I found this class in another answer Best way in .NET to manage queue of tasks on a separate (single) thread.
I wanted to try it out, but the syntax is a bit strange to me. Trying to just kick off a dummy task that returns a single int. I can't get this to compile, not sure what the syntax problem is.
m_TaskQueue.Enqueue<int>(
() => { return 1; }
);
Compiler error:
Cannot convert lambda expression to delegate type System.Func<System.Threading.Tasks.Task<int>> because some of the return types in the block are not implicitly convertible to the delegate return type
Class from other answer:
public class TaskQueue
{
private SemaphoreSlim semaphore;
public TaskQueue()
{
semaphore = new SemaphoreSlim(1);
}
public async Task<T> Enqueue<T>(Func<Task<T>> taskGenerator)
{
await semaphore.WaitAsync();
try
{
return await taskGenerator();
}
finally
{
semaphore.Release();
}
}
public async Task Enqueue(Func<Task> taskGenerator)
{
await semaphore.WaitAsync();
try
{
await taskGenerator();
}
finally
{
semaphore.Release();
}
}
}
To add to the other answers which suggest using Task.FromResult to create a task, you could also use an async lambda expression - this would be useful if you want to use await within the body of the lambda expression:
m_TaskQueue.Enqueue<int>(
async () => {
await Task.Delay(1000); // For example
return 1;
}
);
As the error is trying to tell you, you need a function that returns a Task<T>.
You can use Task.FromResult(1) to create one.
Related
I have a problem with async/await in C#, i need it to get some object called Trades, after i get it, it needs to SAVE it. Problem is, with async/await, it is doing the SAVE first, and then go and get my trade objects. How do i ensure i get the objects first, and then does the saving.... here is my code...
private async void OnRefresh()
{
try
{
var trades = await ExchangeServiceInstance.GetTrades("");
mmTrades = new ObservableCollection<EEtrade>(trades);
tradeListView.ItemsSource = mmTrades;
}
catch { }
}
public async void OnSignalReceived()
{
// THIS NEEDS TO FINISH FIRST, BUT IT DOESN'T
await tradeListView.Dispatcher.InvokeAsync((Action)async delegate
{
if (ExchangeServiceInstance.SelectedTabIndex == CURRENT_TAB_INDEX_ITEM)
{
await Task.Delay(MMConfig.DELAYMILLISEC);
OnRefresh();
}
});
// SOMEHOW THIS GETS CALLED FIRST BEFORE THE ABOVE GETS TO FINISH!
await OnSaveTrades();
}
public async Task<int> OnSaveTrades()
{
foreach (var trade in mmTrades)
{
await ExchangeServiceInstance.OnInsertDoneTrade(trade);
}
return mmTrades.Count;
}
Any ideas guys? Thanks!
The problem is your OnRefresh method. Because the return type is void the method is not awaited [Check out this answer]. In addition you dont even try to await for the method inside your delegate
Changing the method to the following:
private async Task OnRefresh()
{
try
{
var trades = await ExchangeServiceInstance.GetTrades("");
mmTrades = new ObservableCollection<EEtrade>(trades);
tradeListView.ItemsSource = mmTrades;
}
catch { }
}
And await this method inside your delegate, should solve your problem:
public async void OnSignalReceived()
{
// THIS NEEDS TO FINISH FIRST, BUT IT DOESN'T
await tradeListView.Dispatcher.InvokeAsync((Action)async delegate
{
if (ExchangeServiceInstance.SelectedTabIndex == CURRENT_TAB_INDEX_ITEM)
{
await Task.Delay(MMConfig.DELAYMILLISEC);
await OnRefresh();
}
});
// SOMEHOW THIS GETS CALLED FIRST BEFORE THE ABOVE GETS TO FINISH!
await OnSaveTrades();
}
The use of (Action)async is basically the same as async void, and async void is almost always a mistake. Specifically, the consumer cannot know the outcome (unless it faults synchronously). The dispatcher here isn't really thinking of async.
If we assume that you must use the dispatcher here, perhaps a workaround might be to use something like a SemaphoreSlim (or maybe a TaskCompletionSource<something>) that you signal at the end of your async work (even in the exception case), and then await that; untested, but:
var tcs = new TaskCompletionSource<bool>();
await tradeListView.Dispatcher.InvokeAsync((Action)async delegate
{
try {
if (ExchangeServiceInstance.SelectedTabIndex == CURRENT_TAB_INDEX_ITEM)
{
await Task.Delay(MMConfig.DELAYMILLISEC);
OnRefresh();
}
tcs.TrySetResult(true);
} catch (Exception ex) {
tcs.TrySetException(ex);
}
});
await tcs.Task; // ensure the async work is complete
await OnSaveTrades();
First of all, you are using the async void pattern a lot. This is really bad practice for a number of reasons. You should stop doing that.
