AES Decryption Using C# - c#

I am using a Java based configuration management tool called Zuul which supports encrypting sensitive configuration information using various encryption schemes.
I have configured it to use below scheme for my data
AES (Bouncy Castle)
Name: PBEWITHSHA256AND128BITAES-CBC-BC
Requirements: Bouncy Castle API and JCE Unlimited Strength Policy Files
Hashing Algorithm: SHA256
Hashing Iterations: 1000
Now when reading my configuration data back, I need to decrypt the information before I can use it and the documentation provides below information around this topic.
The encrypted values produced by Jasypt (and thus Zuul) are are prefixed with the salt (usually 8 or 16 bytes depending on the algorithm requirements). They are then Base64 encoded. Decrypting the results goes something like this:
Convert the Base64 string to bytes
Strip off the first 8 or 16 bytes as the salt
Keep the remaining bytes for the encrypted payload
Invoke the KDF function with the salt, iteration count and the password to create the secret key.
Use the secret key to decrypt the encrypted payload
More details here: Zull Encryption wiki
Based on above details, I have written below code (and my knowledge around security is very limited)
public static string Decrypt(string cipher, string password)
{
const int saltLength = 16;
const int iterations = 1000;
byte[] cipherBytes = Convert.FromBase64String(cipher);
byte[] saltBytes = cipherBytes.Take(saltLength).ToArray();
byte[] encryptedBytes = cipherBytes.Skip(saltLength).ToArray();
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(password, saltBytes, iterations);
byte[] keyBytes = key.GetBytes(16);
AesCryptoServiceProvider aesAlg = new AesCryptoServiceProvider();
aesAlg.KeySize = 256;
aesAlg.BlockSize = 128;
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
aesAlg.IV = key.GetBytes(aesAlg.BlockSize / 8);
ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);
MemoryStream msDecrypt = new MemoryStream(encryptedBytes);
CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read);
StreamReader srDecrypt = new StreamReader(csDecrypt);
return srDecrypt.ReadToEnd();
}
I configured Zuul to use below password for the encryption
SimplePassword
And now I have an encrypted string given to me by Zuul and I need to decrypt it
p8C9hAHaoo0F25rMueT0+u0O6xYVpGIkjHmWqFJmTOvpV8+cipoDFIUnaOFF5ElQ
When I try to decrypt this string using above code, I get below exception
System.Security.Cryptography.CryptographicException : Padding is invalid and cannot be removed.
As I mentioned earlier, my knowledge around this topic is limited and I am not able to figure out if the information provided in the documentation is not enough, if I am doing something wrong while writing the decryption routine or should I be using bouncy castle for decryption as well.
Any help with this will be much appreciated.

According to Zuul documentation they are deriving both key and iv from the password/salt.
So you should derive 256+128 bits (i.e. 48 bytes), and use first 32 bytes as the key, and next 16 bytes as IV.
And this should be done in one operation, not as consequent calls to key.DeriveBytes.

I resorted to Bouncy Castle for decryption instead since that is used by Zuul as well.
Here is the code that works
public static string Decrypt(string cipher, string password)
{
const int saltLength = 16;
const int iterations = 1000;
const string algSpec = "AES/CBC/NoPadding";
const string algName = "PBEWITHSHA256AND128BITAES-CBC-BC";
byte[] cipherBytes = Convert.FromBase64String(cipher);
byte[] saltBytes = cipherBytes.Take(saltLength).ToArray();
byte[] encryptedBytes = cipherBytes.Skip(saltLength).ToArray();
char[] passwordChars = password.ToCharArray();
Asn1Encodable defParams = PbeUtilities.GenerateAlgorithmParameters(algName, saltBytes, iterations);
IWrapper wrapper = WrapperUtilities.GetWrapper(algSpec);
ICipherParameters parameters = PbeUtilities.GenerateCipherParameters(algName, passwordChars, defParams);
wrapper.Init(false, parameters);
byte[] keyText = wrapper.Unwrap(encryptedBytes, 0, encryptedBytes.Length);
return Encoding.Default.GetString(keyText);
}

