Converting code from PasswordDerivedBytes to Rfc2898DerivedBytes, unicode - c#

I'm attempting to replace PasswordDerivedBytes with Rfc2898DerivedBytes but I'm having a problem with the latter when getting back a unicode encoded result.
Take this code for example:
[TestMethod]
public void DerivedBytesTest()
{
string encrypted = "y4Ijqo9Ga/mHlFbLHDdDUkYZlyu7CHF4PVXGLnb8by7FAVtCgPLhFSiA9Et6hDac";
string key = "{00B3403A-3C29-4f26-A9CC-14C411EA8547}";
string salt = "gT5M07XB9hHl3l1s";
string expected = "4552065703414505";
string decrypted;
decrypted = Decrypt(encrypted, key, salt, true);
Assert.IsTrue(decrypted == expected); // Works
decrypted = Decrypt(encrypted, key, salt, false);
Assert.IsTrue(decrypted == expected); // Doesn't work, get wrong unicode characters in 24 character string
}
private string Decrypt(string encrypted, string key, string salt, bool legacy = false)
{
UnicodeEncoding encoding = new UnicodeEncoding();
byte[] encryptedDataBytes = Convert.FromBase64String(encrypted);
byte[] saltBytes = encoding.GetBytes(salt);
RijndaelManaged encryption = new RijndaelManaged();
DeriveBytes secretKey;
if (legacy)
{
secretKey = new PasswordDeriveBytes(key, saltBytes) {IterationCount = 100};
encryption.Padding = PaddingMode.PKCS7;
}
else
{
secretKey = new Rfc2898DeriveBytes(key, saltBytes, 100);
encryption.Padding = PaddingMode.Zeros; // This is the only one that doesn't throw the "Padding is invalid and cannot be removed" exception, but gives me a non-ASCII result
}
ICryptoTransform decryptor = encryption.CreateDecryptor(secretKey.GetBytes(32), secretKey.GetBytes(16));
string decryptedText = "";
using (MemoryStream memoryStream = new MemoryStream(encryptedDataBytes))
{
using (CryptoStream cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.Read))
{
byte[] bytes = new byte[encryptedDataBytes.Length];
int decryptedCount = cryptoStream.Read(bytes, 0, bytes.Length);
decryptedText = encoding.GetString(bytes, 0, decryptedCount);
if (!legacy)
{
// Something more to do with result?
}
}
}
return decryptedText;
}
I wonder if anyone can advise where I'm going wrong?

PasswordDeriveBytes is a badly implemented extension of PBKDF1, while Rfc2898DeriveBytes is the implementation of PBKDF2. Both derive a key from a password, but they are two different algorithms and therefore they derive two different results. As they are using cryptographically secure hashes underneath, there is no way to convert one to another.
If you can spare a few bytes of storage you could still derive the key using PKBDF1 and then encrypt that key using the result of PBKDF2. If the output size is identical you could even use XOR encryption for that (a one-time-pad) but AES would of course also work. So then the decryption becomes: calculate PBKDF2 result, decrypt data key, use data key to decrypt ciphertext.
Otherwise you will have to decrypt and then re-encrypt the result.
If you want to compare the decryption result then compare the resulting bytes; do not first convert it into a string. Using authenticated encryption or a MAC is highly advised so that a authentication tag can be validated instead. Just ignoring padding exceptions by using Zero Padding is not the way to go. These padding errors occur because the key is wrong.
Generic notes:
PasswordDeriveBytes should not be used for any amount of bytes > 20 bytes as the Mickeysoft extension of PBKDF1 is horribly insecure, even repeating bytes in the output (!). If you do the same for PBKDF2 then any adversary will have to do half the work that you have to do so that's not a good idea either.
The iteration count in the question is very low, but as you seem to use a highly random UID instead of a password that should be OK.

