldSplit[fieldSplit.Length - 1]);
// set value "Field1 = x.Nested.Field1"
var res = Expression.Bind(member2, exp);
return res;
}
// property "Field1"
var mi = typeof(T).GetProperty(field);
PropertyInfo member;
if (xFieldAlias.Length > 1)
member = typeof(TSelect).GetProperty(xFieldAlias[1]);
else member = typeof(TSelect).GetProperty(field);
// original value "x.Field1"
var xOriginal = Expression.Property(xParameter, mi);
// set value "Field1 = x.Field1"
return Expression.Bind(member, xOriginal);
}
);
// initialization "new Data { Field1 = x.Field1, Field2 = x.Field2 }"
var xInit = Expression.MemberInit(xNew, bindings);
// expression "x => new Data { Field1 = x.Field1, Field2 = x.Field2 }"
var lambda = Expression.Lambda<Func<T, TSelect>>(xInit, xParameter);
return lambda;
}
Usage:
var s = DynamicSelectGenerator<SalesTeam, SalesTeamSelect>(
"Name:SalesTeamName",
"Employee.FullName:SalesTeamExpert"
);
var res = _context.SalesTeam.Select(s);
public class SalesTeam
{
public string Name {get; set; }
public Guid EmployeeId { get; set; }
public Employee Employee { get; set; }
}
public class SalesTeamSelect
{
public string SalesTeamName {get; set; }
public string SalesTeamExpert {get; set; }
}
The OP mentioned Dynamic Linq library, so I'd like to lay out an explanation on its usage.
1. Dynamic Linq Built-In Select
Dynamic Linq has a built-in Select method, which can be used as follows:
var numbers = new List<int> { 1, 2, 3 };
var wrapped = numbers.Select(num => new { Value = num }).ToList();
// the "it" keyword functions as the lambda parameter,
// so essentialy it's like calling: numbers.Select(num => num)
var selectedNumbers = numbers.Select("it");
// the following is the equivalent of calling: wrapped.Select(num => num.Value)
var selectedValues = wrapped.Select("Value");
// the following is the equivalent of calling: numbers.Select(num => new { Value = num })
var selectedObjects = numbers.Select("new(it as Value)");
foreach (int num in selectedNumbers) Console.WriteLine(num);
foreach (int val in selectedValues) Console.WriteLine(val);
foreach (dynamic obj in selectedObjects) Console.WriteLine(obj.Value);
The Downside
There's somewhat a downside using the built-in Select:
Since it's an IQueryable - not IQueryable<T> - extension method, with IQueryable as its return type, common materialization methods - like ToList or FirstOrDefault - can't be used. This is why the above example uses foreach - it's simply the only convenient way of materializing the results.
So to make things more convenient, let's support these methods.
2. Supporting Select<T> in Dynamic Linq (to enable using ToList and alike)
To support Select<T>, it needs to be added into the Dynamic Linq file. The simple steps for doing that are explained in this answer and in my comment on it.
After doing so, it can be used in the following way:
var numbers = new List<int> { 1, 2, 3 };
var wrapped = numbers.Select(num => new { Value = num }).ToList();
// the following is the equivalent of calling: numbers.Select(num => num).ToList()
var selectedNumbers = numbers.Select<int>("it").ToList();
// the following is the equivalent of calling: wrapped.Select(num => num.Value).ToList()
var selectedValues = wrapped.Select<int>("Value").ToList();
// the following is the equivalent of calling: numbers.Select(num => new { Value = num }).ToList()
var selectedObjects = numbers.Select<object>("new(it as Value)").ToList();
The Downside
Arguably, this implementation introduces yet another kind of downside: By having to explicitly parameterize the Select<T> call (e.g., having to call Select<int>), we're losing the dynamic nature of the library.
Nevertheless, since we can now call any materialization Linq method, this usage may still be quite useful.