Related

How to encrypt with iOS CryptoKit and decrypt with C# in NetCore

I would like to encrypt data in iOS app with a SymetricKey and the CryptoKit and decrypt on server side with C# in Net Core.
iOS code:
class Security {
static let keyStr = "d5a423f64b607ea7c65b311d855dc48f" //32
static let iv="31348c0987c7" //12
class func encode(_ text:String)->String {
let key=SymmetricKey(data: Security.keyStr.data(using: .utf8)!)
let nonce=try! AES.GCM.Nonce(data: iv.data(using: .utf8)!)
let encrypted=try! AES.GCM.seal(text.data(using: .utf8)!, using: key, nonce: nonce)
return encrypted.combined!.base64EncodedString()
}
}
I pass the result of the encryption to my backend and I would like to decrypt
C# Code:
public string decrypt(string encryptedText)
{
string keyStr = "d5a423f64b607ea7c65b311d855dc48f";
string iv = "31348c0987c7";
string plaintext = "";
Debug.WriteLine(encryptedText);
using (Aes aesAlg = Aes.Create())
{
Debug.WriteLine(AesGcm.IsSupported);
var key = System.Text.Encoding.UTF8.GetBytes(keyStr);
var iV = System.Text.Encoding.UTF8.GetBytes(iv);
aesAlg.Key = key;
aesAlg.IV = iV;
// Create a decryptor to perform the stream transform.
ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);
// Create the streams used for decryption.
using (MemoryStream msDecrypt = new MemoryStream(Convert.FromBase64String(request.pswd)))
{
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
{
using (StreamReader srDecrypt = new StreamReader(csDecrypt))
{
// Read the decrypted bytes from the decrypting stream
// and place them in a string.
plaintext = srDecrypt.ReadToEnd();
}
}
}
}
Debug.WriteLine(plaintext);
}
So for example word: Test gets encrypted as: MzEzNDhjMDk4N2M3CI68IDEJeBR4OFtWO3GPO3TIgos=
When I get to line:
aesAlg.IV = iV;
I get an error "Specified initialization vector (IV) does not match the block size for this algorithm."
It seems as if C# needs byte[16], but in iOS I seem to be stuck with 12.
I got stuck at this point. Any idea greately appreciated.
Thank you.
The posted Swift code applies AES in GCM mode, s. AES.GCM. The posted C# code also uses AES, however not the GCM mode, but the default CBC mode (s. Aes, Mode).
The CBC mode applies a 16 bytes IV, while the GCM mode uses a 12 bytes nonce. That is what the error message is pointing to.
For successful decryption, AES in GCM mode must also be used on the C# side. In .NET AES in GCM mode is supported with the AesGcm class (as of .NET Core 3.0).
Note also that the data given by the Swift code is the Base64 encoding of the concatenation of 12 bytes nonce, ciphertext and 16 bytes tag (in that order), which must be separated in the C# code, where the portions are processed individually.
A possible C# implementation that decrypts the ciphertext generated by the posted Swift code is:
byte[] nonceCiphertextTag = Convert.FromBase64String("MzEzNDhjMDk4N2M3CI68IDEJeBR4OFtWO3GPO3TIgos=");
byte[] key = Encoding.UTF8.GetBytes("d5a423f64b607ea7c65b311d855dc48f");
Span<byte> nonceCiphertextTagSpan = nonceCiphertextTag.AsSpan();
Span<byte> nonce = nonceCiphertextTagSpan[..12];
Span<byte> ciphertext = nonceCiphertextTagSpan[12..^16];
Span<byte> tag = nonceCiphertextTagSpan[^16..];
byte[] plaintext = new byte[ciphertext.Length];
using AesGcm aesGcm = new AesGcm(key);
aesGcm.Decrypt(nonce, ciphertext, tag, plaintext); // throws an 'CryptographicException: The computed authentication tag did not match the input authentication tag' if authentication fails
Console.WriteLine(Encoding.UTF8.GetString(plaintext)); // Test
Edit: An alternative to the native .NET class AesGcm is C#/BouncyCastle. Maybe this is supported in your environment:
using Org.BouncyCastle.Crypto.Engines;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Parameters;
...
byte[] nonceCiphertextTag = Convert.FromBase64String("MzEzNDhjMDk4N2M3CI68IDEJeBR4OFtWO3GPO3TIgos=");
byte[] key = Encoding.UTF8.GetBytes("d5a423f64b607ea7c65b311d855dc48f");
Span<byte> nonceCiphertextTagSpan = nonceCiphertextTag.AsSpan();
byte[] nonce = nonceCiphertextTagSpan[..12].ToArray();
byte[] ciphertextTag = nonceCiphertextTagSpan[12..].ToArray();
GcmBlockCipher gcmBlockCipher = new GcmBlockCipher(new AesEngine());
AeadParameters aeadParameters = new AeadParameters(new KeyParameter(key), 128, nonce);
gcmBlockCipher.Init(false, aeadParameters);
byte[] plaintext = new byte[gcmBlockCipher.GetOutputSize(ciphertextTag.Length)];
int length = gcmBlockCipher.ProcessBytes(ciphertextTag, 0, ciphertextTag.Length, plaintext, 0);
gcmBlockCipher.DoFinal(plaintext, length); // throws an 'InvalidCipherTextException: mac check in GCM failed' if authentication fails
Console.WriteLine(Encoding.UTF8.GetString(plaintext)); // Test
Note that unlike the native AesGcm class, C#/BouncyCastle requires the concatenation of ciphertext and tag, so only the nonce needs to be separated.

