Alternate to Dataflow BroadcastBlock with guaranteed delivery - c#

I need to have some kind of object that acts like a BroadcastBlock, but with guaranteed delivery. So i used an answer from this question. But i don't really clearly understand the execution flow here. I have a console app. Here is my code:
static void Main(string[] args)
{
ExecutionDataflowBlockOptions execopt = new ExecutionDataflowBlockOptions { BoundedCapacity = 5 };
List<ActionBlock<int>> blocks = new List<ActionBlock<int>>();
for (int i = 0; i <= 10; i++)
blocks.Add(new ActionBlock<int>(num =>
{
int coef = i;
Console.WriteLine(Thread.CurrentThread.ManagedThreadId + ". " + num * coef);
}, execopt));
ActionBlock<int> broadcaster = new ActionBlock<int>(async num =>
{
foreach (ActionBlock<int> block in blocks) await block.SendAsync(num);
}, execopt);
broadcaster.Completion.ContinueWith(task =>
{
foreach (ActionBlock<int> block in blocks) block.Complete();
});
Task producer = Produce(broadcaster);
List<Task> ToWait = new List<Task>();
foreach (ActionBlock<int> block in blocks) ToWait.Add(block.Completion);
ToWait.Add(producer);
Task.WaitAll(ToWait.ToArray());
Console.ReadLine();
}
static async Task Produce(ActionBlock<int> broadcaster)
{
for (int i = 0; i <= 15; i++) await broadcaster.SendAsync(i);
broadcaster.Complete();
}
Each number must be handled sequentially, so i can't use MaxDegreeOfParallelism in broadcaster block. But all actionblocks that receive the number can run in parallel.
So here is the question:
In the output i can see different thread ids. Do i understand it correctly that works as follows:
Execution hits await block.SendAsync(num); in a broadcaster.
If current block is not ready to accept the number, execution exits broadcaster and hangs at the Task.WaitAll.
When block accepts the number, the rest of foreach statement in broadcaster is executed in a threadpool.
And the same till the end.
Each iteration of foreach is executed in a threadpool. But actually it happens sequentially.
Am i right or wrong in my understanding?
How can i change this code to send the number to all blocks asynchronously?
To make sure that if one of blocks is not ready to receive the number at the moment, i won't wait for it and all others that are ready will receive the number. And that all blocks can run in parallel. And guarantee delivery.

Assuming you want to handle one item at a time by the broadcaster while enabling the target blocks to receive that item concurrently you need to change the broadcaster to offer the number to all blocks at the same time and then asynchronously wait for all of them together to accept it before moving on to the next number:
var broadcaster = new ActionBlock<int>(async num =>
{
var tasks = new List<Task>();
foreach (var block in blocks)
{
tasks.Add(block.SendAsync(num));
}
await Task.WhenAll(tasks);
}, execopt);
Now, in this case where you don't have work after the await you can slightly optimize while still returning an awaitable task:
ActionBlock<int> broadcaster = new ActionBlock<int>(
num => Task.WhenAll(blocks.Select(block => block.SendAsync(num))), execopt);

Related

Task.delay inside Task.Run

Here I have the following piece of code:
var tasks = new List<Task>();
var stopwatch = new Stopwatch();
for (var i = 0; i < 100; i++)
{
var person = new Person { Id = i };
list.Add(person);
}
stopwatch.Start();
foreach (var item in list)
{
var task = Task.Run(async () =>
{
await Task.Delay(1000);
Console.WriteLine("Hi");
});
tasks.Add(task);
}
await Task.WhenAll(tasks);
stopwatch.Stop();
I assume that I will have about 100 seconds in the result of the stopwatch.
But I have 1,1092223.
I think I missing something, can you help me to explain why?
I assume that your confusion might come from the await keyword in await Task.Delay(1000);
But this holds only for the innerworking of the taskmethod. Inside the loop the next iteration will be performed immidiately after Task.Run is executed. So all Tasks will be started in close succession and then run in parallel. (As far as the system has free threads at hand of course) The system takes care how, when and in which order they can be executed.