I simplified the amazing method DynamicSelectGenerator() created by Ali and made this extension method that overrides the LINQ Select() to take a column separated parameters to simplify the usage and for more readability:
public static IEnumerable<T> Select<T>(this IEnumerable<T> source, string parameters)
{
return source.Select(DynamicSelectGenerator<T>(parameters));
}
So instead of:
var query = list.Select(Helpers.DynamicSelectGenerator<Data>("Field1,Field2")).ToList();
Will be:
var query = list.Select("Field1,Field2").ToList();
Another approach I've used is a nested ternary operator:
string col = "Column3";
var query = table.Select(i => col == "Column1" ? i.Column1 :
col == "Column2" ? i.Column2 :
col == "Column3" ? i.Column3 :
col == "Column4" ? i.Column4 :
null);
The ternary operator requires that each field be the same type, so you'll need to call .ToString() on any non-string columns.
I have generate my own class for same purpose of usage.
github gist : https://gist.github.com/mstrYoda/663789375b0df23e2662a53bebaf2c7c
It generates dynamic select lambda for given string and also support for two level nested properties.
Example of usage is :
class Shipment {
// other fields...
public Address Sender;
public Address Recipient;
}
class Address {
public string AddressText;
public string CityName;
public string CityId;
}
// in the service method
var shipmentDtos = _context.Shipments.Where(s => request.ShipmentIdList.Contains(s.Id))
.Select(new SelectLambdaBuilder<Shipment>().CreateNewStatement(request.Fields)) // request.Fields = "Sender.CityName,Sender.CityId"
.ToList();
It compiles the lambda as below:
s => new Shipment {
Sender = new Address {
CityId = s.Sender.CityId,
CityName = s.Sender.CityName
}
}
You can also find my quesion and answer here :c# - Dynamically generate linq select with nested properties
public class SelectLambdaBuilder<T>
{
// as a performence consideration I cached already computed type-properties
private static Dictionary<Type, PropertyInfo[]> _typePropertyInfoMappings = new Dictionary<Type, PropertyInfo[]>();
private readonly Type _typeOfBaseClass = typeof(T);
private Dictionary<string, List<string>> GetFieldMapping(string fields)
{
var selectedFieldsMap = new Dictionary<string, List<string>>();
foreach (var s in fields.Split(','))
{
var nestedFields = s.Split('.').Select(f => f.Trim()).ToArray();
var nestedValue = nestedFields.Length > 1 ? nestedFields[1] : null;
if (selectedFieldsMap.Keys.Any(key => key == nestedFields[0]))
{
selectedFieldsMap[nestedFields[0]].Add(nestedValue);
}
else
{
selectedFieldsMap.Add(nestedFields[0], new List<string> { nestedValue });
}
}
return selectedFieldsMap;
}
public Func<T, T> CreateNewStatement(string fields)
{
ParameterExpression xParameter = Expression.Parameter(_typeOfBaseClass, "s");
NewExpression xNew = Expression.New(_typeOfBaseClass);
var selectFields = GetFieldMapping(fields);
var shpNestedPropertyBindings = new List<MemberAssignment>();
foreach (var keyValuePair in selectFields)
{
PropertyInfo[] propertyInfos;
if (!_typePropertyInfoMappings.TryGetValue(_typeOfBaseClass, out propertyInfos))
{
var properties = _typeOfBaseClass.GetProperties();
propertyInfos = properties;
_typePropertyInfoMappings.Add(_typeOfBaseClass, properties);
}
var propertyType = propertyInfos
.FirstOrDefault(p => p.Name.ToLowerInvariant().Equals(keyValuePair.Key.ToLowerInvariant()))
.PropertyType;
if (propertyType.IsClass)
{
PropertyInfo objClassPropInfo = _typeOfBaseClass.GetProperty(keyValuePair.Key);
MemberExpression objNestedMemberExpression = Expression.Property(xParameter, objClassPropInfo);
NewExpression innerObjNew = Expression.New(propertyType);
var nestedBindings = keyValuePair.Value.Select(v =>
{
PropertyInfo nestedObjPropInfo = propertyType.GetProperty(v);
MemberExpression nestedOrigin2 = Expression.Property(objNestedMemberExpression, nestedObjPropInfo);
var binding2 = Expression.Bind(nestedObjPropInfo, nestedOrigin2);
return binding2;
});
MemberInitExpression nestedInit = Expression.MemberInit(innerObjNew, nestedBindings);
shpNestedPropertyBindings.Add(Expression.Bind(objClassPropInfo, nestedInit));
}
else
{
Expression mbr = xParameter;
mbr = Expression.PropertyOrField(mbr, keyValuePair.Key);
PropertyInfo mi = _typeOfBaseClass.GetProperty( ((MemberExpression)mbr).Member.Name );
var xOriginal = Expression.Property(xParameter, mi);
shpNestedPropertyBindings.Add(Expression.Bind(mi, xOriginal));
}
}
var xInit = Expression.MemberInit(xNew, shpNestedPropertyBindings);
var lambda = Expression.Lambda<Func<T,T>>( xInit, xParameter );
return lambda.Compile();
}
Thank you #morio. Your comment about Expression<Func<T, T>> is exactly what I needed to make this work.