AES-256-CBC in .NET Core (C#)

I am searching for C# Code to reproduce the following openssl command.
openssl enc -d -aes-256-cbc -in my_encrypted_file.csv.enc -out my_decrypted_file.csv -pass file:key.bin
Additional information:
The encrypted file in present as byte[]
The key.bin is a byte[] with length of 256 (the key is obtained by a more simple decryption of yet another file, which i managed to realize in C#).
I have been trying out various examples found by searching the web.
The problem is, that all of these examples require an IV (initialization vector). Unfortunately, I don't have an IV and no one on the team knows what this is or how it could be defined.
The openssl command does not seem to need one, so I am a bit confused about this.
Currently, the code, I am trying with, looks as follows:
public static string DecryptAesCbc(byte[] cipheredData, byte[] key)
{
string decrypted;
System.Security.Cryptography.Aes aes = System.Security.Cryptography.Aes.Create();
aes.KeySize = 256;
aes.Key = key;
byte[] iv = new byte[aes.BlockSize / 8];
aes.IV = iv;
aes.Mode = CipherMode.CBC;
ICryptoTransform decipher = aes.CreateDecryptor(aes.Key, aes.IV);
using (MemoryStream ms = new MemoryStream(cipheredData))
{
using (CryptoStream cs = new CryptoStream(ms, decipher, CryptoStreamMode.Read))
{
using (StreamReader sr = new StreamReader(cs))
{
decrypted = sr.ReadToEnd();
}
}
return decrypted;
}
}
The code fails saying that my byte[256] key has the wrong length for this kind of algorithm.
Thanks for any help with this!
Cheers, Mike
The posted OpenSSL statement uses the -pass file: option and thus a passphrase (which is read from a file), see openssl enc. This causes the encryption process to first generate a random 8 bytes salt and then, together with the passphrase, derive a 32 bytes key and 16 bytes IV using the (not very secure) proprietary OpenSSL function EVP_BytesToKey. This function uses several parameters, e.g. a digest and an iteration count. The default digest for key derivation is MD5 and the iteration count is 1. Note that OpenSSL version 1.1.0 and later uses SHA256 as default digest, i.e. depending on the OpenSSL version used to generate the ciphertext, the appropriate digest must be used for decryption. Preceding the ciphertext is a block whose first 8 bytes is the ASCII encoding of Salted__, followed by the 8 bytes salt.
Therefore, the decryption must first determine the salt. Based on the salt, together with the passphrase, key and IV must be derived and then the rest of the encrypted data can be decrypted. Thus, first of all an implementation of EVP_BytesToKey in C# is required, e.g. here. Then a possible implementation could be (using MD5 as digest):
public static string DecryptAesCbc(byte[] cipheredData, string passphrase)
{
string decrypted = null;
using (MemoryStream ms = new MemoryStream(cipheredData))
{
// Get salt
byte[] salt = new byte[8];
ms.Seek(8, SeekOrigin.Begin);
ms.Read(salt, 0, 8);
// Derive key and IV
OpenSslCompat.OpenSslCompatDeriveBytes db = new OpenSslCompat.OpenSslCompatDeriveBytes(passphrase, salt, "MD5", 1);
byte[] key = db.GetBytes(32);
byte[] iv = db.GetBytes(16);
using (Aes aes = Aes.Create())
{
aes.Padding = PaddingMode.PKCS7;
aes.Mode = CipherMode.CBC;
aes.Key = key;
aes.IV = iv;
// Decrypt
ICryptoTransform decipher = aes.CreateDecryptor(aes.Key, aes.IV);
using (CryptoStream cs = new CryptoStream(ms, decipher, CryptoStreamMode.Read))
{
using (StreamReader sr = new StreamReader(cs, Encoding.UTF8))
{
decrypted = sr.ReadToEnd();
}
}
}
}
return decrypted;
}
Note that the 2nd parameter of DecryptAesCbc is the passphrase (as string) and not the key (as byte[]). Also note that StreamReader uses an encoding (UTF-8 by default), which requires compatible data (i.e. text data, but this should be met for csv files). Otherwise (i.e. for binary data as opposed to text data) StreamReader must not be used.

