When I tried to use 2 different versions of the same class , they act actually the same.
I searched but can't find a satisfied answer for this question
What are the differences between Singleton and static property below 2 example, it is about initialization time ? and how can i observe differences ?
Edit : I don't ask about differences static class and singleton. Both of them non static, only difference is, first one initialized in Instance property, second one initialized directly
public sealed class Singleton
{
private static Singleton instance;
private Singleton()
{
}
public static Singleton Instance
{
get
{
if (instance == null)
{
instance = new Singleton();
}
return instance;
}
}
}
public sealed class Singleton2
{
private static Singleton2 instance = new Singleton2();
private Singleton2()
{
}
public static Singleton2 Instance
{
get
{
return instance;
}
}
}
Your first singleton implementation isn't thread safe; if multiple threads try to create a singleton at the same time it's possible for two instances to end up being created. Your second implementation doesn't have that flaw.
Other than that, they're functionally the same.
The instance of the Singleton class will be created the first time it is requested by the Singleton.Instance method.
The instance of Singleton2 will be created on initialization of its type which can be caused by several mechanisms. It will certainly be created before accessing any property or method on the Singleton2 class
Related
I was asked to write Singleton in the interview today. I wrote the below, please note, I used "property set" method to set and then I returned the instance using "get" method. But I see in internet that most places they use only get, meaning, what I did below is wrong? Sorry I dont have VS ide with me to verify it now, so posting it here.
Also, some used sealed class including with private constructor. Why sealed with private cons?
public class Singleton
{
private static readonly Singleton instance;
private Singleton() {}
public static Singleton Instance
{
set
{
if(instance == null){
instance = new Singleton();
}
}
get
{
return instance;
}
}
}
My advice is to try to compile and run the code yourself. It's by far the easiest way to understand how it works.
If you would try to build your code you would get the following error :
Error CS0198 A static readonly field cannot be assigned to (except in a static constructor or a variable initializer)
In other words, you should instantiate your instance inside the constructor.
Regarding your question, a private constructor is needed to prevent access from outside your class and also it is enough to make sure that other classes cannot inherit from your class. You don't really need the sealed.
You can find a really good summary regarding the singleton pattern # https://csharpindepth.com/articles/singleton
#Learner Since its a interview question and mostly in India they ask to write to Psuedo code to evaluate the candidate coding skills, I try to fit myself in the candidate shoes to give the answer.
Well design patterns has evolved over a period of time with advancements in the programming language and Singleton is not a exception. There are many ways that we can create a Singleton class using C#. I would like to showcase few of the flavors that I can able to recollect
1. Plain vanilla Singleton without Thread-Safety
public sealed class Singleton
{
private Singleton()
{
}
private static Singleton instance = null;
public static Singleton Instance
{
get
{
if (instance == null)
{
instance = new Singleton();
}
return instance;
}
}
}
2. Singleton with Thread Saftey
public sealed class Singleton_ThreadLock
{
Singleton_ThreadLock()
{
}
private static readonly object padlock = new object();
private static Singleton_ThreadLock instance = null;
public static Singleton_ThreadLock Instance
{
get
{
// Uses the lock to avoid another resource to create the instance in parallel
lock (padlock)
{
if (instance == null)
{
instance = new Singleton_ThreadLock();
}
return instance;
}
}
}
}
3. Singleton - Double Thread Safe
public sealed class Singleton_DoubleThreadSafe
{
Singleton_DoubleThreadSafe()
{
}
private static readonly object padlock = new object();
private static Singleton_DoubleThreadSafe instance = null;
public static Singleton_DoubleThreadSafe Instance
{
get
{
if (instance == null)
{
lock (padlock)
{
if (instance == null)
{
instance = new Singleton_DoubleThreadSafe();
}
}
}
return instance;
}
}
}
4. Singleton - Early Initialization
public sealed class Singleton_EarlyInitialization
{
private static readonly Singleton_EarlyInitialization instance = new Singleton_EarlyInitialization();
// Explicit static constructor to tell C# compiler
// not to mark type as beforefieldinit
static Singleton_EarlyInitialization()
{
}
private Singleton_EarlyInitialization()
{
}
public static Singleton_EarlyInitialization Instance
{
get
{
return instance;
}
}
}
5. Singleton - Lazy Initialization using .Net 4.0+ Framework
public sealed class Singleton
{
private Singleton()
{
}
private static readonly Lazy<Singleton> lazy = new Lazy<Singleton>(() => new Singleton());
public static Singleton Instance
{
get
{
return lazy.Value;
}
}
}
Caveats:
Well there are few people who create instance of the class using reflection (I did in one of my framework) but his can also be avoided. There are few samples in net that can show how to avoid it
Its always best practice to make the Singleton class as sealed as it will restrict developers from inheriting the class.
There are lots of IOC's in the market that can create Singleton instance of a normal class without following the above Singleton implementation.
I am new to design patterns in C#. Can anyone please give me some instructions about the implementation of a Singleton class. I just implemented a tutorial but I am not able to understand use of singleton class with this "singleton means we can create only one instance of a class". Then why we don't access property which is written in the singleton class using two different instance of the class.
Please look at my code and give me instructions about the mistake I made.
static void Main(string[] args)
{
Singleton instance = Singleton.getInstance();
instance.Message = "Text Message";
Singleton instance1 = Singleton.getInstance();
Console.WriteLine(instance.Message);
Console.WriteLine(instance1.Message);
Console.ReadKey();
}
class Singleton
{
private static Singleton singleton=null;
private Singleton(){}
public static Singleton getInstance()
{
if (singleton!=null)
{
return singleton;
}
return new Singleton();
}
public string Message{get; set;}
}
Your singleton is incorrect.