I do not know how to perform an anonymous projection which seems like what most want. I say I want Field1 and Field2 from Data and I get back something like: new { Field1 = o.Field1, Field2 = o.Field2 };
But I have a need similar to many where I want to plot x and y values, but don't know until run time which ones they are.
So rather than use an anonymous object, I create one that has the properties I want. In this case, X and Y.
Here are the source and target classes:
public class Source
{
public int PropertyA { get; set; }
public double PropertyB { get; set; }
public double PropertyC { get; set; }
}
public class Target
{
public double X { get; set; }
public double Y { get; set; }
}
And here is the code that does the mapping between the Source and the Target.
public static class SelectBuilder
{
/// <summary>
/// Creates a Func that can be used in a Linq Select statement that will map from the source items to a new target type.
/// Typical usage pattern is that you have an Entity that has many properties, but you want to dynamically set properties
/// on a smaller target type, AND, you don't know the mapping at compile time.
/// For example, you have an Entity that has a year and 10 properties. You want to have time (year) as the X axis, but
/// the user can chose any of the 10 properties to plot on the y axis. This would allow you to map one of the entity
/// properties to the Y value dynamically.
/// </summary>
/// <typeparam name="TSource">Type of the source, for example, and Entity Framework entity.</typeparam>
/// <typeparam name="TTarget">Type of the target, a projection of a smaller number of properties than the entity has.</typeparam>
/// <param name="propertyMappings">A list of named tuples that map the sourceProperty to the targetProperty.</param>
/// <returns>A func that can be used inside the Select.
/// So if
/// var select = SelectBuilder.GetSelectStatement<Source, Target>(propertyMappings), then
/// you can perform the select,
/// var results = items.Select(select);</returns>
public static Expression<Func<TSource, TTarget>> GetSelectStatement<TSource, TTarget>(IEnumerable<(string sourceProperty, string targetProperty)> propertyMappings)
{
// Get the source parameter, "source". This will allow the statement to be "X = source.SourceA".
// It needs to be of the source type, and the name is what will be used in the Select lambda.
var sourceParameter = Expression.Parameter(typeof(TSource), "source");
// Now define the ability to create a new Target type.
var newTarget = Expression.New(typeof(TTarget));
// Now develop the bindings or member assignments for each property.
var bindings = new List<MemberAssignment>();
foreach (var propertyMapping in propertyMappings)
{
var sourceMemberInfo = typeof(TSource).GetProperty(propertyMapping.sourceProperty);
var targetMemberInfo = typeof(TTarget).GetProperty(propertyMapping.targetProperty);
// This allows getting the value. Source parameter will provide the "source" part and sourceMemberInfo the property name.
// For example, "source.SourceA".
var sourceValue = Expression.Property(sourceParameter, sourceMemberInfo);
// Provide conversion in the event there is not a perfect match for the type.