In the end in this line:
await Task.WhenAll(tasks);
you actually wait for the slowest of them (or the one started as last).
To fullfill your expectation your code should actually look like this:
public async Task RunAsPseudoParallel()
{
List<Person> list = new List<Person>();
var stopwatch = new Stopwatch();
for (var i = 0; i < 100; i++)
{
var person = new Person { Id = i };
list.Add(person);
}
stopwatch.Start();
foreach (var item in list)
{
await Task.Run(async () =>
{
await Task.Delay(1000);
Console.WriteLine("Hi");
});
}
stopwatch.Stop()
}
Disclaimer: But this code is quite nonsensical, because it uses async functionality to implement a synchronous process. In this scenario you can simply leave out the Task.Run call and use a simple Thread.Sleep(1000).
Delays are always approximate.
You are limited by when the task scheduler chooses to run the delegate you pass to Task.Run. It may be executing other tasks and be unwilling to start up more threads. Or, it may launch a new thread -- which while not slow is also not free and costs time too.
You are limited by when the task scheduler chooses to resume your code after the delay completes.
You're also limited by the OS scheduler, which may be allocating CPU time to other processes/threads and end up delaying the thread that would execute your code.
Because you are launching multiple tasks, you are seeing all of these per-task variables compound into an even larger delay.

Backpressure via BufferBlock not working. (C# TPL Dataflow)

Typical situation: Fast producer, slow consumer, need to slow producer down.
Sample code that doesn't work as I expected (explained below):
// I assumed this block will behave like BlockingCollection, but it doesn't
var bb = new BufferBlock<int>(new DataflowBlockOptions {
BoundedCapacity = 3, // looks like this does nothing
});
// fast producer
int dataSource = -1;
var producer = Task.Run(() => {
while (dataSource < 10) {
var message = ++dataSource;
bb.Post(message);
Console.WriteLine($"Posted: {message}");
}
Console.WriteLine("Calling .Complete() on buffer block");
bb.Complete();
});
// slow consumer
var ab = new ActionBlock<int>(i => {
Thread.Sleep(500);
Console.WriteLine($"Received: {i}");
}, new ExecutionDataflowBlockOptions {
MaxDegreeOfParallelism = 2,
});
bb.LinkTo(ab);
ab.Completion.Wait();
How I thought this code would work, but it doesn't:
BufferBlock bb is the blocking queue with capacity of 3. Once capacity reached, producer should not be able to .Post() to it, until there's a vacant slot.
Doesn't work like that. bb seems to happily accept any number of messages.
producer is a task that quickly Posts messages. Once all messages have been posted, the call to bb.Complete() should propagate through the pipeline and signal shutdown once all messages have been processed. Hence waiting ab.Completion.Wait(); at the end.
Doesn't work either. As soon as .Complete() is called, action block ab won't receive any more messages.
Can be done with a BlockingCollection, which I thought in TPL Dataflow (TDF) world BufferBlock was the equivalent of. I guess I'm misunderstanding how backpressure is supposed to work in TPL Dataflow.
So where's the catch? How to run this pipeline, not allowing more than 3 messages in the buffer bb, and wait for its completion?
PS: I found this gist (https://gist.github.com/mnadel/df2ec09fe7eae9ba8938) where it's suggested to maintain a semaphore to block writing to BufferBlock. I thought this was "built-in".
Update after accepting an answer:
Updates after accepting the answer:
If you're looking at this question, you need to remember that ActionBlock also has its own input buffer.
That's for one. Then you also need to realize, that because all blocks have their own input buffers you don't need the BufferBlock for what you might think its name implied. A BufferBlock is more like a utility block for more complex architectures or like a balance loading block. But it's not a backpressure buffer.
Completion propagation needs to be dfined at link level explicitly.