The problem here is that OnRefresh is again an async void method that can't be awaited but should be:
private async Task OnRefresh()
{
try
{
var trades = await ExchangeServiceInstance.GetTrades("");
mmTrades = new ObservableCollection<EEtrade>(trades);
tradeListView.ItemsSource = mmTrades;
}
catch { }
}
In your OnSignalReceived method change the call to OnRefresh(); to await OnRefresh();
I've made a queue, which contains tasks to do. After creating some tasks manually with new Task() in Returns method, my whole application hangs - await current;. The body of the task is not even triggered.
ConfigureAwait(false) didn't help.
The first task in the queue, which is not created by me, but other framework is executing successfully and returning a value. Mine - doesn't. I've tried add Task.CompletedTask and then it has worked. I don't understand why I can't even reach the body of the task containing _output assignment.
IDE debugger code screenshot
---UPDATE---
The code works when I use code below. With await it doesn't. Any ideas?
current.Start();
current.Wait();
Original code
private readonly Queue<Task> _pipe;
public IPipeBuilder<TOutput> Returns(Func<IEnumerable<IExecutionResult>, TOutput> outputBuilder)
{
_pipe.Enqueue(new Task(() => // this task causes a problem and breakpoint isn't hit inside
{
_output = outputBuilder(_results);
}));
return this;
}
public async Task<TOutput> Execute()
{
Task current;
while (_pipe.TryDequeue(out current))
{
if (current.IsCommandExecution())
{
IExecutionResult result = await (Task<IExecutionResult>)current; // this awaits successfully
_results.Add(result);
}
else
{
await current; // hangs here
}
}
return await Task.FromResult(_output);
}
Usage
[HttpGet("eventflow/pipe/issue/add/{title}")]
public async Task<IActionResult> PipeAction(string title)
=> Ok(
await Pipe<IExecutionResult>()
.Validate(title)
.Handle<AddIssueCommand>(IssueId.New, title)
.Returns(results => results.First())
.Execute());
You should never use the Task constructor. This goes double on ASP.NET, since constructed tasks are always Delegate Tasks, which interfere with the ASP.NET usage of the thread pool. The actual reason that the await hangs is because manually-created tasks need to be started.
If you have synchronous work that you need to wrap into a Task to work alongside asynchronous tasks, then you should use Task.CompletedTask and Task.FromException:
private static Task SynchronousWork(Func<IEnumerable<IExecutionResult>, TOutput> outputBuilder)
{
try { _output = outputBuilder(_results); return Task.CompletedTask; }
catch (Exception ex) { return Task.FromException(ex); }
}
public IPipeBuilder<TOutput> Returns(Func<IEnumerable<IExecutionResult>, TOutput> outputBuilder)
{
_pipe.Enqueue(SynchronousWork(outputBuilder));
return this;
}
However, note that this executes outputBuilder immediately, which may not be desirable due to its side effects on _results and _output. If you want a delayed execution queue, then the type in the queue needs to be changed from Task to Func<Task>. Then you can add to it as such:
public IPipeBuilder<TOutput> Returns(Func<IEnumerable<IExecutionResult>, TOutput> outputBuilder)
{
_pipe.Enqueue(() =>
{
try { _output = outputBuilder(_results); return Task.CompletedTask; }
catch (Exception ex) { return Task.FromException(ex); }
});
return this;
}
and you would consume it by calling each delegate one at a time and inspecting the task it returns:
public async Task<TOutput> Execute()
{
while (_pipe.TryDequeue(out var currentFunc))
{
var currentTask = currentFunc();
if (currentTask.IsCommandExecution())
{
IExecutionResult result = await (Task<IExecutionResult>)currentTask;
_results.Add(result);
}
else
{
await currentTask;
}
}
return _output;
}
Okay, thank you. I've ended up with such class and Queue<Func<Task>> like you said.
public sealed class SyncTaskWrapper
{
private Func<Task> _action;
public SyncTaskWrapper(Action action)
=> _action = CreateFunc(action);
private static Func<Task> CreateFunc(Action action)
=> () =>
{
try
{
action();
return Task.CompletedTask;
}
catch (Exception exception)
{
return Task.FromException(exception);
}
};
public static implicit operator Func<Task>(SyncTaskWrapper #this)
=> #this._action;
}
with usage
_pipe.Enqueue(new SyncTaskWrapper(() =>
_output = outputBuilder(_results)));
This question already has answers here:
Why use async and return await, when you can return Task<T> directly?
(9 answers)
Closed 4 years ago.
First I used async delegates in this way:
public async Task TestWithAsyncDelegate()
{
await MethodWithAsyncDelegate(async (counter) => await AsyncLoad(counter));
}
But after some time, I found that if the used delegate contains only one call, it can be simplified to:
public async Task TestWithoutAsyncDelegate()
{
await MethodWithAsyncDelegate(counter => AsyncLoad(counter));
}
Is this code equivalent? In this case, embedding lambda in another delegate, it is redundant in my opinion. So I am using it.
Does somebody have an explanation why?
