Expression.Lambda getter function compile - c#

code:
static Func<T,object> CompileGetValueExpression<T>(PropertyInfo propertyInfo)
{
var instance = Expression.Parameter(propertyInfo.DeclaringType, "i");
var property = Expression.Property(instance, propertyInfo);
var convert = Expression.TypeAs(property, typeof(object));
return Expression.Lambda<Func<T,object>>(convert, instance).Compile();
}
e.g
void Main()
{
var data = new Test{prop1 = 1};
var type = data.GetType();
var prop = type.GetProperties().First();
var function = CompileGetValueExpression<Test>(prop);
var result = function(data); //result:1
}
class Test{
public int prop1 { get; set; }
}
question
Is this expression function exactly equal to below method?
object GetterFunction(Test i) => i.prop1 as object;

I think they are. One evidence is if you dump expression created in CompileGetValueExpression as string, it outputs i => (i.prop1 As Object).
Try to modify the last line of CompileGetValueExpression
Expression.Lambda<Func<T, object>>(convert, instance).ToString();

Related

Validating a value using a generic validator

I have a class implementation that inherits from AbstractValidator<T>
to keep things simple: Assume I have
public class Users{
[Required]
public string Name {get;set;}
}
what I woul like to do is to invoke
RuleFor(x => x.Name).NotEmpty();
but the properties will be know at runtime so I would like to do this with reflection and expression trees..
I'm failing to invoke RuleFor method, below is my implementation and the commented parts are things I've tried.. any help is much appreciated.
GenValidator<T> : AbstractValidator<T>
{
// constructor etc..
public async Task<IEnumerable<string>> ValidateValueAsync(T model, string propertyName)
{
try
{
var loType = model.GetType();
var property = loType.GetProperty(propertyName);
var param = Expression.Parameter(loType);
var propertyExpression = Expression.Property(param, property);
var lambdaExpressionType = typeof(Expression);
var lambda = Expression.Lambda(typeof(Func<,>).MakeGenericType(model.GetType(), typeof(object)), propertyExpression, param);
var lambdaMethod = typeof(Expression).GetMethod("Lambda", new Type[] { typeof(Type), typeof(Expression), typeof(ParameterExpression[]) });
var lambda2 = lambdaMethod.MakeGenericMethod(loType, typeof(object)).Invoke(null, new object[] { propertyExpression, new ParameterExpression[] { param } });
var compileMethod = lambda.GetType().GetMethod("Compile");
var func = compileMethod.Invoke(lambda2, null);
var ruleForMethod = typeof(AbstractValidator<T>).GetMethod("RuleFor");
var genericRuleForMethod = ruleForMethod.MakeGenericMethod(loType);
genericRuleForMethod.Invoke(this, new object[] { func });
//RuleFor<object>(lambda).NotEmpty().WithMessage("The property is required.");
//RuleFor(lambda.Compile()).NotEmpty().WithMessage("The property is required.");
}
catch (Exception ex)
{
}
//var lambda = Expression.Lambda<Func<T, object>>(property, param);
//RuleFor(lambda).NotEmpty().WithMessage("The property is required.");
var valContext = ValidationContext<T>.CreateWithOptions(model, x => x.IncludeProperties(_propertyName));
var result = await ValidateAsync(valContext);
if (result.IsValid)
{
return Array.Empty<string>();
}
return result.Errors.Select(e => e.ErrorMessage);
}
}
EDIT
public class MyValidator
{
public MyValidator(string propertyname)
{
// this is how you call using fluentvalidation but it's hardcoded.
RuleFor(x => x.Name).NotEmpty();
// I do know want to hard code.
//I want to do some magical stuff at this point
//and invoke the RuleFor method, I only have propertyname as a
//string, type of model and model at this point
}
}
EDIT2
private void GenericRuleFor(T Model, string propertyName)
{
var property = Model.GetType().GetProperty(propertyName);
var param = Expression.Parameter(Model.GetType());
var propertyExpression = Expression.Property(param, property);
var lambda = Expression.Lambda(typeof(Func<,>).MakeGenericType(Model.GetType(), property.PropertyType), propertyExpression, param);
var abstractValidatorType = typeof(AbstractValidator<>).MakeGenericType(Model.GetType());
var ruleForMethod = abstractValidatorType.GetMethods().First(m => m.Name == "RuleFor" && m.IsGenericMethodDefinition);
var genericRuleForMethod = ruleForMethod.MakeGenericMethod(property.PropertyType);
genericRuleForMethod.Invoke(this, new object[] { lambda });
}
this is the modified version of my code which still does not work..
it throws an exception when I invoke genericRuleForMethod
telling me that object type does not match Target type
Here is my working version of your GenericRuleFor is below. The main difference seems like you are trying to get the RuleFor method from the typeof(AbstractValidator<>) I just get it from the this.GetType()
private void GenericRuleFor(string propertyName)
{
var type = typeof(T);
var property = type.GetProperty(propertyName);
var param = Expression.Parameter(type);
var propertyExpression = Expression.Property(param, property);
var lambda = Expression.Lambda(typeof(Func<, >).MakeGenericType(type, property.PropertyType), propertyExpression, param);
var thisType = this.GetType();
var ruleForMethod = thisType.GetMethod("RuleFor", BindingFlags.Public | BindingFlags.Instance);
var genericRuleForMethod = ruleForMethod.MakeGenericMethod(property.PropertyType);
// result is used by extension method
var result = genericRuleForMethod.Invoke(this, new object[]{lambda});
//NotEmpty method is an Extension metot which is contained by DefaultValidatorExtensions
var extensionsType = typeof(DefaultValidatorExtensions);
var notEmptyMethod = extensionsType.GetMethod("NotEmpty", BindingFlags.Public | BindingFlags.Static).MakeGenericMethod(type, property.PropertyType);
notEmptyMethod.Invoke(null, new object[]{result});
}
Here is the fiddle

How can we select fields from one list i.e. List<TEntity> on the basis of fields in another list i.e. List<string> [duplicate]

Consider we have this class :
public class Data
{
public string Field1 { get; set; }
public string Field2 { get; set; }
public string Field3 { get; set; }
public string Field4 { get; set; }
public string Field5 { get; set; }
}
How do I dynamically select for specify columns ? something like this :
var list = new List<Data>();
var result= list.Select("Field1,Field2"); // How ?
Is this the only solution => Dynamic LINQ ?