When calling .LinkTo() need to explicitly pass new DataflowLinkOptions {PropagateCompletion = true} as the 2nd argument.
To introduce back pressure you need use SendAsync when you send items into the block. This allows your producer to wait for the block to be ready for the item. Something like this is what you're looking for:
class Program
{
static async Task Main()
{
var options = new ExecutionDataflowBlockOptions()
{
BoundedCapacity = 3
};
var block = new ActionBlock<int>(async i =>
{
await Task.Delay(100);
Console.WriteLine(i);
}, options);
//Producer
foreach (var i in Enumerable.Range(0, 10))
{
await block.SendAsync(i);
}
block.Complete();
await block.Completion;
}
}
If you change this to use Post and print the result of the Post you'll see that many items fail to be passed to the block:
class Program
{
static async Task Main()
{
var options = new ExecutionDataflowBlockOptions()
{
BoundedCapacity = 1
};
var block = new ActionBlock<int>(async i =>
{
await Task.Delay(1000);
Console.WriteLine(i);
}, options);
//Producer
foreach (var i in Enumerable.Range(0, 10))
{
var result = block.Post(i);
Console.WriteLine(result);
}
block.Complete();
await block.Completion;
}
}
Output:
True
False
False
False
False
False
False
False
False
False
0
With the guidance from JSteward's answer, I came up with the following code.
It produces (reads etc.) new items concurrently with processing said items, maintaining a read-ahead buffer.
The completion signal is sent to the head of the chain when the "producer" has no more items.
The program also awaits the completion of the whole chain before terminating.
static async Task Main() {
string Time() => $"{DateTime.Now:hh:mm:ss.fff}";
// the buffer is added to the chain just for demonstration purposes
// the chain would work fine using just the built-in input buffer
// of the `action` block.
var buffer = new BufferBlock<int>(new DataflowBlockOptions {BoundedCapacity = 3});
var action = new ActionBlock<int>(async i =>
{
Console.WriteLine($"[{Time()}]: Processing: {i}");
await Task.Delay(500);
}, new ExecutionDataflowBlockOptions {MaxDegreeOfParallelism = 2, BoundedCapacity = 2});
// it's necessary to set `PropagateCompletion` property
buffer.LinkTo(action, new DataflowLinkOptions {PropagateCompletion = true});
//Producer
foreach (var i in Enumerable.Range(0, 10))
{
Console.WriteLine($"[{Time()}]: Ready to send: {i}");
await buffer.SendAsync(i);
Console.WriteLine($"[{Time()}]: Sent: {i}");
}
// we call `.Complete()` on the head of the chain and it's propagated forward
buffer.Complete();
await action.Completion;
}

Losing items somewhere in C# BlockingCollection with GetConsumingEnumerable()

I'm trying to do a parallel SqlBulkCopy to multiple targets over WAN, many of which may be having slow connections and/or connection cutoffs; their connection speed varies from 2 to 50 mbits download, and I am sending from a connection with 1000 mbit upload; a lot of the targets need multiple retries to correctly finish.
I'm currently using a Parallel.ForEach on the GetConsumingEnumerable() of a BlockingCollection (queue); however I either stumbled upon some bug, or I am having problems fully understanding its purpose, or simply got something wrong..
The code never calls the CompleteAdding() method of the blockingcollection,
it seems that somewhere in the parallel-foreach-loop some of the targets get lost.
Even if there are different approaches to this, and disregarding the kind of work it is doing in the loop, the blockingcollection shouldn't behave the way it does in this example, should it?
In the foreach-loop, I do the work, and add the target to a results-collection in case it completed successfully, or re-add the target to the BlockingCollection in case of an error until the target reached the max retries threshold; at that point I add it to the results-collection.
In an additional Task, I loop until the count of the results-collection equals the initial count of the targets; then I do the CompleteAdding() on the blocking collection.