Related

Getting error Length of the data to decrypt is invalid [duplicate]

I am working in a C# application. We have common methods to store data on a file. These methods encrypt the data and store them on the file system. when we need the data, ReadData method decrypts the data and returns me plain text.
This code works fine in normal cases if size of the text in small. but for a example text given below, the decryption code is throwing exception - length of the data to decrypt is invalid.
The exception occurs at line
// close the CryptoStream
x_cryptostream.Close();
I tried different ways but no luck. Can some pls help.
Why am I encrypting already encrypted data - I am just trying to store in a file using common method of the huge application. The common methods storedata(key,data) nad readdata(key) do the encryption/decryption I can't avoid.
public static byte[] Decrypt(byte[] ciphertext, string Key, string IV)
{
byte[] k = Encoding.Default.GetBytes(Key);
byte[] iv = Encoding.Default.GetBytes(IV);
// create the encryption algorithm
SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("Rijndael");
x_alg.Padding = PaddingMode.PKCS7;
// create an ICryptoTransform that can be used to decrypt data
ICryptoTransform x_decryptor = x_alg.CreateDecryptor(k, iv);
// create the memory stream
MemoryStream x_memory_stream = new MemoryStream();
// create the CryptoStream that ties together the MemoryStream and the
// ICryptostream
CryptoStream x_cryptostream = new CryptoStream(x_memory_stream,
x_decryptor, CryptoStreamMode.Write);
// write the ciphertext out to the cryptostream
x_cryptostream.Write(ciphertext, 0, ciphertext.Length);
// close the CryptoStream
x_cryptostream.Close();
// get the plaintext from the MemoryStream
byte[] x_plaintext = x_memory_stream.ToArray();
Below is the code of encrypt method.
public static byte[] Encrypt(string strplain, string Key, string IV)
{
byte[] k = Encoding.Default.GetBytes(Key);
byte[] iv = Encoding.Default.GetBytes(IV);
byte[] plaintext = Encoding.Default.GetBytes(strplain);
// create the encryption algorithm
SymmetricAlgorithm x_alg = SymmetricAlgorithm.Create("Rijndael");
x_alg.Padding = PaddingMode.PKCS7;
// create an ICryptoTransform that can be used to encrypt data
ICryptoTransform x_encryptor = x_alg.CreateEncryptor(k, iv);
// create the memory stream
MemoryStream x_memory_stream = new MemoryStream();
// create the CryptoStream that ties together the MemoryStream and
// the ICryptostream
CryptoStream x_cryptostream = new CryptoStream(x_memory_stream,
x_encryptor, CryptoStreamMode.Write);
// write the plaintext out to the cryptostream
x_cryptostream.Write(plaintext, 0, plaintext.Length);
// close the CryptoStream
x_cryptostream.Close();
// get the ciphertext from the MemoryStream
byte[] x_ciphertext = x_memory_stream.ToArray();
// close memory stream
x_memory_stream.Close();
// convert from array to string
string cipher_Tx = Encoding.Default.GetString(x_ciphertext,
0, x_ciphertext.Length);
x_encryptor.Dispose();
x_alg.Clear();
byte[] cipher = Encoding.Default.GetBytes(cipher_Tx);
return cipher;
}
Your problem is string cipher_Tx = Encoding.Default.GetString(x_ciphertext, 0, x_ciphertext.Length);.
x_ciphertext is not a valid byte representation of text, it has many unpresentable characters and when you do your byte[] to string conversion you are losing information. The correct way to do it is use a string format that is designed to represent binary data using something like Convert.ToBase64String(byte[]) and Convert.FromBase64String(string).
string cipher_Tx = Convert.ToBase64String(x_ciphertext)
x_encryptor.Dispose();
x_alg.Clear();
byte[] cipher = Convert.FromBase64String(cipher_Tx)
That being said, there is a lot of other "odd" things about your code, for example you don't use using statements and you really should. Also that whole conversion to string and back is totally unnecessary, just return x_ciphertext. There may be other problems with the code too (like where did the strings for Key and IV come from) and many other best practices (like you should be generating a random IV and writing it out in to the output and the key should be generated using a key derivation function not straight from user text), but I stopped checking after I found the string conversion issue.
Your code above works as long as the key and iv used to decrypt match the key and iv used to encrypt. Try this:
byte[] test = new byte[1000000];
for (int i = 0; i < 256; i++)
{
test[i] = (byte)i;
}
var ciphertext = Encrypt(Encoding.Default.GetString(test), "0000000000000000", "0000000000000000");
byte[] check = Decrypt(ciphertext, "0000000000000000", "0000000000000000");
for (int i = 0; i < 256; i++)
{
Debug.Assert(check[i] == (byte)i, "round trip");
}
As you can see, one million bytes encrypt and decrypt just fine with your code, so I don't think it has anything to do with data size.
However, change the IV like this:
byte[] check = Decrypt(ciphertext, "0000000000000000", "000000000000000X"); // note X
and the Debug.Assert will fire -- the decryption will not match. However, x_cryptostream.Close() succeeds.
Next, try changing the key like this:
byte[] check = Decrypt(ciphertext, "000000000000000X", "0000000000000000"); // note X
Now, x_cryptostream.Close() will fail with a CryptographicException, probably, "Padding is invalid and cannot be removed."
Corrupting the key will cause the decryption to fail, and x_cryptostream.Close() to fail.
I think the problem is in your saving and later restoring the key bytes.
BTW: Hopefully you are using the full binary range of the key, and not basing it only on ASCII characters, otherwise you don't really have a strong key.