Selected fields are not known at compile time. They would be specified at runtime
You can do this by dynamically creating the lambda you pass to Select:
Func<Data,Data> CreateNewStatement( string fields )
{
// input parameter "o"
var xParameter = Expression.Parameter( typeof( Data ), "o" );
// new statement "new Data()"
var xNew = Expression.New( typeof( Data ) );
// create initializers
var bindings = fields.Split( ',' ).Select( o => o.Trim() )
.Select( o => {
// property "Field1"
var mi = typeof( Data ).GetProperty( o );
// original value "o.Field1"
var xOriginal = Expression.Property( xParameter, mi );
// set value "Field1 = o.Field1"
return Expression.Bind( mi, xOriginal );
}
);
// initialization "new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var xInit = Expression.MemberInit( xNew, bindings );
// expression "o => new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var lambda = Expression.Lambda<Func<Data,Data>>( xInit, xParameter );
// compile to Func<Data, Data>
return lambda.Compile();
}
Then you can use it like this:
var result = list.Select( CreateNewStatement( "Field1, Field2" ) );
In addition for Nicholas Butler and the hint in comment of Matt(that use T for type of input class), I put an improve to Nicholas answer that generate the property of entity dynamically and the function does not need to send field as parameter.
For Use add class as below:
public static class Helpers
{
public static Func<T, T> DynamicSelectGenerator<T>(string Fields = "")
{
string[] EntityFields;
if (Fields == "")
// get Properties of the T
EntityFields = typeof(T).GetProperties().Select(propertyInfo => propertyInfo.Name).ToArray();
else
EntityFields = Fields.Split(',');
// input parameter "o"
var xParameter = Expression.Parameter(typeof(T), "o");
// new statement "new Data()"
var xNew = Expression.New(typeof(T));
// create initializers
var bindings = EntityFields.Select(o => o.Trim())
.Select(o =>
{
// property "Field1"
var mi = typeof(T).GetProperty(o);
// original value "o.Field1"
var xOriginal = Expression.Property(xParameter, mi);
// set value "Field1 = o.Field1"
return Expression.Bind(mi, xOriginal);
}
);
// initialization "new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var xInit = Expression.MemberInit(xNew, bindings);
// expression "o => new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var lambda = Expression.Lambda<Func<T, T>>(xInit, xParameter);
// compile to Func<Data, Data>
return lambda.Compile();
}
}
The DynamicSelectGenerator method get entity with type T, this method have optional input parameter Fields that if you want to select special field from entity send as a string such as "Field1, Field2" and if you don't send anything to method, it returns all of the fields of entity, you could use this method as below:
using (AppDbContext db = new AppDbContext())
{
//select "Field1, Field2" from entity
var result = db.SampleEntity.Select(Helpers.DynamicSelectGenerator<SampleEntity>("Field1, Field2")).ToList();
//select all field from entity
var result1 = db.SampleEntity.Select(Helpers.DynamicSelectGenerator<SampleEntity>()).ToList();
}
(Assume that you have a DbContext with name AppDbContext and the context have an entity with name SampleEntity)
You must use reflection to get and set property value with it's name.
var result = new List<Data>();
var data = new Data();
var type = data.GetType();
var fieldName = "Something";
for (var i = 0; i < list.Count; i++)
{
foreach (var property in data.GetType().GetProperties())
{
if (property.Name == fieldName)
{
type.GetProperties().FirstOrDefault(n => n.Name == property.Name).SetValue(data, GetPropValue(list[i], property.Name), null);
result.Add(data);
}
}
}
And here is GetPropValue() method
public static object GetPropValue(object src, string propName)
{
return src.GetType().GetProperty(propName).GetValue(src, null);
}
Using Reflection and Expression bulid can do what you say.
Example:
var list = new List<Data>();
//bulid a expression tree to create a paramter
ParameterExpression param = Expression.Parameter(typeof(Data), "d");
//bulid expression tree:data.Field1
Expression selector = Expression.Property(param,typeof(Data).GetProperty("Field1"));
Expression pred = Expression.Lambda(selector, param);
//bulid expression tree:Select(d=>d.Field1)
Expression expr = Expression.Call(typeof(Queryable), "Select",
new Type[] { typeof(Data), typeof(string) },
Expression.Constant(list.AsQueryable()), pred);
//create dynamic query
IQueryable<string> query = list.AsQueryable().Provider.CreateQuery<string>(expr);
var result=query.ToList();
I writing the method in following line for you can work with nested fields taking advantage of Nicholas Butler and Ali.
You can use this method for dynamically creating to lambda for pass to select and also works for nested fields. You can also work with IQueryable cases.
/// <param name="Fields">
/// Format1: "Field1"
/// Format2: "Nested1.Field1"
/// Format3: "Field1:Field1Alias"
/// </param>
public static Expression<Func<T, TSelect>> DynamicSelectGenerator<T, TSelect>(params string[] Fields)
{
string[] EntityFields = Fields;
if (Fields == null || Fields.Length == 0)
// get Properties of the T
EntityFields = typeof(T).GetProperties().Select(propertyInfo => propertyInfo.Name).ToArray();
// input parameter "x"
var xParameter = Expression.Parameter(typeof(T), "x");
// new statement "new Data()"
var xNew = Expression.New(typeof(TSelect));
// create initializers
var bindings = EntityFields
.Select(x =>
{
string[] xFieldAlias = x.Split(":");
string field = xFieldAlias[0];
string[] fieldSplit = field.Split(".");
if (fieldSplit.Length > 1)
{
// original value "x.Nested.Field1"
Expression exp = xParameter;
foreach (string item in fieldSplit)
exp = Expression.PropertyOrField(exp, item);
// property "Field1"
PropertyInfo member2 = null;
if (xFieldAlias.Length > 1)
member2 = typeof(TSelect).GetProperty(xFieldAlias[1]);
else
member2 = typeof(T).GetProperty(fieldSplit[fieldSplit.Length - 1]);
// set value "Field1 = x.Nested.Field1"
var res = Expression.Bind(member2, exp);
return res;
}
// property "Field1"
var mi = typeof(T).GetProperty(field);
PropertyInfo member;
if (xFieldAlias.Length > 1)
member = typeof(TSelect).GetProperty(xFieldAlias[1]);
else member = typeof(TSelect).GetProperty(field);
// original value "x.Field1"
var xOriginal = Expression.Property(xParameter, mi);
// set value "Field1 = x.Field1"
return Expression.Bind(member, xOriginal);
}
);
// initialization "new Data { Field1 = x.Field1, Field2 = x.Field2 }"
var xInit = Expression.MemberInit(xNew, bindings);
// expression "x => new Data { Field1 = x.Field1, Field2 = x.Field2 }"
var lambda = Expression.Lambda<Func<T, TSelect>>(xInit, xParameter);
return lambda;
}
Usage:
var s = DynamicSelectGenerator<SalesTeam, SalesTeamSelect>(
"Name:SalesTeamName",
"Employee.FullName:SalesTeamExpert"
);
var res = _context.SalesTeam.Select(s);
public class SalesTeam
{
public string Name {get; set; }
public Guid EmployeeId { get; set; }
public Employee Employee { get; set; }
}
public class SalesTeamSelect
{
public string SalesTeamName {get; set; }
public string SalesTeamExpert {get; set; }
}
The OP mentioned Dynamic Linq library, so I'd like to lay out an explanation on its usage.