I already tried using a locking object for the operations on the results-collection (using a List<int> instead) and the queue, with no luck, but that shouldn't be necessary anyways. I also tried adding the retries to a separate collection, and re-adding those to the BlockingCollection in a different Task instead of in the parallel.foreach.
Just for fun I also tried compiling with .NET from 4.5 to 4.8, and different C# language versions.
Here is a simplified example:
List<int> targets = new List<int>();
for (int i = 0; i < 200; i++)
{
targets.Add(0);
}
BlockingCollection<int> queue = new BlockingCollection<int>(new ConcurrentQueue<int>());
ConcurrentBag<int> results = new ConcurrentBag<int>();
targets.ForEach(f => queue.Add(f));
// Bulkcopy in die Filialen:
Task.Run(() =>
{
while (results.Count < targets.Count)
{
Thread.Sleep(2000);
Console.WriteLine($"Completed: {results.Count} / {targets.Count} | queue: {queue.Count}");
}
queue.CompleteAdding();
});
int MAX_RETRIES = 10;
ParallelOptions options = new ParallelOptions { MaxDegreeOfParallelism = 50 };
Parallel.ForEach(queue.GetConsumingEnumerable(), options, target =>
{
try
{
// simulate a problem with the bulkcopy:
throw new Exception();
results.Add(target);
}
catch (Exception)
{
if (target < MAX_RETRIES)
{
target++;
if (!queue.TryAdd(target))
Console.WriteLine($"{target.ToString("D3")}: Error, can't add to queue!");
}
else
{
results.Add(target);
Console.WriteLine($"Aborted after {target + 1} tries | {results.Count} / {targets.Count} items finished.");
}
}
});
I expected the count of the results-collection to be the exact count of the targets-list in the end, but it seems to never reach that number, which results in the BlockingCollection never being marked as completed, so the code never finishes.
I really don't understand why not all of the targets get added to the results-collection eventually! The added count always varies, and is mostly just shy of the expected final count.
EDIT: I removed the retry-part, and replaced the ConcurrentBag with a simple int-counter, and it still doesn't work most of the time:
List<int> targets = new List<int>();
for (int i = 0; i < 500; i++)
targets.Add(0);
BlockingCollection<int> queue = new BlockingCollection<int>(new ConcurrentQueue<int>());
//ConcurrentBag<int> results = new ConcurrentBag<int>();
int completed = 0;
targets.ForEach(f => queue.Add(f));
var thread = new Thread(() =>
{
while (completed < targets.Count)
{
Thread.Sleep(2000);
Console.WriteLine($"Completed: {completed} / {targets.Count} | queue: {queue.Count}");
}
queue.CompleteAdding();
});
thread.Start();
ParallelOptions options = new ParallelOptions { MaxDegreeOfParallelism = 4 };
Parallel.ForEach(queue.GetConsumingEnumerable(), options, target =>
{
Interlocked.Increment(ref completed);
});
Sorry, found the answer: the default partitioner used by blockingcollection and parallel foreach is chunking and buffering, which results in the foreach loop to forever wait for enough items for the next chunk.. for me, it sat there for a whole night, without processing the last few items!
So, instead of:
ParallelOptions options = new ParallelOptions { MaxDegreeOfParallelism = 4 };
Parallel.ForEach(queue.GetConsumingEnumerable(), options, target =>
{
Interlocked.Increment(ref completed);
});
you have to use:
var partitioner = Partitioner.Create(queue.GetConsumingEnumerable(), EnumerablePartitionerOptions.NoBuffering);
ParallelOptions options = new ParallelOptions { MaxDegreeOfParallelism = 4 };
Parallel.ForEach(partitioner, options, target =>
{
Interlocked.Increment(ref completed);
});
Parallel.ForEach is meant for data parallelism (ie processing 100K rows using all 8 cores), not concurrent operations. This is essentially a pub/sub and async problem, if not a pipeline problem. There's nothing for the CPU to do in this case, just start the async operations and wait for them to complete.