AES-256-CBC in .NET Core (C#)

I am searching for C# Code to reproduce the following openssl command.
openssl enc -d -aes-256-cbc -in my_encrypted_file.csv.enc -out my_decrypted_file.csv -pass file:key.bin
Additional information:
The encrypted file in present as byte[]
The key.bin is a byte[] with length of 256 (the key is obtained by a more simple decryption of yet another file, which i managed to realize in C#).
I have been trying out various examples found by searching the web.
The problem is, that all of these examples require an IV (initialization vector). Unfortunately, I don't have an IV and no one on the team knows what this is or how it could be defined.
The openssl command does not seem to need one, so I am a bit confused about this.
Currently, the code, I am trying with, looks as follows:
public static string DecryptAesCbc(byte[] cipheredData, byte[] key)
{
string decrypted;
System.Security.Cryptography.Aes aes = System.Security.Cryptography.Aes.Create();
aes.KeySize = 256;
aes.Key = key;
byte[] iv = new byte[aes.BlockSize / 8];
aes.IV = iv;
aes.Mode = CipherMode.CBC;
ICryptoTransform decipher = aes.CreateDecryptor(aes.Key, aes.IV);
using (MemoryStream ms = new MemoryStream(cipheredData))
{
using (CryptoStream cs = new CryptoStream(ms, decipher, CryptoStreamMode.Read))
{
using (StreamReader sr = new StreamReader(cs))
{
decrypted = sr.ReadToEnd();
}
}
return decrypted;
}
}
The code fails saying that my byte[256] key has the wrong length for this kind of algorithm.
Thanks for any help with this!
Cheers, Mike
The posted OpenSSL statement uses the -pass file: option and thus a passphrase (which is read from a file), see openssl enc. This causes the encryption process to first generate a random 8 bytes salt and then, together with the passphrase, derive a 32 bytes key and 16 bytes IV using the (not very secure) proprietary OpenSSL function EVP_BytesToKey. This function uses several parameters, e.g. a digest and an iteration count. The default digest for key derivation is MD5 and the iteration count is 1. Note that OpenSSL version 1.1.0 and later uses SHA256 as default digest, i.e. depending on the OpenSSL version used to generate the ciphertext, the appropriate digest must be used for decryption. Preceding the ciphertext is a block whose first 8 bytes is the ASCII encoding of Salted__, followed by the 8 bytes salt.
Therefore, the decryption must first determine the salt. Based on the salt, together with the passphrase, key and IV must be derived and then the rest of the encrypted data can be decrypted. Thus, first of all an implementation of EVP_BytesToKey in C# is required, e.g. here. Then a possible implementation could be (using MD5 as digest):
public static string DecryptAesCbc(byte[] cipheredData, string passphrase)
{
string decrypted = null;
using (MemoryStream ms = new MemoryStream(cipheredData))
{
// Get salt
byte[] salt = new byte[8];
ms.Seek(8, SeekOrigin.Begin);
ms.Read(salt, 0, 8);
// Derive key and IV
OpenSslCompat.OpenSslCompatDeriveBytes db = new OpenSslCompat.OpenSslCompatDeriveBytes(passphrase, salt, "MD5", 1);
byte[] key = db.GetBytes(32);
byte[] iv = db.GetBytes(16);
using (Aes aes = Aes.Create())
{
aes.Padding = PaddingMode.PKCS7;
aes.Mode = CipherMode.CBC;
aes.Key = key;
aes.IV = iv;
// Decrypt
ICryptoTransform decipher = aes.CreateDecryptor(aes.Key, aes.IV);
using (CryptoStream cs = new CryptoStream(ms, decipher, CryptoStreamMode.Read))
{
using (StreamReader sr = new StreamReader(cs, Encoding.UTF8))
{
decrypted = sr.ReadToEnd();
}
}
}
}
return decrypted;
}
Note that the 2nd parameter of DecryptAesCbc is the passphrase (as string) and not the key (as byte[]). Also note that StreamReader uses an encoding (UTF-8 by default), which requires compatible data (i.e. text data, but this should be met for csv files). Otherwise (i.e. for binary data as opposed to text data) StreamReader must not be used.