1. Dynamic Linq Built-In Select
Dynamic Linq has a built-in Select method, which can be used as follows:
var numbers = new List<int> { 1, 2, 3 };
var wrapped = numbers.Select(num => new { Value = num }).ToList();
// the "it" keyword functions as the lambda parameter,
// so essentialy it's like calling: numbers.Select(num => num)
var selectedNumbers = numbers.Select("it");
// the following is the equivalent of calling: wrapped.Select(num => num.Value)
var selectedValues = wrapped.Select("Value");
// the following is the equivalent of calling: numbers.Select(num => new { Value = num })
var selectedObjects = numbers.Select("new(it as Value)");
foreach (int num in selectedNumbers) Console.WriteLine(num);
foreach (int val in selectedValues) Console.WriteLine(val);
foreach (dynamic obj in selectedObjects) Console.WriteLine(obj.Value);
The Downside
There's somewhat a downside using the built-in Select:
Since it's an IQueryable - not IQueryable<T> - extension method, with IQueryable as its return type, common materialization methods - like ToList or FirstOrDefault - can't be used. This is why the above example uses foreach - it's simply the only convenient way of materializing the results.
So to make things more convenient, let's support these methods.
2. Supporting Select<T> in Dynamic Linq (to enable using ToList and alike)
To support Select<T>, it needs to be added into the Dynamic Linq file. The simple steps for doing that are explained in this answer and in my comment on it.
After doing so, it can be used in the following way:
var numbers = new List<int> { 1, 2, 3 };
var wrapped = numbers.Select(num => new { Value = num }).ToList();
// the following is the equivalent of calling: numbers.Select(num => num).ToList()
var selectedNumbers = numbers.Select<int>("it").ToList();
// the following is the equivalent of calling: wrapped.Select(num => num.Value).ToList()
var selectedValues = wrapped.Select<int>("Value").ToList();
// the following is the equivalent of calling: numbers.Select(num => new { Value = num }).ToList()
var selectedObjects = numbers.Select<object>("new(it as Value)").ToList();
The Downside
Arguably, this implementation introduces yet another kind of downside: By having to explicitly parameterize the Select<T> call (e.g., having to call Select<int>), we're losing the dynamic nature of the library.
Nevertheless, since we can now call any materialization Linq method, this usage may still be quite useful.
I simplified the amazing method DynamicSelectGenerator() created by Ali and made this extension method that overrides the LINQ Select() to take a column separated parameters to simplify the usage and for more readability:
public static IEnumerable<T> Select<T>(this IEnumerable<T> source, string parameters)
{
return source.Select(DynamicSelectGenerator<T>(parameters));
}
So instead of:
var query = list.Select(Helpers.DynamicSelectGenerator<Data>("Field1,Field2")).ToList();
Will be:
var query = list.Select("Field1,Field2").ToList();
Another approach I've used is a nested ternary operator:
string col = "Column3";
var query = table.Select(i => col == "Column1" ? i.Column1 :
col == "Column2" ? i.Column2 :
col == "Column3" ? i.Column3 :
col == "Column4" ? i.Column4 :
null);
The ternary operator requires that each field be the same type, so you'll need to call .ToString() on any non-string columns.
I have generate my own class for same purpose of usage.
github gist : https://gist.github.com/mstrYoda/663789375b0df23e2662a53bebaf2c7c
It generates dynamic select lambda for given string and also support for two level nested properties.
Example of usage is :
class Shipment {
// other fields...
public Address Sender;
public Address Recipient;
}
class Address {
public string AddressText;
public string CityName;
public string CityId;
}
// in the service method
var shipmentDtos = _context.Shipments.Where(s => request.ShipmentIdList.Contains(s.Id))
.Select(new SelectLambdaBuilder<Shipment>().CreateNewStatement(request.Fields)) // request.Fields = "Sender.CityName,Sender.CityId"
.ToList();
It compiles the lambda as below:
s => new Shipment {
Sender = new Address {
CityId = s.Sender.CityId,
CityName = s.Sender.CityName
}
}
You can also find my quesion and answer here :c# - Dynamically generate linq select with nested properties
public class SelectLambdaBuilder<T>
{
// as a performence consideration I cached already computed type-properties
private static Dictionary<Type, PropertyInfo[]> _typePropertyInfoMappings = new Dictionary<Type, PropertyInfo[]>();
private readonly Type _typeOfBaseClass = typeof(T);
private Dictionary<string, List<string>> GetFieldMapping(string fields)
{
var selectedFieldsMap = new Dictionary<string, List<string>>();
foreach (var s in fields.Split(','))
{
var nestedFields = s.Split('.').Select(f => f.Trim()).ToArray();
var nestedValue = nestedFields.Length > 1 ? nestedFields[1] : null;
if (selectedFieldsMap.Keys.Any(key => key == nestedFields[0]))
{
selectedFieldsMap[nestedFields[0]].Add(nestedValue);
}
else
{
selectedFieldsMap.Add(nestedFields[0], new List<string> { nestedValue });
}
}
return selectedFieldsMap;
}
public Func<T, T> CreateNewStatement(string fields)
{
ParameterExpression xParameter = Expression.Parameter(_typeOfBaseClass, "s");
NewExpression xNew = Expression.New(_typeOfBaseClass);
var selectFields = GetFieldMapping(fields);
var shpNestedPropertyBindings = new List<MemberAssignment>();
foreach (var keyValuePair in selectFields)
{
PropertyInfo[] propertyInfos;
if (!_typePropertyInfoMappings.TryGetValue(_typeOfBaseClass, out propertyInfos))
{
var properties = _typeOfBaseClass.GetProperties();
propertyInfos = properties;
_typePropertyInfoMappings.Add(_typeOfBaseClass, properties);
}
var propertyType = propertyInfos
.FirstOrDefault(p => p.Name.ToLowerInvariant().Equals(keyValuePair.Key.ToLowerInvariant()))
.PropertyType;
if (propertyType.IsClass)
{
PropertyInfo objClassPropInfo = _typeOfBaseClass.GetProperty(keyValuePair.Key);
MemberExpression objNestedMemberExpression = Expression.Property(xParameter, objClassPropInfo);
NewExpression innerObjNew = Expression.New(propertyType);
var nestedBindings = keyValuePair.Value.Select(v =>
{
PropertyInfo nestedObjPropInfo = propertyType.GetProperty(v);
MemberExpression nestedOrigin2 = Expression.Property(objNestedMemberExpression, nestedObjPropInfo);
var binding2 = Expression.Bind(nestedObjPropInfo, nestedOrigin2);
return binding2;
});
MemberInitExpression nestedInit = Expression.MemberInit(innerObjNew, nestedBindings);
shpNestedPropertyBindings.Add(Expression.Bind(objClassPropInfo, nestedInit));
}
else
{
Expression mbr = xParameter;
mbr = Expression.PropertyOrField(mbr, keyValuePair.Key);
PropertyInfo mi = _typeOfBaseClass.GetProperty( ((MemberExpression)mbr).Member.Name );
var xOriginal = Expression.Property(xParameter, mi);
shpNestedPropertyBindings.Add(Expression.Bind(mi, xOriginal));
}
}
var xInit = Expression.MemberInit(xNew, shpNestedPropertyBindings);
var lambda = Expression.Lambda<Func<T,T>>( xInit, xParameter );
return lambda.Compile();
}
Thank you #morio. Your comment about Expression<Func<T, T>> is exactly what I needed to make this work.