.NET handles this since .NET 4.5 through the Dataflow classes and lately, the lower-level System.Threading.Channel namespace.
In its simplest form, you can create an ActionBlock<> that takes a buffer and target connection and publishes the data. Let's say you use this method to send the data to a server :
async Task MyBulkCopyMethod(string connectionString,DataTable data)
{
using(var bcp=new SqlBulkCopy(connectionString))
{
//Set up mappings etc.
//....
await bcp.WriteToServerAsync(data);
}
}
You can use this with an ActionBlock class with a configured degree of parallelism. Dataflow classes like ActionBlock have their own input, and where appropriate, output buffers, so there's no need to create a separate queue :
class DataMessage
{
public string Connection{get;set;}
public DataTable Data {get;set;}
}
...
var options=new ExecutionDataflowBlockOptions {
MaxDegreeOfParallelism = 50,
BoundedCapacity = 8
};
var block=new ActionBlock<DataMessage>(msg=>MyBulkCopyMethod(msg.Connection,msg.Data, options);
We can start posting messages to the block now. By setting the capacity to 8 we ensure the input buffer won't get filled with large messages if the block is too slow. MaxDegreeOfParallelism controls how may operations run concurrently. Let's say we want to send the same data to many servers :
var data=.....;
var servers=new[]{connString1, connString2,....};
var messages= from sv in servers
select new DataMessage{ ConnectionString=sv,Table=data};
foreach(var msg in messages)
{
await block.SendAsync(msg);
}
//Tell the block we are done
block.Complete();
//Await for all messages to finish processing
await block.Completion;
Retries
One possibility for retries is to use a retry loop in the worker function. A better idea would be to use a different block and post failed messages there.
var block=new ActionBlock<DataMessage>(async msg=> {
try {
await MyBulkCopyMethod(msg.Connection,msg.Data, options);
}
catch(SqlException exc) when (some retry condition)
{
//Post without awaiting
retryBlock.Post(msg);
});
When the original block completes we want to tell the retry block to complete as well, no matter what :
block.Completion.ContinueWith(_=>retryBlock.Complete());
Now we can await the retryBlock to complete.
That block could have a smaller DOP and perhaps a delay between attempts :
var retryOptions=new ExecutionDataflowBlockOptions {
MaxDegreeOfParallelism = 5
};
var retryBlock=new ActionBlock<DataMessage>(async msg=>{
await Task.Delay(1000);
try {
await MyBulkCopyMethod(msg.Connection,msg.Data, options);
}
catch (Exception ....)
{
...
}
});
This pattern can be repeated to create multiple levels of retry, or different conditions. It can also be used to create different priority workers by giving a larger DOP to high priority workers, or a larger delay to low priority workers

Why simple multi task doesn't work when multi thread does?

var finalList = new List<string>();
var list = new List<int> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ................. 999999};
var init = 0;
var limitPerThread = 5;
var countDownEvent = new CountdownEvent(list.Count);
for (var i = 0; i < list.Count; i++)
{
var listToFilter = list.Skip(init).Take(limitPerThread).ToList();
new Thread(delegate()
{
Foo(listToFilter);
countDownEvent.Signal();
}).Start();
init += limitPerThread;
}
//wait all to finish
countDownEvent.Wait();
private static void Foo(List<int> listToFilter)
{
var listDone = Boo(listToFilter);
lock (Object)
{
finalList.AddRange(listDone);
}
}
This doesn't:
var taskList = new List<Task>();
for (var i = 0; i < list.Count; i++)
{
var listToFilter = list.Skip(init).Take(limitPerThread).ToList();
var task = Task.Factory.StartNew(() => Foo(listToFilter));
taskList.add(task);
init += limitPerThread;
}
//wait all to finish
Task.WaitAll(taskList.ToArray());
This process must create at least 700 threads in the end. When I run using Thread, it works and creates all of them. But with Task it doesn't.. It seems like its not starting multiples Tasks async.