This approach cannot be used if called lambda has to await in its body:
public async Task TestWithMultipleCalls()
{
await MethodWithAsyncDelegate(async (counter) =>
{
await Task.Delay(10);
await AsyncLoad(counter);
});
}
Complete code follows:
public class AsyncDelegateTests
{
[Fact]
public async Task TestWithAsyncDelegate()
{
await MethodWithAsyncDelegate(async (counter) => await AsyncLoad(counter));
}
[Fact]
public async Task TestWithoutAsyncDelegate()
{
await MethodWithAsyncDelegate(counter => AsyncLoad(counter));
}
[Fact]
public async Task TestWithMultipleCalls()
{
await MethodWithAsyncDelegate(async (counter) =>
{
await Task.Delay(10);
await AsyncLoad(counter);
});
}
/// <summary>
/// simulate async work
/// </summary>
private async Task AsyncLoad(int counter)
{
await Task.Delay(10);
}
private async Task MethodWithAsyncDelegate(Func<int, Task> asyncDelegate)
{
for (int i = 0; i < 10 ; i++)
{
await asyncDelegate(i);
}
}
}
In the first example c# will wrap your async,await in another task because of the async method or lambda which has a very slight impact in performance
in the other example though it returns the task as is and it's up to the one that needs to await or consume the value to await it.
if you are not going to use the value in that lambda it's best to just return the task to prevent wrapping your task in another task
I am implementing an interface
Task Something()
but none of the code in the implementation is async
Task Something(){
var x=1;
return null;
}
This of course results in an error when called:
await Something()
How do I send back a blank Task to make the Interface happy?
You can use Task.FromResult to return a completed Task.
Task Something()
{
var x=1;
// Do *something* here ;)
return Task.FromResult(true);
}
Note that this will run synchronously, and not be an asynchronous operation, so it'd be good to document that appropriately as well.
If async is expected, why not make it async?
Task Something()
{
return Task.Run( () => { /* your code here */ } );
}
In order to await any method, it needs to have an async signature so in order to await Something() it should be made like:
async Task Something()
{
//do stuff
}
Just remember that when you want to return a value you should return a Task and if you want to return void you should return only a Task
I'm trying to get the hand of the new async CTP stuff and I'm probably confusing myself here..
I can have this "task method", with no problem:
public static Task<String> LongTaskAAsync() {
return Task.Run(() => {
return("AAA");
});
}
But what if I need the task to execute another task, can I mark it as "async" and use "await"? I tried this:
public async static Task<String> LongTaskAAsync() {
await Task.Delay(2000);
return Task.Run(() => {
return("AAA");
});
}
But then mysteriously get this compiler error: Since this is an async method, the return expression must be of type 'string' rather than Task<string>
What am I missing here?
You may want to read my async/await intro post.
Return values from async methods are wrapped in a Task<TResult>. Likewise, await unwraps those return values:
public static async Task<String> LongTaskAAsync() {
await Task.Delay(2000);
return await Task.Run(() => {
return("AAA");
});
}
The reasoning behind this is described in my Async "Why Do the Keywords Work That Way" Unofficial FAQ.
P.S. You can also use Task.FromResult for simple tests like this.
Edit: If you want to create and return the Task object itself, then the method should not be async. One somewhat common pattern is to have a public non-async method that calls the async portion only if necessary.
For example, some kind of asynchronous cache - if the object is in the cache, then return it immediately; otherwise, asynchronously create it, add it to the cache, and return it (this is example code - not thread-safe):
public static Task<MyClass> GetAsync(int key)
{
if (cache.Contains(key))
return Task.FromResult(cache[key]);
return CreateAndAddAsync(key);
}
private static async Task<MyClass> CreateAndAddAsync(int key)
{
var result = await CreateAsync(key);
cache.Add(key, result);
return result;
}
Can a “task method” also be an “async” method?
Yes it can be, by simply changing the method signature to public async static Task<Task<String>> LongTaskAAsync() since that is, what it will return.
If you use the async keyword, the runtime will wrap the type you return into a task, to enable asynchronousness. Say if you return a string, the runtime will wrap that into a Task<string>. int will go Task<int> and Task<string> will go Task<Task<string>>. See this console app to clearify:
public class Program
{
public static void Main(string[] args)
{
// start the main procedure asynchron
Task.Run(() => DoIt()).Wait();
}
// for async support since the static main method can't be async
public static async void DoIt()
{
Program p = new Program();
// use the methods
string s = await p.GetString();
int i = await p.GetInt();
Task<string> tsk = await p.GetTaskOfString();
// just to prove the task works:
// C# 5
string resultFromReturnedTask = await tsk;
// C# 4
string resultFromReturnedTask2 = tsk.Result;
}
public async Task<string> GetString()
{
return "string";
}
public async Task<int> GetInt()
{
return 6;
}
public async Task<Task<string>> GetTaskOfString()
{
return Task.Run(() => "string");
}
}