I do not know how to perform an anonymous projection which seems like what most want. I say I want Field1 and Field2 from Data and I get back something like: new { Field1 = o.Field1, Field2 = o.Field2 };
But I have a need similar to many where I want to plot x and y values, but don't know until run time which ones they are.
So rather than use an anonymous object, I create one that has the properties I want. In this case, X and Y.
Here are the source and target classes:
public class Source
{
public int PropertyA { get; set; }
public double PropertyB { get; set; }
public double PropertyC { get; set; }
}
public class Target
{
public double X { get; set; }
public double Y { get; set; }
}
And here is the code that does the mapping between the Source and the Target.
public static class SelectBuilder
{
/// <summary>
/// Creates a Func that can be used in a Linq Select statement that will map from the source items to a new target type.
/// Typical usage pattern is that you have an Entity that has many properties, but you want to dynamically set properties
/// on a smaller target type, AND, you don't know the mapping at compile time.
/// For example, you have an Entity that has a year and 10 properties. You want to have time (year) as the X axis, but
/// the user can chose any of the 10 properties to plot on the y axis. This would allow you to map one of the entity
/// properties to the Y value dynamically.
/// </summary>
/// <typeparam name="TSource">Type of the source, for example, and Entity Framework entity.</typeparam>
/// <typeparam name="TTarget">Type of the target, a projection of a smaller number of properties than the entity has.</typeparam>
/// <param name="propertyMappings">A list of named tuples that map the sourceProperty to the targetProperty.</param>
/// <returns>A func that can be used inside the Select.
/// So if
/// var select = SelectBuilder.GetSelectStatement<Source, Target>(propertyMappings), then
/// you can perform the select,
/// var results = items.Select(select);</returns>
public static Expression<Func<TSource, TTarget>> GetSelectStatement<TSource, TTarget>(IEnumerable<(string sourceProperty, string targetProperty)> propertyMappings)
{
// Get the source parameter, "source". This will allow the statement to be "X = source.SourceA".
// It needs to be of the source type, and the name is what will be used in the Select lambda.
var sourceParameter = Expression.Parameter(typeof(TSource), "source");
// Now define the ability to create a new Target type.
var newTarget = Expression.New(typeof(TTarget));
// Now develop the bindings or member assignments for each property.
var bindings = new List<MemberAssignment>();
foreach (var propertyMapping in propertyMappings)
{
var sourceMemberInfo = typeof(TSource).GetProperty(propertyMapping.sourceProperty);
var targetMemberInfo = typeof(TTarget).GetProperty(propertyMapping.targetProperty);
// This allows getting the value. Source parameter will provide the "source" part and sourceMemberInfo the property name.
// For example, "source.SourceA".
var sourceValue = Expression.Property(sourceParameter, sourceMemberInfo);
// Provide conversion in the event there is not a perfect match for the type.
// For example, if SourceA is int and the target X is double?, we need to convert from int to double?
var convertExpression = Expression.Convert(sourceValue, targetMemberInfo.PropertyType);
// Put together the target assignment, "X = Convert(source.SourcA, double?)" (TODO: How does the convert actually happen?)
var targetAssignment = Expression.Bind(targetMemberInfo, convertExpression);
bindings.Add(targetAssignment);
}
var memberInit = Expression.MemberInit(newTarget, bindings);
// Here if we map SourceA to X and SourceB to Y the lambda will be:
// {source => new Target() {X = Convert(source.SourceA, Nullable`1), Y = Convert(source.SourceB, Nullable`1)}}
var lambda = Expression.Lambda<Func<TSource, TTarget>>(memberInit, sourceParameter);
return lambda;//.Compile();
}
}
And finally a unit test that works.
[Fact(DisplayName = "GetSelectStatement works")]
public void Test2()
{
// Arrange
var source = new Source { PropertyA = 1, PropertyB = 2, PropertyC = 3 };
var expectedX = Convert.ToDouble(source.PropertyA);
var expectedY = Convert.ToDouble(source.PropertyB);
var items = new List<Source> { source }.AsQueryable();
// Let's map SourceA to X and SourceB to Y.
var propertyMappings = new List<(string sourceProperty, string targetProperty)>
{
("PropertyA", "X"), ("PropertyB", "Y")
//(nameof(Source.PropertyA), nameof(Target.X)),
//(nameof(Source.PropertyB), nameof(Target.Y))
};
// Act
var select = SelectBuilder.GetSelectStatement<Source, Target>(propertyMappings);
var actual = items.Select(select).First();
// Assert
actual.X.Should().Be(expectedX);
actual.Y.Should().Be(expectedY);
}
I've edited my previous answer since now I know how to convert from int to double. I've also made the unit test easier to understand.
I hope this helps others.