I really wanna know why.... any ideas?
EDIT
Another version with PLINQ (as suggested).
var taskList = new List<Task>(list.Count);
Parallel.ForEach(taskList, t =>
{
var listToFilter = list.Skip(init).Take(limitPerThread).ToList();
Foo(listToFilter);
init += limitPerThread;
t.Start();
});
Task.WaitAll(taskList.ToArray());
EDIT2:
public static List<Communication> Foo(List<Dispositive> listToPing)
{
var listResult = new List<Communication>();
foreach (var item in listToPing)
{
var listIps = item.listIps;
var communication = new Communication
{
IdDispositive = item.Id
};
try
{
for (var i = 0; i < listIps.Count(); i++)
{
var oPing = new Ping().Send(listIps.ElementAt(i).IpAddress, 10000);
if (oPing != null)
{
if (oPing.Status.Equals(IPStatus.TimedOut) && listIps.Count() > i+1)
continue;
if (oPing.Status.Equals(IPStatus.TimedOut))
{
communication.Result = "NOK";
break;
}
communication.Result = oPing.Status.Equals(IPStatus.Success) ? "OK" : "NOK";
break;
}
if (listIps.Count() > i+1)
continue;
communication.Result = "NOK";
break;
}
}
catch
{
communication.Result = "NOK";
}
finally
{
listResult.Add(communication);
}
}
return listResult;
}
Tasks are NOT multithreading. They can be used for that, but mostly they're actually used for the opposite - multiplexing on a single thread.
To use tasks for multithreading, I suggest using Parallel LINQ. It has many optimizations in it already, such as intelligent partitioning of your lists and only spawning as many threads as there ar CPU cores, etc.
To understand Task and async, think of it this way - a typical workload often includes IO that needs to be waited upon. Maybe you read a file, or query a webservice, or access a database, or whatever. The point is - your thread gets to wait a loooong time (in CPU cycles at least) until you get a response from some faraway destination.
In the Olden Days™ that meant that your thread was getting locked down (suspended) until that response came. If you wanted to do something else in the meantime, you needed to spawn a new thread. That's doable, but not too efficient. Each OS thread carries a significant overhead (memory, kernel resources) with it. And you could end up with several threads actively burning the CPU, which means that the OS needs to switch between them so that each gets a bit of CPU time and these "context switches" are pretty expensive.
async changes that workflow. Now you can have multiple workloads executing on the same thread. While one piece of work is awaiting the result from a faraway source, another can step in and use that thread to do something else useful. When that second workload gets to its own await, the first can awaken and continue.
After all, it doesn't make sense to spawn more threads than there are CPU cores. You're not going to get more work done that way. Just the opposite - more time will be spent on switching the threads and less time will be available for useful work.
That is what the Task/async/await was originally designed for. However Parallel LINQ has also taken advantage of it and reused it for multithreading. In this case you can look at it this way - the other threads is what your main thread is the "faraway destination" that your main thread is waiting on.
Tasks are executed on the Thread Pool. This means that a handful of threads will serve a large number of tasks. You have multi-threading, but not a thread for every task spawned.
You should use tasks. You should aim to use as much threads as your CPU. Generally, the thread pool is doing this for you.
How did you measure up the performance? Do you think that the 700 threads will work faster than 700 tasks executing by 4 threads? No, they would not.
It seems like its not starting multiples Tasks async
How did you came up with this? As other suggested in comments and in other answers, you probably need to remove a thread creation, as after creating 700 threads you'll degrade your system performance, as your threads would fight to each other for the processor time, without any work done faster.