AES Decryption Using C#

I am using a Java based configuration management tool called Zuul which supports encrypting sensitive configuration information using various encryption schemes.
I have configured it to use below scheme for my data
AES (Bouncy Castle)
Name: PBEWITHSHA256AND128BITAES-CBC-BC
Requirements: Bouncy Castle API and JCE Unlimited Strength Policy Files
Hashing Algorithm: SHA256
Hashing Iterations: 1000
Now when reading my configuration data back, I need to decrypt the information before I can use it and the documentation provides below information around this topic.
The encrypted values produced by Jasypt (and thus Zuul) are are prefixed with the salt (usually 8 or 16 bytes depending on the algorithm requirements). They are then Base64 encoded. Decrypting the results goes something like this:
Convert the Base64 string to bytes
Strip off the first 8 or 16 bytes as the salt
Keep the remaining bytes for the encrypted payload
Invoke the KDF function with the salt, iteration count and the password to create the secret key.
Use the secret key to decrypt the encrypted payload
More details here: Zull Encryption wiki
Based on above details, I have written below code (and my knowledge around security is very limited)
public static string Decrypt(string cipher, string password)
{
const int saltLength = 16;
const int iterations = 1000;
byte[] cipherBytes = Convert.FromBase64String(cipher);
byte[] saltBytes = cipherBytes.Take(saltLength).ToArray();
byte[] encryptedBytes = cipherBytes.Skip(saltLength).ToArray();
Rfc2898DeriveBytes key = new Rfc2898DeriveBytes(password, saltBytes, iterations);
byte[] keyBytes = key.GetBytes(16);
AesCryptoServiceProvider aesAlg = new AesCryptoServiceProvider();
aesAlg.KeySize = 256;
aesAlg.BlockSize = 128;
aesAlg.Key = key.GetBytes(aesAlg.KeySize / 8);
aesAlg.IV = key.GetBytes(aesAlg.BlockSize / 8);
ICryptoTransform decryptor = aesAlg.CreateDecryptor(aesAlg.Key, aesAlg.IV);
MemoryStream msDecrypt = new MemoryStream(encryptedBytes);
CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read);
StreamReader srDecrypt = new StreamReader(csDecrypt);
return srDecrypt.ReadToEnd();
}
I configured Zuul to use below password for the encryption
SimplePassword
And now I have an encrypted string given to me by Zuul and I need to decrypt it
p8C9hAHaoo0F25rMueT0+u0O6xYVpGIkjHmWqFJmTOvpV8+cipoDFIUnaOFF5ElQ
When I try to decrypt this string using above code, I get below exception
System.Security.Cryptography.CryptographicException : Padding is invalid and cannot be removed.
As I mentioned earlier, my knowledge around this topic is limited and I am not able to figure out if the information provided in the documentation is not enough, if I am doing something wrong while writing the decryption routine or should I be using bouncy castle for decryption as well.
Any help with this will be much appreciated.
According to Zuul documentation they are deriving both key and iv from the password/salt.
So you should derive 256+128 bits (i.e. 48 bytes), and use first 32 bytes as the key, and next 16 bytes as IV.
And this should be done in one operation, not as consequent calls to key.DeriveBytes.
I resorted to Bouncy Castle for decryption instead since that is used by Zuul as well.
Here is the code that works
public static string Decrypt(string cipher, string password)