// For example, if SourceA is int and the target X is double?, we need to convert from int to double?
var convertExpression = Expression.Convert(sourceValue, targetMemberInfo.PropertyType);
// Put together the target assignment, "X = Convert(source.SourcA, double?)" (TODO: How does the convert actually happen?)
var targetAssignment = Expression.Bind(targetMemberInfo, convertExpression);
bindings.Add(targetAssignment);
}
var memberInit = Expression.MemberInit(newTarget, bindings);
// Here if we map SourceA to X and SourceB to Y the lambda will be:
// {source => new Target() {X = Convert(source.SourceA, Nullable`1), Y = Convert(source.SourceB, Nullable`1)}}
var lambda = Expression.Lambda<Func<TSource, TTarget>>(memberInit, sourceParameter);
return lambda;//.Compile();
}
}
And finally a unit test that works.
[Fact(DisplayName = "GetSelectStatement works")]
public void Test2()
{
// Arrange
var source = new Source { PropertyA = 1, PropertyB = 2, PropertyC = 3 };
var expectedX = Convert.ToDouble(source.PropertyA);
var expectedY = Convert.ToDouble(source.PropertyB);
var items = new List<Source> { source }.AsQueryable();
// Let's map SourceA to X and SourceB to Y.
var propertyMappings = new List<(string sourceProperty, string targetProperty)>
{
("PropertyA", "X"), ("PropertyB", "Y")
//(nameof(Source.PropertyA), nameof(Target.X)),
//(nameof(Source.PropertyB), nameof(Target.Y))
};
// Act
var select = SelectBuilder.GetSelectStatement<Source, Target>(propertyMappings);
var actual = items.Select(select).First();
// Assert
actual.X.Should().Be(expectedX);
actual.Y.Should().Be(expectedY);
}
I've edited my previous answer since now I know how to convert from int to double. I've also made the unit test easier to understand.
I hope this helps others.
Using ExpandoObject you can build a dynamic objects or return the full object from the example below.
public object CreateShappedObject(object obj, List<string> lstFields)
{
if (!lstFields.Any())
{
return obj;
}
else
{
ExpandoObject objectToReturn = new ExpandoObject();
foreach (var field in lstFields)
{
var fieldValue = obj.GetType()
.GetProperty(field, BindingFlags.IgnoreCase | BindingFlags.Public | BindingFlags.Instance)
.GetValue(obj, null);
((IDictionary<string, object>)objectToReturn).Add(field, fieldValue);
}
return objectToReturn;
}
}
The following is an example of how to use this from your controller.
http://localhost:12345/api/yourapi?fields=field1,field2
public IHttpActionResult Get(string fields = null)
{
try
{
List<string> lstFields = new List<string>();
if (fields != null)
{
lstFields = fields.ToLower().Split(',').ToList();
}
// Custom query
var result = db.data.Select(i => CreateShappedObject(new Data()
, lstFields)).ToList();
return Ok(result);
}
catch(Exception)
{
return InternalServerError();
}
}
var result = from g in list.AsEnumerable()
select new {F1 = g.Field1,F2 = g.Field2};

Expression.Lambda getter function compile

code:
static Func<T,object> CompileGetValueExpression<T>(PropertyInfo propertyInfo)
{
var instance = Expression.Parameter(propertyInfo.DeclaringType, "i");
var property = Expression.Property(instance, propertyInfo);
var convert = Expression.TypeAs(property, typeof(object));
return Expression.Lambda<Func<T,object>>(convert, instance).Compile();
}
e.g
void Main()
{
var data = new Test{prop1 = 1};
var type = data.GetType();
var prop = type.GetProperties().First();
var function = CompileGetValueExpression<Test>(prop);
var result = function(data); //result:1
}
class Test{
public int prop1 { get; set; }
}
question
Is this expression function exactly equal to below method?
object GetterFunction(Test i) => i.prop1 as object;
I think they are. One evidence is if you dump expression created in CompileGetValueExpression as string, it outputs i => (i.prop1 As Object).
Try to modify the last line of CompileGetValueExpression
Expression.Lambda<Func<T, object>>(convert, instance).ToString();

Dynamic creation of an expression query for getting data from Entity Framework

I want to create a query of type Expression that gets some columns of an entity from Entity Framework.