Converting code from PasswordDerivedBytes to Rfc2898DerivedBytes, unicode

I'm attempting to replace PasswordDerivedBytes with Rfc2898DerivedBytes but I'm having a problem with the latter when getting back a unicode encoded result.
Take this code for example:
[TestMethod]
public void DerivedBytesTest()
{
string encrypted = "y4Ijqo9Ga/mHlFbLHDdDUkYZlyu7CHF4PVXGLnb8by7FAVtCgPLhFSiA9Et6hDac";
string key = "{00B3403A-3C29-4f26-A9CC-14C411EA8547}";
string salt = "gT5M07XB9hHl3l1s";
string expected = "4552065703414505";
string decrypted;
decrypted = Decrypt(encrypted, key, salt, true);
Assert.IsTrue(decrypted == expected); // Works
decrypted = Decrypt(encrypted, key, salt, false);
Assert.IsTrue(decrypted == expected); // Doesn't work, get wrong unicode characters in 24 character string
}
private string Decrypt(string encrypted, string key, string salt, bool legacy = false)
{
UnicodeEncoding encoding = new UnicodeEncoding();
byte[] encryptedDataBytes = Convert.FromBase64String(encrypted);
byte[] saltBytes = encoding.GetBytes(salt);
RijndaelManaged encryption = new RijndaelManaged();
DeriveBytes secretKey;
if (legacy)
{
secretKey = new PasswordDeriveBytes(key, saltBytes) {IterationCount = 100};
encryption.Padding = PaddingMode.PKCS7;
}
else
{
secretKey = new Rfc2898DeriveBytes(key, saltBytes, 100);
encryption.Padding = PaddingMode.Zeros; // This is the only one that doesn't throw the "Padding is invalid and cannot be removed" exception, but gives me a non-ASCII result
}
ICryptoTransform decryptor = encryption.CreateDecryptor(secretKey.GetBytes(32), secretKey.GetBytes(16));
string decryptedText = "";
using (MemoryStream memoryStream = new MemoryStream(encryptedDataBytes))
{
using (CryptoStream cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
byte[] bytes = new byte[encryptedDataBytes.Length];
int decryptedCount = cryptoStream.Read(bytes, 0, bytes.Length);
decryptedText = encoding.GetString(bytes, 0, decryptedCount);
if (!legacy)
{
// Something more to do with result?
}
}
}
return decryptedText;
}
I wonder if anyone can advise where I'm going wrong?
PasswordDeriveBytes is a badly implemented extension of PBKDF1, while Rfc2898DeriveBytes is the implementation of PBKDF2. Both derive a key from a password, but they are two different algorithms and therefore they derive two different results. As they are using cryptographically secure hashes underneath, there is no way to convert one to another.
If you can spare a few bytes of storage you could still derive the key using PKBDF1 and then encrypt that key using the result of PBKDF2. If the output size is identical you could even use XOR encryption for that (a one-time-pad) but AES would of course also work. So then the decryption becomes: calculate PBKDF2 result, decrypt data key, use data key to decrypt ciphertext.
Otherwise you will have to decrypt and then re-encrypt the result.
If you want to compare the decryption result then compare the resulting bytes; do not first convert it into a string. Using authenticated encryption or a MAC is highly advised so that a authentication tag can be validated instead. Just ignoring padding exceptions by using Zero Padding is not the way to go. These padding errors occur because the key is wrong.
Generic notes:
PasswordDeriveBytes should not be used for any amount of bytes > 20 bytes as the Mickeysoft extension of PBKDF1 is horribly insecure, even repeating bytes in the output (!). If you do the same for PBKDF2 then any adversary will have to do half the work that you have to do so that's not a good idea either.
The iteration count in the question is very low, but as you seem to use a highly random UID instead of a password that should be OK.