So, you need to add the async/await for your IO operations, into the Foo method, with SendPingAsync version. Also, your method could be simplyfied, as many checks for a listIps.Count() > i + 1 conditions are useless - you do it in the for condition block:
public static async Task<List<Communication>> Foo(List<Dispositive> listToPing)
{
var listResult = new List<Communication>();
foreach (var item in listToPing)
{
var listIps = item.listIps;
var communication = new Communication
{
IdDispositive = item.Id
};
try
{
var ping = new Ping();
communication.Result = "NOK";
for (var i = 0; i < listIps.Count(); i++)
{
var oPing = await ping.SendPingAsync(listIps.ElementAt(i).IpAddress, 10000);
if (oPing != null)
{
if (oPing.Status.Equals(IPStatus.Success)
{
communication.Result = "OK";
break;
}
}
}
}
catch
{
communication.Result = "NOK";
}
finally
{
listResult.Add(communication);
}
}
return listResult;
}
Other problem with your code is that PLINQ version isn't threadsafe:
init += limitPerThread;
This can fail while executing in parallel. You may introduce some helper method, like in this answer:
private async Task<List<PingReply>> PingAsync(List<Communication> theListOfIPs)
{
Ping pingSender = new Ping();
var tasks = theListOfIPs.Select(ip => pingSender.SendPingAsync(ip, 10000));
var results = await Task.WhenAll(tasks);
return results.ToList();
}
And do this kind of check (try/catch logic removed for simplicity):
public static async Task<List<Communication>> Foo(List<Dispositive> listToPing)
{
var listResult = new List<Communication>();
foreach (var item in listToPing)
{
var listIps = item.listIps;
var communication = new Communication
{
IdDispositive = item.Id
};
var check = await PingAsync(listIps);
communication.Result = check.Any(p => p.Status.Equals(IPStatus.Success)) ? "OK" : "NOK";
}
}
And you probably should use Task.Run instead of Task.StartNew for being sure that you aren't blocking the UI thread.

TPL DataFlow Workflow

I have just started reading TPL Dataflow and it is really confusing for me. There are so many articles on this topic which I read but I am unable to digest it easily. May be it is difficult and may be I haven't started to grasp the idea.
The reason why I started looking into this is that I wanted to implement a scenario where parallel tasks could be run but in order and found that TPL Dataflow can be used as this.
I am practicing TPL and TPL Dataflow both and am at very beginners level so I need help from experts who could guide me to the right direction. In the test method written by me I have done the following thing,
private void btnTPLDataFlow_Click(object sender, EventArgs e)
{
Stopwatch watch = new Stopwatch();
watch.Start();
txtOutput.Clear();
ExecutionDataflowBlockOptions execOptions = new ExecutionDataflowBlockOptions();
execOptions.MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded;
ActionBlock<string> actionBlock = new ActionBlock<string>(async v =>
{
await Task.Delay(200);
await Task.Factory.StartNew(
() => txtOutput.Text += v + Environment.NewLine,
CancellationToken.None,
TaskCreationOptions.None,
scheduler
);
}, execOptions);
for (int i = 1; i < 101; i++)
{
actionBlock.Post(i.ToString());
}
actionBlock.Complete();
watch.Stop();
lblTPLDataFlow.Text = Convert.ToString(watch.ElapsedMilliseconds / 1000);
}
Now the procedure is parallel and both asynchronous (not freezing my UI) but the output generated is not in order whereas I have read that TPL Dataflow keeps the order of the elements by default. So my guess is that, then the Task which I have created is the culprit and it is not output the string in correct order. Am I right?
If this is the case then how do I make this Asynchronous and in order both?
I have tried to separate the code and tried to distribute the code in to different methods but my this try is failed as only string is output to textbox and nothing else happened.
private async void btnTPLDataFlow_Click(object sender, EventArgs e)
{
Stopwatch watch = new Stopwatch();
watch.Start();
await TPLDataFlowOperation();
watch.Stop();
lblTPLDataFlow.Text = Convert.ToString(watch.ElapsedMilliseconds / 1000);
}
public async Task TPLDataFlowOperation()
{
var actionBlock = new ActionBlock<int>(async values => txtOutput.Text += await ProcessValues(values) + Environment.NewLine,
new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded, TaskScheduler = scheduler });
for (int i = 1; i < 101; i++)
{
actionBlock.Post(i);
}
actionBlock.Complete();
await actionBlock.Completion;
}
private async Task<string> ProcessValues(int i)
{
await Task.Delay(200);
return "Test " + i;
}
I know I have written a bad piece of code but this is the first time I am experimenting with TPL Dataflow.