Assume we have two classes like this:
public class Parent
{
public int Id { get; set; }
public string Name { get; set; }
public Child MyChild { get; set; }
}
public class Child
{
public int Id { get; set; }
public string Name { get; set; }
}
And we have an IQueryable list of Parent:
var q = new List<Parent>()
{
new Parent {Id = 1, Name = "a", Number = 1, MyChild=new Child{Id=11,Name="Child_a",Number=2}},
new Parent {Id = 2, Name = "b", Number = 1, MyChild=new Child{Id=22,Name="Child_b",Number=2}},
new Parent {Id = 3, Name = "c", Number = 1, MyChild=new Child{Id=33,Name="Child_c",Number=2}},
}.AsQueryable();
I want to get a list of those properties of q that user determines them. For example user determines that he needs Parent.Name and Parent.MyChils.Name. So I should give the user a list of anonymous type like this:
{"a","Child_a"}
{"b","Child_b"}
{"c","Child_c"}
If the Parent entity doesn't contain any foreign key property (in this example MyChild property) it is so easy to create an expression property that takes some properties of Parent dynamically. I have a code that gets some properties of Person without MyChild property of it:
var columns = new List<string> { "Id", "Name" };
var xParam = Expression.Parameter(typeof(Parent), "x");
var sourceProperties = columns.ToDictionary(name => name,
name => q.ElementType.GetProperty(name));
var dynamicType = LinqRuntimeTypeBuilder.GetDynamicType(sourceProperties.Values);
var bindings =
dynamicType.GetFields()
.Select(p => Expression.Bind(p, Expression.Property(xParam, sourceProperties[p.Name])))
.OfType<MemberBinding>();
var newExpr = Expression.New(dynamicType.GetConstructor(Type.EmptyTypes));
Expression selector = Expression.Lambda(Expression.MemberInit(
Expression.New(dynamicType.GetConstructor(Type.EmptyTypes)), bindings), xParam);
var body = Expression.MemberInit(newExpr, bindings);
var lambda = Expression.Lambda<Func<Parent, dynamic>>(body, xParam);
var t = q.Select(lambda);
(2 used methods are here:)
public static Type GetDynamicType2(Dictionary<string, Type> fields)
{
if (null == fields)
throw new ArgumentNullException("fields");
if (0 == fields.Count)
throw new ArgumentOutOfRangeException("fields", "fields must have at least 1 field definition");
try
{
Monitor.Enter(builtTypes);
string className = "MyDynamicType";
if (builtTypes.ContainsKey(className))
return builtTypes[className];
TypeBuilder typeBuilder = moduleBuilder.DefineType(className,
TypeAttributes.Public | TypeAttributes.Class | TypeAttributes.Serializable);
foreach (var field in fields)
typeBuilder.DefineField(field.Key, field.Value, FieldAttributes.Public);
builtTypes[className] = typeBuilder.CreateType();
return builtTypes[className];
}
catch (Exception ex)
{
}
finally
{
Monitor.Exit(builtTypes);
}
return null;
}
public static Type GetDynamicType(IEnumerable<PropertyInfo> fields)
{
return GetDynamicType(fields.ToDictionary(f => f.Name, f => f.PropertyType));
}
But still I can't get internal properties of MyChild property of Parent.
How to do that?
Since nobody answered my question I tried many different ways to solve it, upshot problem solved utilizing recursive creation of Expression.
For every property of type Class (like MyChild in the question) we most create an Expression. Creation of Expressions most be recursive like this:
private Expression BuildExpression(Expression parentExpression,
Type parentPropertyType, string pathOfChildProperty)
{
string remainPathOfChild;
var childPropertyName =
GetFirstPropertyNameFromPathAndRemainPath(pathOfChildProperty, out remainPathOfChild);
if (string.IsNullOrEmpty(childPropertyName)) return parentExpression;
var childPropInfo = parentPropertyType.GetProperty(childPropertyName);
var childExpression = Expression.Property(parentExpression, childPropInfo);
return !string.IsNullOrEmpty(remainPathOfChild)
? BuildExpressionForInternalProperty(childExpression, childPropInfo.PropertyType, remainPathOfChild)
: childExpression;
}
private string GetFirstPropertyNameFromPathAndRemainPath(string path, out string remainPath)
{
if (string.IsNullOrEmpty(path))
{
remainPath = null;
return null;
}
var indexOfDot = path.IndexOf('.');
if (indexOfDot < 0)
{
remainPath = null;
return path;
}
remainPath = path.Substring(indexOfDot + 1);
return path.Substring(0, indexOfDot);
}
}
Recursive call will stop when remain path of internal property be empty.