CryptDerive key with AES256

I am trying to re-create this openssl command in C#:
openssl enc –e –aes-256-cbc –k SecretPhrase1234 –in profile.xml –out profile.cfg
This encrypted file will then be loaded by a device and the process is described as this:
A lower case –k precedes the secret key, which can be any plain text phrase and is used to generate a random 64-bit salt. Then, in combination with the secret specified with the –k argument, it derives a random 128-bit initial vector, and the actual 256-bit encryption key.
So, in my C# application I need to create a random 64 bit salt using my "SecretPhrase1234". Then I need to derive a 128 bit IV and a 256 bit key. The device already has the secret phrase loaded onto it.
Here is my code:
AesManaged aes = new AesManaged();
// Encrypt the string to an array of bytes.
aes.KeySize = 256;
aes.BlockSize = 128;
aes.Mode = CipherMode.CBC;
Rfc2898DeriveBytes rfc = new Rfc2898DeriveBytes("SecretPhrase1234", 8);
byte[] SALT = rfc.Salt;
PasswordDeriveBytes pdb = new PasswordDeriveBytes("SecretPhrase1234", SALT);
byte[] IV = rfc.GetBytes(aes.BlockSize/8);
//The next line doesn't work
byte[] KEY = pdb.CryptDeriveKey("AES", "SHA1", aes.KeySize, IV);
aes.Key = KEY;
aes.IV = IV;
byte[] encrypted = AESEncryption.EncryptStringToBytes(plainConfig,
aes.Key, aes.IV);
tw.WriteLine(Encoding.ASCII.GetString(encrypted));
tw.Close();
I found a .NET implementation of OPENSSL which perfectly suits my needs. It is here:
openssl using only .NET classes