Using ExpandoObject you can build a dynamic objects or return the full object from the example below.
public object CreateShappedObject(object obj, List<string> lstFields)
{
if (!lstFields.Any())
{
return obj;
}
else
{
ExpandoObject objectToReturn = new ExpandoObject();
foreach (var field in lstFields)
{
var fieldValue = obj.GetType()
.GetProperty(field, BindingFlags.IgnoreCase | BindingFlags.Public | BindingFlags.Instance)
.GetValue(obj, null);
((IDictionary<string, object>)objectToReturn).Add(field, fieldValue);
}
return objectToReturn;
}
}
The following is an example of how to use this from your controller.
http://localhost:12345/api/yourapi?fields=field1,field2
public IHttpActionResult Get(string fields = null)
{
try
{
List<string> lstFields = new List<string>();
if (fields != null)
{
lstFields = fields.ToLower().Split(',').ToList();
}
// Custom query
var result = db.data.Select(i => CreateShappedObject(new Data()
, lstFields)).ToList();
return Ok(result);
}
catch(Exception)
{
return InternalServerError();
}
}
var result = from g in list.AsEnumerable()
select new {F1 = g.Field1,F2 = g.Field2};

How can I convert a Parameter Expression into a function?

If I have a dynamically created ParameterExpression:
class Product
{
public string Name { get; set; }
}
var propertyName = "Name";
var propertyType = typeof(Product).GetProperty(propertyName).PropertyType;
var parameterExpression = Expression.Parameter(propertyType , propertyName);
How can I covert it into a Func<Product, TPropertyType>?
I specifically want to pass this into the Where or OrderBy linq methods used by entity framework.
I'm also open to other suggestions not using Expressions, but I highly doubt it's possible.
Edit 1: Removed the where use case as Where and OrderBy will have different implementations Removed in an attempt to narrow the scope of the question.
Here is an example with generating expressions for OrderBy and Where. As Johnathon Sullinger said in comments, you must know type of property you ordering by at compile time, because it is mentioned in signature of OrderBY. However you don't have to know it for Where:
class Product
{
public string Name { get; set; }
}
static void Main(string[] args)
{
var products = new List<Product> {
new Product { Name = "ZZZ"},
new Product { Name = "AAA"}
};
var propertyName = "Name";
var ordered = products.AsQueryable().OrderBy(GetOrderExpression<string>(propertyName));
Console.WriteLine(ordered.ElementAt(0).Name);
Console.WriteLine(ordered.ElementAt(1).Name);
var filtered = products.AsQueryable().Where(GetWhereExpression(propertyName, "AAA"));
Console.WriteLine(filtered.Count());
Console.WriteLine(filtered.ElementAt(0).Name);
Console.ReadKey();
}
static Expression<Func<Product, TKey>> GetOrderExpression<TKey>(string propertyName)
{
var prm = Expression.Parameter(typeof(Product), "p");
var prop = Expression.Property(prm, typeof(Product), propertyName);
var lambda = Expression.Lambda<Func<Product, TKey>>(prop, "p", new[] { prm });
return lambda;
}
static Expression<Func<Product, bool>> GetWhereExpression(string propertyName, object value)
{
var prm = Expression.Parameter(typeof(Product), "p");
var prop = Expression.Property(prm, typeof(Product), propertyName);
var equal = Expression.Equal(prop, Expression.Constant(value));
var lambda = Expression.Lambda<Func<Product, bool>>(equal, "p", new[] { prm });
return lambda;
}
Hope it helps.

cast left side of expression predicate into string

i am having a generic method which return an expression predicate to filter data from list.
MemberExpression member = Expression.Property(param, filter.ColumnName);
ConstantExpression constant = Expression.Constant(filter.TextToBeFiltered);
switch (filter.FilterOperation)
{
case FilterEnum.Equals:
return Expression.Equal(member, constant);
}
var res = List.Where(reqExpression).ToList();
Problem is the properties in list some of are string,int,guid etc so i want to cast left side of expression into string because i need to compare all properties with string only like a=> a.Id.tostring() == inputstringso how to perform it in my code.
Take a look at this full example:
class Program
{
class MyType
{
public int Column { get; set; }
};
public static string AsString(object obj)
{
return obj?.ToString();
}
static void Main(string[] args)
{
var param = Expression.Parameter(typeof(MyType));
//your member
MemberExpression member = Expression.Property(param, "Column");
var asString = typeof(Program).GetMethod("AsString");
var stringMember = Expression.Call(asString, Expression.Convert(member, typeof(object)));
//your value
ConstantExpression constant = Expression.Constant("23");
//your switch
var expression = Expression.Equal(stringMember, constant);
var lambda = Expression.Lambda(expression, param);
var list = new List<MyType>
{
new MyType{Column = 23},
new MyType{Column= 24}
};
var res = list.Where((Func<MyType,bool>)lambda.Compile()).ToList();
}
}
You can also use ToString method (beware nulls!) or Convert.ChangeType. Own AsString method is good for custom types and... for debugging.
Think as building code:
p => AsString((object)p.Column) == "23"

LINQ : Dynamic select

Consider we have this class :
public class Data
{
public string Field1 { get; set; }
public string Field2 { get; set; }
public string Field3 { get; set; }
public string Field4 { get; set; }
public string Field5 { get; set; }
}
How do I dynamically select for specify columns ? something like this :
var list = new List<Data>();
var result= list.Select("Field1,Field2"); // How ?
Is this the only solution => Dynamic LINQ ?
Selected fields are not known at compile time. They would be specified at runtime
You can do this by dynamically creating the lambda you pass to Select:
Func<Data,Data> CreateNewStatement( string fields )
{
// input parameter "o"
var xParameter = Expression.Parameter( typeof( Data ), "o" );
// new statement "new Data()"
var xNew = Expression.New( typeof( Data ) );
// create initializers
var bindings = fields.Split( ',' ).Select( o => o.Trim() )
.Select( o => {
// property "Field1"
var mi = typeof( Data ).GetProperty( o );
// original value "o.Field1"
var xOriginal = Expression.Property( xParameter, mi );
// set value "Field1 = o.Field1"
return Expression.Bind( mi, xOriginal );
}
);
// initialization "new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var xInit = Expression.MemberInit( xNew, bindings );
// expression "o => new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var lambda = Expression.Lambda<Func<Data,Data>>( xInit, xParameter );
// compile to Func<Data, Data>
return lambda.Compile();
}
Then you can use it like this:
var result = list.Select( CreateNewStatement( "Field1, Field2" ) );
In addition for Nicholas Butler and the hint in comment of Matt(that use T for type of input class), I put an improve to Nicholas answer that generate the property of entity dynamically and the function does not need to send field as parameter.