{
const int saltLength = 16;
const int iterations = 1000;
const string algSpec = "AES/CBC/NoPadding";
const string algName = "PBEWITHSHA256AND128BITAES-CBC-BC";
byte[] cipherBytes = Convert.FromBase64String(cipher);
byte[] saltBytes = cipherBytes.Take(saltLength).ToArray();
byte[] encryptedBytes = cipherBytes.Skip(saltLength).ToArray();
char[] passwordChars = password.ToCharArray();
Asn1Encodable defParams = PbeUtilities.GenerateAlgorithmParameters(algName, saltBytes, iterations);
IWrapper wrapper = WrapperUtilities.GetWrapper(algSpec);
ICipherParameters parameters = PbeUtilities.GenerateCipherParameters(algName, passwordChars, defParams);
wrapper.Init(false, parameters);
byte[] keyText = wrapper.Unwrap(encryptedBytes, 0, encryptedBytes.Length);
return Encoding.Default.GetString(keyText);
}

Creating Encryption Using string

Hi I'm just trying to encrypt a string but i want to reverse the decryption method to create exactly encrypted key
decryption was
public string newSample(string s)
{
byte[] buffer = Convert.FromBase64String(s);
Encoding utF8 = Encoding.UTF8;
byte[] bytes1 = utF8.GetBytes("key1");
byte[] bytes2 = utF8.GetBytes("key2");
RijndaelManaged rijndaelManaged1 = new RijndaelManaged();
rijndaelManaged1.Mode = CipherMode.CBC;
rijndaelManaged1.Padding = PaddingMode.Zeros;
rijndaelManaged1.BlockSize = 128;
rijndaelManaged1.KeySize = 128;
RijndaelManaged rijndaelManaged2 = rijndaelManaged1;
ICryptoTransform transform = (ICryptoTransform)null;
transform = rijndaelManaged2.CreateDecryptor(bytes2, bytes1);
byte[] bytes3 = (byte[])null;
using (MemoryStream memoryStream = new MemoryStream())
{
using (CryptoStream cryptoStream = new CryptoStream((Stream)memoryStream, transform, CryptoStreamMode.Write))
{
cryptoStream.Write(buffer, 0, buffer.GetLength(0));
cryptoStream.FlushFinalBlock();
}
rijndaelManaged2.Clear();
bytes3 = memoryStream.ToArray();
}
return new string(Encoding.UTF8.GetChars(bytes3));
}
is it possible to reverse the code and create encryption key ? if so
how could be the encryption should look lik for this decryption method ??
thanks
This is the problem - or at least the initial problem:
return new string(Encoding.UTF8.GetChars(bytes3));
The result of encryption is not a UTF-8-encoded byte array... it's arbitrary bytes. By assuming it's valid UTF-8-encoded text, you're losing information.
Instead, you should use a hex or base64 approach, both of which are designed to convert arbitrary binary data to text in a lossless fashion. For example:
return Convert.ToBase64String(bytes3);
Now, your decryption code should start with:
byte[] encryptedData = Convert.FromBase64String(base64EncryptedText);
(Where base64EncryptedText is the value returned from your encryption method.)
From there, it should be a matter of just reversing each step, and there are numerous examples around. You may well find that you've got a problem due to the padding mode, however - you may need to separately record the length of the original data.
As an aside, it's not clear why your method takes a string in the first place. It's odd for an encryption method to take a base64-encoded piece of data. It's more common for it to take either a normal plain text string which is converted into bytes using something like Encoding.UTF8, or for it to take a byte[] to start with.