In highest level the calling of this method is like this:
var inputParameter = Expression.Parameter(typeof(GrandParent), "x");
var expChildProperty =
BuildExpression(inputParameter,typeof(Parent),"Parent.MyChils.Name");
Finally result expression for above problem is (($x.Parent).MyChils).Name in debug view.

Is there a way to search a List<T> using a partially populated object?

Would like to be able to populate any properties of an object and search a collection for objects that match the given properties.
class Program
{
static List<Marble> marbles = new List<Marble> {
new Marble {Color = "Red", Size = 3},
new Marble {Color = "Green", Size = 4},
new Marble {Color = "Black", Size = 6}
};
static void Main()
{
var search1 = new Marble { Color = "Green" };
var search2 = new Marble { Size = 6 };
var results = SearchMarbles(search1);
}
public static IEnumerable<Marble> SearchMarbles(Marble search)
{
var results = from marble in marbles
//where ???
//Search for marbles with whatever property matches the populated properties of the parameter
//In this example it would return just the 'Green' marble
select marble;
return results;
}
public class Marble
{
public string Color { get; set; }
public int Size { get; set; }
}
}
Admittedly, it is interesting and take me time. First, you need to get all properties of search object which have value different with default value, this method is generic using reflection:
var properties = typeof (Marble).GetProperties().Where(p =>
{
var pType = p.PropertyType;
var defaultValue = pType.IsValueType
? Activator.CreateInstance(pType) : null;
var recentValue = p.GetValue(search);
return !recentValue.Equals(defaultValue);
});
Then you can use LINQ All to filter:
var results = marbles.Where(m =>
properties.All(p =>
typeof (Marble).GetProperty(p.Name)
.GetValue(m) == p.GetValue(search)));
P.s: This code has been tested
I am going to propose the generic solution which will work with any number of properties and with any object. It will also be usable in Linq-To-Sql context - it will translate well to sql.
First, start by defining function which will test if the given value is to be treated as a non-set, e.g:
static public bool IsDefault(object o)
{
return o == null || o.GetType().IsValueType && Activator.CreateInstance(o.GetType()).Equals(o);
}
Then, we will have a function which constructs a Lambda expression with test against the values of all set properties in search object:
static public Expression<Func<T, bool>> GetComparison<T>(T search)
{
var param = Expression.Parameter(typeof(T), "t");
var props = from p in typeof(T).GetProperties()
where p.CanRead && !IsDefault(p.GetValue(search, null))
select Expression.Equal(
Expression.Property(param, p.Name),
Expression.Constant(p.GetValue(search, null))
);
var expr = props.Aggregate((a, b) => Expression.AndAlso(a, b));
var lambda = Expression.Lambda<Func<T, bool>>(expr, param);
return lambda;
}
We can use it on any IQueryable:
public static IEnumerable<Marble> SearchMarbles (Marble search)
{
var results = marbles.AsQueryable().Where(GetComparison(search));
return results.AsEnumerable();
}
You can use a separate Filter class like this:
class Filter
{
public string PropertyName { get; set; }
public object PropertyValue { get; set; }
public bool Matches(Marble m)
{
var T = typeof(Marble);
var prop = T.GetProperty(PropertyName);
var value = prop.GetValue(m);
return value.Equals(PropertyValue);
}
}
You can use this Filter as follows:
var filters = new List<Filter>();
filters.Add(new Filter() { PropertyName = "Color", PropertyValue = "Green" });
//this is essentially the content of SearchMarbles()
var result = marbles.Where(m => filters.All(f => f.Matches(m)));
foreach (var r in result)
{
Console.WriteLine(r.Color + ", " + r.Size);
}
You could use DependencyProperties to get rid of typing the property name.