For Use add class as below:
public static class Helpers
{
public static Func<T, T> DynamicSelectGenerator<T>(string Fields = "")
{
string[] EntityFields;
if (Fields == "")
// get Properties of the T
EntityFields = typeof(T).GetProperties().Select(propertyInfo => propertyInfo.Name).ToArray();
else
EntityFields = Fields.Split(',');
// input parameter "o"
var xParameter = Expression.Parameter(typeof(T), "o");
// new statement "new Data()"
var xNew = Expression.New(typeof(T));
// create initializers
var bindings = EntityFields.Select(o => o.Trim())
.Select(o =>
{
// property "Field1"
var mi = typeof(T).GetProperty(o);
// original value "o.Field1"
var xOriginal = Expression.Property(xParameter, mi);
// set value "Field1 = o.Field1"
return Expression.Bind(mi, xOriginal);
}
);
// initialization "new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var xInit = Expression.MemberInit(xNew, bindings);
// expression "o => new Data { Field1 = o.Field1, Field2 = o.Field2 }"
var lambda = Expression.Lambda<Func<T, T>>(xInit, xParameter);
// compile to Func<Data, Data>
return lambda.Compile();
}
}
The DynamicSelectGenerator method get entity with type T, this method have optional input parameter Fields that if you want to select special field from entity send as a string such as "Field1, Field2" and if you don't send anything to method, it returns all of the fields of entity, you could use this method as below:
using (AppDbContext db = new AppDbContext())
{
//select "Field1, Field2" from entity
var result = db.SampleEntity.Select(Helpers.DynamicSelectGenerator<SampleEntity>("Field1, Field2")).ToList();
//select all field from entity
var result1 = db.SampleEntity.Select(Helpers.DynamicSelectGenerator<SampleEntity>()).ToList();
}
(Assume that you have a DbContext with name AppDbContext and the context have an entity with name SampleEntity)
You must use reflection to get and set property value with it's name.
var result = new List<Data>();
var data = new Data();
var type = data.GetType();
var fieldName = "Something";
for (var i = 0; i < list.Count; i++)
{
foreach (var property in data.GetType().GetProperties())
{
if (property.Name == fieldName)
{
type.GetProperties().FirstOrDefault(n => n.Name == property.Name).SetValue(data, GetPropValue(list[i], property.Name), null);
result.Add(data);
}
}
}
And here is GetPropValue() method
public static object GetPropValue(object src, string propName)
{
return src.GetType().GetProperty(propName).GetValue(src, null);
}
Using Reflection and Expression bulid can do what you say.
Example:
var list = new List<Data>();
//bulid a expression tree to create a paramter
ParameterExpression param = Expression.Parameter(typeof(Data), "d");
//bulid expression tree:data.Field1
Expression selector = Expression.Property(param,typeof(Data).GetProperty("Field1"));
Expression pred = Expression.Lambda(selector, param);
//bulid expression tree:Select(d=>d.Field1)
Expression expr = Expression.Call(typeof(Queryable), "Select",
new Type[] { typeof(Data), typeof(string) },
Expression.Constant(list.AsQueryable()), pred);
//create dynamic query
IQueryable<string> query = list.AsQueryable().Provider.CreateQuery<string>(expr);
var result=query.ToList();
I writing the method in following line for you can work with nested fields taking advantage of Nicholas Butler and Ali.
You can use this method for dynamically creating to lambda for pass to select and also works for nested fields. You can also work with IQueryable cases.
/// <param name="Fields">
/// Format1: "Field1"
/// Format2: "Nested1.Field1"
/// Format3: "Field1:Field1Alias"
/// </param>
public static Expression<Func<T, TSelect>> DynamicSelectGenerator<T, TSelect>(params string[] Fields)
{
string[] EntityFields = Fields;
if (Fields == null || Fields.Length == 0)
// get Properties of the T
EntityFields = typeof(T).GetProperties().Select(propertyInfo => propertyInfo.Name).ToArray();
// input parameter "x"
var xParameter = Expression.Parameter(typeof(T), "x");
// new statement "new Data()"
var xNew = Expression.New(typeof(TSelect));
// create initializers
var bindings = EntityFields
.Select(x =>
{
string[] xFieldAlias = x.Split(":");
string field = xFieldAlias[0];
string[] fieldSplit = field.Split(".");
if (fieldSplit.Length > 1)
{
// original value "x.Nested.Field1"
Expression exp = xParameter;
foreach (string item in fieldSplit)
exp = Expression.PropertyOrField(exp, item);
// property "Field1"
PropertyInfo member2 = null;
if (xFieldAlias.Length > 1)
member2 = typeof(TSelect).GetProperty(xFieldAlias[1]);
else
member2 = typeof(T).GetProperty(fieldSplit[fieldSplit.Length - 1]);
// set value "Field1 = x.Nested.Field1"
var res = Expression.Bind(member2, exp);
return res;
}
// property "Field1"
var mi = typeof(T).GetProperty(field);
PropertyInfo member;
if (xFieldAlias.Length > 1)
member = typeof(TSelect).GetProperty(xFieldAlias[1]);
else member = typeof(TSelect).GetProperty(field);
// original value "x.Field1"
var xOriginal = Expression.Property(xParameter, mi);
// set value "Field1 = x.Field1"
return Expression.Bind(member, xOriginal);
}
);
// initialization "new Data { Field1 = x.Field1, Field2 = x.Field2 }"
var xInit = Expression.MemberInit(xNew, bindings);
// expression "x => new Data { Field1 = x.Field1, Field2 = x.Field2 }"
var lambda = Expression.Lambda<Func<T, TSelect>>(xInit, xParameter);
return lambda;
}
Usage:
var s = DynamicSelectGenerator<SalesTeam, SalesTeamSelect>(
"Name:SalesTeamName",
"Employee.FullName:SalesTeamExpert"
);
var res = _context.SalesTeam.Select(s);
public class SalesTeam
{
public string Name {get; set; }
public Guid EmployeeId { get; set; }
public Employee Employee { get; set; }
}
public class SalesTeamSelect
{
public string SalesTeamName {get; set; }
public string SalesTeamExpert {get; set; }
}
The OP mentioned Dynamic Linq library, so I'd like to lay out an explanation on its usage.