Minimal message size public key encryption in .NET

I'd like to encrypt very little data (15 bytes to be exact) into a as short as possible (optimally, no longer than 16 bytes) message using a public key cryptography system.
The standard public key system, RSA, unfortunately produces messages as big as its keys, that is about 100 bytes, depending on key size.
To make things more difficult, I can only use .NET framework libraries, i.e. no third party.
I've read a little about elliptic curve cryptography in the wikipedia and the text there seems to suggest that key sizes there are usually much shorter than RSA keys.
Does this translate to short messages as well? Can the .NET ECDiffieHellmanCng class be used to de/encrypt messages? It seems to feature a different class structure then, say, RSA or the symmetric ciphers.
You can use ECDiffieHellman to encrypt messages. You have two options: Static-static ECDH and static-ephemeral ECDH:
For static-static ECDH the receiver will need to know the senders public key (this might or might not be an option in your application). You should also have some data that is unique for this message (it might be a serial-number you get from somewhere else in the protocol or database-row or whatever or it might be a nonce). You then use ECDH to generate a secret key and use that to encrypt your data. This will give you your desired encrypted data length of 16 bytes, but it is not completely asymmetric: the encryptor is also able to decrypt the messages (again: this might or might not be a problem in your application).
Static-ephemeral is a bit different: here the encryptor generates a temporary (ephemeral) EC keypair. He then uses this keypair together with the receivers public key to generate a secret key which can be used to encrypt the data. Finally he sends the public key of the ephemeral keypair to the receiver together with the encrypted data. This might fit better into your application, but the complete encrypted data will now be 2*32+16=80 bytes using ECDH-256 and AES (as GregS notes you can save 32 bytes by only sending the x-coordinate of the public-key, but I do not believe that .NET exposes the functionality to recalculate the y-coordinate).
Here is a small class that will do static-static ECDH:
public static class StaticStaticDiffieHellman
{
private static Aes DeriveKeyAndIv(ECDiffieHellmanCng privateKey, ECDiffieHellmanPublicKey publicKey, byte[] nonce)
{
privateKey.KeyDerivationFunction = ECDiffieHellmanKeyDerivationFunction.Hash;
privateKey.HashAlgorithm = CngAlgorithm.Sha256;
privateKey.SecretAppend = nonce;
byte[] keyAndIv = privateKey.DeriveKeyMaterial(publicKey);
byte[] key = new byte[16];
Array.Copy(keyAndIv, 0, key, 0, 16);
byte[] iv = new byte[16];
Array.Copy(keyAndIv, 16, iv, 0, 16);
Aes aes = new AesManaged();
aes.Key = key;
aes.IV = iv;
aes.Mode = CipherMode.CBC;
aes.Padding = PaddingMode.PKCS7;
return aes;
}
public static byte[] Encrypt(ECDiffieHellmanCng privateKey, ECDiffieHellmanPublicKey publicKey, byte[] nonce, byte[] data){
Aes aes = DeriveKeyAndIv(privateKey, publicKey, nonce);
return aes.CreateEncryptor().TransformFinalBlock(data, 0, data.Length);
}
public static byte[] Decrypt(ECDiffieHellmanCng privateKey, ECDiffieHellmanPublicKey publicKey, byte[] nonce, byte[] encryptedData){
Aes aes = DeriveKeyAndIv(privateKey, publicKey, nonce);
return aes.CreateDecryptor().TransformFinalBlock(encryptedData,0, encryptedData.Length);
}
}
// Usage:
ECDiffieHellmanCng key1 = new ECDiffieHellmanCng();
ECDiffieHellmanCng key2 = new ECDiffieHellmanCng();
byte[] data = Encoding.UTF8.GetBytes("TestTestTestTes");
byte[] nonce = Encoding.UTF8.GetBytes("whatever");
byte[] encryptedData = StaticStaticDiffieHellman.Encrypt(key1, key2.PublicKey, nonce, data);
Console.WriteLine(encryptedData.Length); // 16
byte[] decryptedData = StaticStaticDiffieHellman.Decrypt(key2, key1.PublicKey, nonce, encryptedData);
Console.WriteLine(Encoding.UTF8.GetString(decryptedData));
ECDiffieHellmanCNG is a derivation of the original Diffie-Hellman Key Exchange Protocol.
It is not intended for encrypting messages but rather calculating the same secret value on both ends.
Here is some information on ECDiffieHellmanCNG and its purpose.

Categories