C# AES Function not returning expected results

I'm using this function to Encrypt/Decrypt data using AES because it looked simple and clean (googl'ed code)
public static string Encrypt(string toEncrypt)
{
byte[] keyArray = UTF8Encoding.UTF8.GetBytes("3a8114db34d5623d4fd1ee0fb0ga7a73"); // 256-AES key
byte[] toEncryptArray = UTF8Encoding.UTF8.GetBytes(toEncrypt);
RijndaelManaged rDel = new RijndaelManaged();
rDel.Key = keyArray;
rDel.Mode = CipherMode.CBC;
rDel.Padding = PaddingMode.PKCS7; // better lang support
ICryptoTransform cTransform = rDel.CreateEncryptor();
byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length);
return Convert.ToBase64String(resultArray, 0, resultArray.Length);
}
public static string Decrypt(string toDecrypt)
{
byte[] keyArray = UTF8Encoding.UTF8.GetBytes("3a8114db34d5623d4fd1ee0fb0ga7a73"); // AES-256 key
byte[] toEncryptArray = Convert.FromBase64String(toDecrypt);
RijndaelManaged rDel = new RijndaelManaged();
rDel.Key = keyArray;
rDel.Mode = CipherMode.CBC;
rDel.Padding = PaddingMode.PKCS7; // better lang support
ICryptoTransform cTransform = rDel.CreateDecryptor();
byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length);
return UTF8Encoding.UTF8.GetString(resultArray);
}
I'm trying to encrypt the data "test garbage" and thats what i receive back:
YfhyS3GE/liPCaXR0cMHfQ==
However, I tried the same key/phrase on a lot of online-aes encrypt/decrypt and all of them are returning
U2FsdGVkX184u0/vPgA/B0rxofp5Iuqm7hfn4+QZAhg=
Can anyone actually tell me whats wrong?
"3a8114db34d5623d4fd1ee0fb0ga7a73" is hex encoded 128 bit key not a utf8 encoded 256 bit key.
That said simple and clean doesn't necessarily mean correct. For example, the code your using does use a random IV, but doesn't include it in the wire format, you'll never be able to decrypt what you encrypt.
I have a cut and paste style simple code sample that I try to keep up to date and reviewed that uses authenticated encryption using AES:
Modern Examples of Symmetric Authenticated Encryption of a string. C#
First a few issues with your code. Apparently Google doesn't always return the best code on top.
You are getting a key through the UTF8 encoding, which is silly. This produces a very weak key:
// 256-AES key
byte[] keyArray = UTF8Encoding.UTF8.GetBytes("3a8114db34d5623d4fd1ee0fb0ga7a73");
You are using CBC mode but the IV is not (explicitly) set.
Then you compare to some online-aes encrypt/decrypt services and you see a difference. That's because they probably (hopefully) work different.
The main thing here is that your 2 methods are a match and you can round-trip your data. But a good encryption would use a different way to get Key and IV.
I'm not exactly sure why you see a different (smaller) length encrypted data but that's up to a whole list of settings : Key length, Padding mode etc.

Categories