1. Dynamic Linq Built-In Select
Dynamic Linq has a built-in Select method, which can be used as follows:
var numbers = new List<int> { 1, 2, 3 };
var wrapped = numbers.Select(num => new { Value = num }).ToList();
// the "it" keyword functions as the lambda parameter,
// so essentialy it's like calling: numbers.Select(num => num)
var selectedNumbers = numbers.Select("it");
// the following is the equivalent of calling: wrapped.Select(num => num.Value)
var selectedValues = wrapped.Select("Value");
// the following is the equivalent of calling: numbers.Select(num => new { Value = num })
var selectedObjects = numbers.Select("new(it as Value)");
foreach (int num in selectedNumbers) Console.WriteLine(num);
foreach (int val in selectedValues) Console.WriteLine(val);
foreach (dynamic obj in selectedObjects) Console.WriteLine(obj.Value);
The Downside
There's somewhat a downside using the built-in Select:
Since it's an IQueryable - not IQueryable<T> - extension method, with IQueryable as its return type, common materialization methods - like ToList or FirstOrDefault - can't be used. This is why the above example uses foreach - it's simply the only convenient way of materializing the results.
So to make things more convenient, let's support these methods.
2. Supporting Select<T> in Dynamic Linq (to enable using ToList and alike)
To support Select<T>, it needs to be added into the Dynamic Linq file. The simple steps for doing that are explained in this answer and in my comment on it.
After doing so, it can be used in the following way:
var numbers = new List<int> { 1, 2, 3 };
var wrapped = numbers.Select(num => new { Value = num }).ToList();
// the following is the equivalent of calling: numbers.Select(num => num).ToList()
var selectedNumbers = numbers.Select<int>("it").ToList();
// the following is the equivalent of calling: wrapped.Select(num => num.Value).ToList()
var selectedValues = wrapped.Select<int>("Value").ToList();
// the following is the equivalent of calling: numbers.Select(num => new { Value = num }).ToList()
var selectedObjects = numbers.Select<object>("new(it as Value)").ToList();
The Downside
Arguably, this implementation introduces yet another kind of downside: By having to explicitly parameterize the Select<T> call (e.g., having to call Select<int>), we're losing the dynamic nature of the library.
Nevertheless, since we can now call any materialization Linq method, this usage may still be quite useful.
I simplified the amazing method DynamicSelectGenerator() created by Ali and made this extension method that overrides the LINQ Select() to take a column separated parameters to simplify the usage and for more readability:
public static IEnumerable<T> Select<T>(this IEnumerable<T> source, string parameters)
{
return source.Select(DynamicSelectGenerator<T>(parameters));
}
So instead of:
var query = list.Select(Helpers.DynamicSelectGenerator<Data>("Field1,Field2")).ToList();
Will be:
var query = list.Select("Field1,Field2").ToList();
Another approach I've used is a nested ternary operator:
string col = "Column3";
var query = table.Select(i => col == "Column1" ? i.Column1 :
col == "Column2" ? i.Column2 :
col == "Column3" ? i.Column3 :
col == "Column4" ? i.Column4 :
null);
The ternary operator requires that each field be the same type, so you'll need to call .ToString() on any non-string columns.
I have generate my own class for same purpose of usage.
github gist : https://gist.github.com/mstrYoda/663789375b0df23e2662a53bebaf2c7c
It generates dynamic select lambda for given string and also support for two level nested properties.
Example of usage is :
class Shipment {
// other fields...
public Address Sender;
public Address Recipient;
}
class Address {
public string AddressText;
public string CityName;
public string CityId;
}
// in the service method
var shipmentDtos = _context.Shipments.Where(s => request.ShipmentIdList.Contains(s.Id))
.Select(new SelectLambdaBuilder<Shipment>().CreateNewStatement(request.Fields)) // request.Fields = "Sender.CityName,Sender.CityId"
.ToList();
It compiles the lambda as below:
s => new Shipment {
Sender = new Address {
CityId = s.Sender.CityId,
CityName = s.Sender.CityName
}
}
You can also find my quesion and answer here :c# - Dynamically generate linq select with nested properties
public class SelectLambdaBuilder<T>
{
// as a performence consideration I cached already computed type-properties
private static Dictionary<Type, PropertyInfo[]> _typePropertyInfoMappings = new Dictionary<Type, PropertyInfo[]>();
private readonly Type _typeOfBaseClass = typeof(T);
private Dictionary<string, List<string>> GetFieldMapping(string fields)
{
var selectedFieldsMap = new Dictionary<string, List<string>>();
foreach (var s in fields.Split(','))
{
var nestedFields = s.Split('.').Select(f => f.Trim()).ToArray();
var nestedValue = nestedFields.Length > 1 ? nestedFields[1] : null;
if (selectedFieldsMap.Keys.Any(key => key == nestedFields[0]))
{
selectedFieldsMap[nestedFields[0]].Add(nestedValue);
}
else
{
selectedFieldsMap.Add(nestedFields[0], new List<string> { nestedValue });
}
}
return selectedFieldsMap;
}
public Func<T, T> CreateNewStatement(string fields)
{
ParameterExpression xParameter = Expression.Parameter(_typeOfBaseClass, "s");
NewExpression xNew = Expression.New(_typeOfBaseClass);
var selectFields = GetFieldMapping(fields);
var shpNestedPropertyBindings = new List<MemberAssignment>();
foreach (var keyValuePair in selectFields)
{
PropertyInfo[] propertyInfos;
if (!_typePropertyInfoMappings.TryGetValue(_typeOfBaseClass, out propertyInfos))
{
var properties = _typeOfBaseClass.GetProperties();
propertyInfos = properties;
_typePropertyInfoMappings.Add(_typeOfBaseClass, properties);
}
var propertyType = propertyInfos
.FirstOrDefault(p => p.Name.ToLowerInvariant().Equals(keyValuePair.Key.ToLowerInvariant()))
.PropertyType;
if (propertyType.IsClass)
{
PropertyInfo objClassPropInfo = _typeOfBaseClass.GetProperty(keyValuePair.Key);
MemberExpression objNestedMemberExpression = Expression.Property(xParameter, objClassPropInfo);
NewExpression innerObjNew = Expression.New(propertyType);
var nestedBindings = keyValuePair.Value.Select(v =>
{
PropertyInfo nestedObjPropInfo = propertyType.GetProperty(v);
MemberExpression nestedOrigin2 = Expression.Property(objNestedMemberExpression, nestedObjPropInfo);
var binding2 = Expression.Bind(nestedObjPropInfo, nestedOrigin2);
return binding2;
});
MemberInitExpression nestedInit = Expression.MemberInit(innerObjNew, nestedBindings);
shpNestedPropertyBindings.Add(Expression.Bind(objClassPropInfo, nestedInit));
}
else
{
Expression mbr = xParameter;
mbr = Expression.PropertyOrField(mbr, keyValuePair.Key);
PropertyInfo mi = _typeOfBaseClass.GetProperty( ((MemberExpression)mbr).Member.Name );
var xOriginal = Expression.Property(xParameter, mi);
shpNestedPropertyBindings.Add(Expression.Bind(mi, xOriginal));
}
}
var xInit = Expression.MemberInit(xNew, shpNestedPropertyBindings);
var lambda = Expression.Lambda<Func<T,T>>( xInit, xParameter );
return lambda.Compile();
}
Thank you #morio. Your comment about Expression<Func<T, T>> is exactly what I needed to make this work.