How do I make this Asynchronous and in order?
This is something of a contradiction. You can make concurrent tasks start in order, but you can't really guarantee that they will run or complete in order.
Let's examine your code and see what's happening.
First, you've selected DataflowBlockOptions.Unbounded. This tells TPL Dataflow that it shouldn't limit the number of tasks that it allows to run concurrently. Therefore, each of your tasks will start at more-or-less the same time, in order.
Your asynchronous operation begins with await Task.Delay(200). This will cause your method to be suspended and then resume after about 200 ms. However, this delay is not exact, and will vary from one invocation to the next. Also, the mechanism by which your code is resumed after the delay may presumably take a variable amount of time. Because of this random variation in the actual delay, then next bit of code to run is now not in order—resulting in the discrepancy you're seeing.
You might find this example interesting. It's a console application to simplify things a bit.
class Program
{
static void Main(string[] args)
{
OutputNumbersWithDataflow();
OutputNumbersWithParallelLinq();
Console.ReadLine();
}
private static async Task HandleStringAsync(string s)
{
await Task.Delay(200);
Console.WriteLine("Handled {0}.", s);
}
private static void OutputNumbersWithDataflow()
{
var block = new ActionBlock<string>(
HandleStringAsync,
new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded });
for (int i = 0; i < 20; i++)
{
block.Post(i.ToString());
}
block.Complete();
block.Completion.Wait();
}
private static string HandleString(string s)
{
// Perform some computation on s...
Thread.Sleep(200);
return s;
}
private static void OutputNumbersWithParallelLinq()
{
var myNumbers = Enumerable.Range(0, 20).AsParallel()
.AsOrdered()
.WithExecutionMode(ParallelExecutionMode.ForceParallelism)
.WithMergeOptions(ParallelMergeOptions.NotBuffered);
var processed = from i in myNumbers
select HandleString(i.ToString());
foreach (var s in processed)
{
Console.WriteLine(s);
}
}
}
The first set of numbers is calculated using a method rather similar to yours—with TPL Dataflow. The numbers are out-of-order.
The second set of numbers, output by OutputNumbersWithParallelLinq(), doesn't use Dataflow at all. It relies on the Parallel LINQ features built into .NET. This runs my HandleString() method on background threads, but keeps the data in order through to the end.
The limitation here is that PLINQ doesn't let you supply an async method. (Well, you could, but it wouldn't give you the desired behavior.) HandleString() is a conventional synchronous method; it just gets executed on a background thread.
And here's a more complex Dataflow example that does preserve the correct order:
private static void OutputNumbersWithDataflowTransformBlock()
{
Random r = new Random();
var transformBlock = new TransformBlock<string, string>(
async s =>
{
// Make the delay extra random, just to be sure.
await Task.Delay(160 + r.Next(80));
return s;
},
new ExecutionDataflowBlockOptions { MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded });
// For a GUI application you should also set the
// scheduler here to make sure the output happens
// on the correct thread.
var outputBlock = new ActionBlock<string>(
s => Console.WriteLine("Handled {0}.", s),
new ExecutionDataflowBlockOptions
{
SingleProducerConstrained = true,
MaxDegreeOfParallelism = 1
});
transformBlock.LinkTo(outputBlock, new DataflowLinkOptions { PropagateCompletion = true });
for (int i = 0; i < 20; i++)
{
transformBlock.Post(i.ToString());
}
transformBlock.Complete();
outputBlock.Completion.Wait();
}

Categories