Assuming a property is unpopulated if it has the default value (i.e. Color == null and Size == 0):
var results = from marble in marbles
where (marble.Color == search.Color || search.Color == null)
&& (marble.Size == search.Size || search.Size == 0)
select marble;
You could override equals in your Marbles class
public override bool Equals(object obj)
{
var other = obj as Marble;
if (null == other) return false;
return other.Color == this.color && other.size == this.size; // (etc for your other porperties
}
and then you could search by
return marbles.Where(m => search == m);
Using reflection, this method will work on all types, regardless of how many or what type of properties they contain.
Will skip any properties that are not filled out (null for ref type, default value for value type). If it finds two properties that are filled out that do not match returns false. If all filled-out properties are equal returns true.
IsPartialMatch(object m1, object m2)
{
PropertyInfo[] properties = m1.GetType().GetProperties();
foreach (PropertyInfo property in properties)
{
object v1 = property.GetValue(m1, null);
object v2 = property.GetValue(m2, null);
object defaultValue = GetDefault(property.PropertyType);
if (v1.Equals(defaultValue) continue;
if (v2.Equals(defaultVAlue) continue;
if (!v1.Equals(v2)) return false;
}
return true;
}
To apply it to your example
public static IEnumerable<Marble> SearchMarbles(Marble search)
{
return marbles.Where(m => IsPartialMatch(m, search))
}
GetDefault() is method from this post, Programmatic equivalent of default(Type)
If you want to avoid targeting specific properties, you could use reflection. Start by defining a function that returns the default value of a type (see here for a simple solution, and here for something more elaborate).
Then, you can write a method on the Marble class, which takes an instance of Marble as a filter:
public bool MatchesSearch(Marble search) {
var t = typeof(Marble);
return !(
from prp in t.GetProperties()
//get the value from the search instance
let searchValue = prp.GetValue(search, null)
//check if the search value differs from the default
where searchValue != GetDefaultValue(prp.PropertyType) &&
//and if it differs from the current instance
searchValue != prp.GetValue(this, null)
select prp
).Any();
}
Then, the SearchMarbles becomes:
public static IEnumerable<Marble> SearchMarbles(Marble search) {
return
from marble in marbles
where marble.MatchesSearch(search)
select marble;
}

Lookup property in object graph via a string

I'm trying to access various parts of a nested class structure using a arbitrary string.
Given the following (contrived) classes:
public class Person
{
public Address PersonsAddress { get; set; }
}
public class Adddress
{
public PhoneNumber HousePhone { get; set; }
}
public class PhoneNumber
{
public string Number { get; set; }
}
I'd like to be able to get the object at "PersonsAddress.HousePhone.Number" from an instance of the Person object.
Currently I'm doing some funky recursive lookup using reflection, but I'm hoping that some ninjas out there have some better ideas.
For reference, here is the (crappy) method I've developed:
private static object ObjectFromString(object basePoint, IEnumerable<string> pathToSearch)
{
var numberOfPaths = pathToSearch.Count();
if (numberOfPaths == 0)
return null;
var type = basePoint.GetType();
var properties = type.GetProperties();
var currentPath = pathToSearch.First();
var propertyInfo = properties.FirstOrDefault(prop => prop.Name == currentPath);
if (propertyInfo == null)
return null;
var property = propertyInfo.GetValue(basePoint, null);
if (numberOfPaths == 1)
return property;
return ObjectFromString(property, pathToSearch.Skip(1));
}
You could simply use the standard .NET DataBinder.Eval Method, like this:
object result = DataBinder.Eval(myPerson, "PersonsAddress.HousePhone.Number");
I've had to some something similar in the past. I went with the lambda approach because after compiling them I can cache them. I've removed the caching in this code.