I do not know how to perform an anonymous projection which seems like what most want. I say I want Field1 and Field2 from Data and I get back something like: new { Field1 = o.Field1, Field2 = o.Field2 };
But I have a need similar to many where I want to plot x and y values, but don't know until run time which ones they are.
So rather than use an anonymous object, I create one that has the properties I want. In this case, X and Y.
Here are the source and target classes:
public class Source
{
public int PropertyA { get; set; }
public double PropertyB { get; set; }
public double PropertyC { get; set; }
}
public class Target
{
public double X { get; set; }
public double Y { get; set; }
}
And here is the code that does the mapping between the Source and the Target.
public static class SelectBuilder
{
/// <summary>
/// Creates a Func that can be used in a Linq Select statement that will map from the source items to a new target type.
/// Typical usage pattern is that you have an Entity that has many properties, but you want to dynamically set properties
/// on a smaller target type, AND, you don't know the mapping at compile time.
/// For example, you have an Entity that has a year and 10 properties. You want to have time (year) as the X axis, but
/// the user can chose any of the 10 properties to plot on the y axis. This would allow you to map one of the entity
/// properties to the Y value dynamically.
/// </summary>
/// <typeparam name="TSource">Type of the source, for example, and Entity Framework entity.</typeparam>
/// <typeparam name="TTarget">Type of the target, a projection of a smaller number of properties than the entity has.</typeparam>
/// <param name="propertyMappings">A list of named tuples that map the sourceProperty to the targetProperty.</param>
/// <returns>A func that can be used inside the Select.
/// So if
/// var select = SelectBuilder.GetSelectStatement<Source, Target>(propertyMappings), then
/// you can perform the select,
/// var results = items.Select(select);</returns>
public static Expression<Func<TSource, TTarget>> GetSelectStatement<TSource, TTarget>(IEnumerable<(string sourceProperty, string targetProperty)> propertyMappings)
{
// Get the source parameter, "source". This will allow the statement to be "X = source.SourceA".
// It needs to be of the source type, and the name is what will be used in the Select lambda.
var sourceParameter = Expression.Parameter(typeof(TSource), "source");
// Now define the ability to create a new Target type.
var newTarget = Expression.New(typeof(TTarget));
// Now develop the bindings or member assignments for each property.
var bindings = new List<MemberAssignment>();
foreach (var propertyMapping in propertyMappings)
{
var sourceMemberInfo = typeof(TSource).GetProperty(propertyMapping.sourceProperty);
var targetMemberInfo = typeof(TTarget).GetProperty(propertyMapping.targetProperty);
// This allows getting the value. Source parameter will provide the "source" part and sourceMemberInfo the property name.
// For example, "source.SourceA".
var sourceValue = Expression.Property(sourceParameter, sourceMemberInfo);
// Provide conversion in the event there is not a perfect match for the type.
// For example, if SourceA is int and the target X is double?, we need to convert from int to double?
var convertExpression = Expression.Convert(sourceValue, targetMemberInfo.PropertyType);
// Put together the target assignment, "X = Convert(source.SourcA, double?)" (TODO: How does the convert actually happen?)
var targetAssignment = Expression.Bind(targetMemberInfo, convertExpression);
bindings.Add(targetAssignment);
}
var memberInit = Expression.MemberInit(newTarget, bindings);
// Here if we map SourceA to X and SourceB to Y the lambda will be:
// {source => new Target() {X = Convert(source.SourceA, Nullable`1), Y = Convert(source.SourceB, Nullable`1)}}
var lambda = Expression.Lambda<Func<TSource, TTarget>>(memberInit, sourceParameter);
return lambda;//.Compile();
}
}
And finally a unit test that works.
[Fact(DisplayName = "GetSelectStatement works")]
public void Test2()
{
// Arrange
var source = new Source { PropertyA = 1, PropertyB = 2, PropertyC = 3 };
var expectedX = Convert.ToDouble(source.PropertyA);
var expectedY = Convert.ToDouble(source.PropertyB);
var items = new List<Source> { source }.AsQueryable();
// Let's map SourceA to X and SourceB to Y.
var propertyMappings = new List<(string sourceProperty, string targetProperty)>
{
("PropertyA", "X"), ("PropertyB", "Y")
//(nameof(Source.PropertyA), nameof(Target.X)),
//(nameof(Source.PropertyB), nameof(Target.Y))
};
// Act
var select = SelectBuilder.GetSelectStatement<Source, Target>(propertyMappings);
var actual = items.Select(select).First();
// Assert
actual.X.Should().Be(expectedX);
actual.Y.Should().Be(expectedY);
}
I've edited my previous answer since now I know how to convert from int to double. I've also made the unit test easier to understand.
I hope this helps others.
Using ExpandoObject you can build a dynamic objects or return the full object from the example below.
public object CreateShappedObject(object obj, List<string> lstFields)
{
if (!lstFields.Any())
{
return obj;
}
else
{
ExpandoObject objectToReturn = new ExpandoObject();
foreach (var field in lstFields)
{
var fieldValue = obj.GetType()
.GetProperty(field, BindingFlags.IgnoreCase | BindingFlags.Public | BindingFlags.Instance)
.GetValue(obj, null);
((IDictionary<string, object>)objectToReturn).Add(field, fieldValue);
}
return objectToReturn;
}
}
The following is an example of how to use this from your controller.
http://localhost:12345/api/yourapi?fields=field1,field2
public IHttpActionResult Get(string fields = null)
{
try
{
List<string> lstFields = new List<string>();
if (fields != null)
{
lstFields = fields.ToLower().Split(',').ToList();
}
// Custom query
var result = db.data.Select(i => CreateShappedObject(new Data()
, lstFields)).ToList();
return Ok(result);
}
catch(Exception)
{
return InternalServerError();
}
}
var result = from g in list.AsEnumerable()
select new {F1 = g.Field1,F2 = g.Field2};

Categories