I included a few unit tests to show the usage of the method. I hope this is helpful.
private static object GetValueForPropertyOrField( object objectThatContainsPropertyName, IEnumerable<string> properties )
{
foreach ( var property in properties )
{
Type typeOfCurrentObject = objectThatContainsPropertyName.GetType();
var parameterExpression = Expression.Parameter( typeOfCurrentObject, "obj" );
Expression memberExpression = Expression.PropertyOrField( parameterExpression, property );
var expression = Expression.Lambda( Expression.GetDelegateType( typeOfCurrentObject, memberExpression.Type ), memberExpression, parameterExpression ).Compile();
objectThatContainsPropertyName = expression.DynamicInvoke( objectThatContainsPropertyName );
}
return objectThatContainsPropertyName;
}
[TestMethod]
public void TestOneProperty()
{
var dateTime = new DateTime();
var result = GetValueForPropertyOrField( dateTime, new[] { "Day" } );
Assert.AreEqual( dateTime.Day, result );
}
[TestMethod]
public void TestNestedProperties()
{
var dateTime = new DateTime();
var result = GetValueForPropertyOrField( dateTime, new[] { "Date", "Day" } );
Assert.AreEqual( dateTime.Date.Day, result );
}
[TestMethod]
public void TestDifferentNestedProperties()
{
var dateTime = new DateTime();
var result = GetValueForPropertyOrField( dateTime, new[] { "Date", "DayOfWeek" } );
Assert.AreEqual( dateTime.Date.DayOfWeek, result );
}
Here's a non-recursive version with (almost) the same semantics:
private static object ObjectFromString(object basePoint, IEnumerable<string> pathToSearch)
{
var value = basePoint;
foreach (var propertyName in pathToSearch)
{
var property = value.GetType().GetProperty(propertyName);
if (property == null) return null;
value = property.GetValue(value, null);
}
return value;
}
Since you are already interested in resolving string property paths, you may benefit from looking into the Dynamic LINQ query library posted as an example by Scott Guthrie # Microsoft. It parses your string expressions and produces express trees that can be compiled and cached as suggested by #Brian Dishaw.
This would provide you with a wealth of additional options by providing a simple and robust expression syntax you can use in your configuration approach. It supports the common LINQ methods on enumerables, plus simple operator logic, math calculations, property path evaluation, etc.
this is based on Brian's code, did some modification to support index addressing for List:
private static object GetValueForPropertyOrField( object objectThatContainsPropertyName, IEnumerable<string> properties )
{
foreach ( var property in properties )
{
Type typeOfCurrentObject = objectThatContainsPropertyName.GetType();
var parameterExpression = Expression.Parameter( typeOfCurrentObject, "obj" );
var arrayIndex = property.IndexOf('[');
if ( arrayIndex > 0)
{
var property1 = property.Substring(0, arrayIndex);
Expression memberExpression1 = Expression.PropertyOrField( parameterExpression, property1 );
var expression1 = Expression.Lambda( Expression.GetDelegateType( typeOfCurrentObject, memberExpression1.Type ), memberExpression1, parameterExpression ).Compile();
objectThatContainsPropertyName = expression1.DynamicInvoke( objectThatContainsPropertyName );
var index = Int32.Parse(property.Substring(arrayIndex+1, property.Length-arrayIndex-2));
typeOfCurrentObject = objectThatContainsPropertyName.GetType();
parameterExpression = Expression.Parameter( typeOfCurrentObject, "list" );
Expression memberExpression2 = Expression.Call(parameterExpression, typeOfCurrentObject.GetMethod("get_Item"), new Expression[] {Expression.Constant(index)});
var expression2 = Expression.Lambda( Expression.GetDelegateType( typeOfCurrentObject, memberExpression2.Type ), memberExpression2, parameterExpression ).Compile();
objectThatContainsPropertyName = expression2.DynamicInvoke( objectThatContainsPropertyName );
}
else
{
Expression memberExpression = Expression.PropertyOrField( parameterExpression, property );
var expression = Expression.Lambda( Expression.GetDelegateType( typeOfCurrentObject, memberExpression.Type ), memberExpression, parameterExpression ).Compile();
objectThatContainsPropertyName = expression.DynamicInvoke( objectThatContainsPropertyName );
}
}

Categories