More correct version:
class Singleton
{
private static Singleton singleton = null;
private Singleton(){}
public static Singleton getInstance()
{
if (singleton!=null)
{
return singleton;
}
return (singleton = new Singleton()); //here is
}
public string Message{get; set;}
}
And very good solution:
class Singleton
{
private static Lazy<Singleton> singleton = new Lazy<Singleton>(()=> new Singleton());
private Singleton() { }
public static Singleton getInstance()
{
return singleton.Value;
}
public string Message { get; set; }
}
It has no problems with thread-safity and lazy initialization.
By default, all public and protected members of the Lazy class are
thread safe and may be used concurrently from multiple threads. These
thread-safety guarantees may be removed optionally and per instance,
using parameters to the type's constructors.
Your Singleton implementation is incorrect.
A Singleton is designed to only allow none or a single instance at all times.
This is where you went wrong:
public static Singleton getInstance()
{
// "singleton" will always be null.
if (singleton != null)
{
return singleton;
}
// Always returns new instance rather than existing one.
return new Singleton();
}
To fix it you should write:
public static Singleton getInstance()
{
// Return the instance we might have stored earlier.
if (singleton != null)
return singleton;
// Now we store the only instance that will ever be created.
singleton = new Singleton();
return singleton;
}
Note that this is not thread safe if called multiple times in parallel.
As a resource I can recommend Jon Skeet's post:
http://csharpindepth.com/Articles/General/Singleton.aspx
He explaines six different solutions (including thread-safety and the Lazy(T)) to the Singleton Pattern and how to code them.
Does two instance of singleton class has a same property value?
The answer to your question is yes, they has the same property value.
Important thing is understand why, and the reason is the core of what a singleton is. So, why?:
Because you are confusing two references with two instance.
There are no two instances, there are always one none or one instance of the singleton class.
In your code, singleton variable and singleton1 variable are pointing both to the same object, the singleton, and the reason is because of the implementation of the method getInstance(), is simple to understand :
If method is called for the very first time, then it creates for unique time the singleton object with method new.
If method is called after a first time, it will return the singleton object created in the first call of method.
So, no matter how many variables of type Singleton you have, you will always have only one Singleton created with the new method, the instance, the singleton instance.
I have a singleton defined like this:
public partial class MoonDataManager
{
static MoonDataManager _singletonInstance;
public static MoonDataManager SingletonInstance
{
get
{
return _singletonInstance;
}
private set
{
_singletonInstance = value;
}
}
I have a function that safely creates the instance:
public static async Task<MoonDataManager> CreateSingletonAsync()
{
_singletonInstance = new MoonDataManager();
Should I:
return _singletonInstance; (field)
or
return SingletonInstance; (property)
I'm concerned with Garbage Collection, especially in iOS or Android within Xamarin.
Also if there are naming patterns for this in C# let me know if I deviated from a standard.
Update:
Now I think I really got myself stuck with threading and async methods. Here are the objects and their goals:
MoonDataManager : Run the RegisterTable<Models.IssuerKey> once per table. This is a generic method that essentially runs (new MobileServiceSQLiteStore).DefineTable<T>()
OfflineStore : This is a MobileServiceSQLiteStore.
MobileClient : This is a MobileServiceClient.
MoonDataManager Dependencies: The MoonDataManager requires OfflineStore and MobileClient to finish initialization. Specifically, it does a MobileServiceClient.SyncContext.InitializeAsync(OfflineStore)
I'm not sure how to make sense of this spaghetti of dependencies... or how to make the code look nice, and be thread safe.
Here is the new iteration of the code:
private readonly Lazy<MobileServiceClient> lazyMobileClient =
new Lazy<MobileServiceClient>(() => new MobileServiceClient(Constants.ApplicationURL), true); // true for thread safety
public MobileServiceClient MobileClient { get { return lazyMobileClient.Value; } }
private readonly Lazy< MobileServiceSQLiteStore> offlineDB =
new Lazy<MobileServiceSQLiteStore>(() => new MobileServiceSQLiteStore(Constants.OfflineDBName), true ); // true for thread safety
private MobileServiceSQLiteStore OfflineStore { get { return offlineDB.Value; } }
private static readonly Lazy<MoonDataManager> lazy = new Lazy<MoonDataManager>(() => new MoonDataManager(), true); // true for thread safety
public static MoonDataManager Instance { get { return lazy.Value; } }
private MoonDataManager()
{
MoonDataManager.Instance.RegisterTable<Models.IssuerKey>();
// Initialize file sync
// todo: investigate FileSyncTriggerFactory overload.
//Was present on Mar 30, 2016 Channel9 https://channel9.msdn.com/events/Build/2016/P408
MoonDataManager.Instance.MobileClient.InitializeFileSyncContext
(new IssuerKeyFileSyncHandler(Instance), Instance.OfflineStore);
// NOTE THE ASYNC METHOD HERE (won't compile)
await MoonDataManager.Instance.MobileClient
.SyncContext.InitializeAsync(MoonDataManager.Instance.OfflineStore,
StoreTrackingOptions.NotifyLocalAndServerOperations);
}
For .NET 4 or higher, you can use the Lazy<T> and create it like this.
public sealed class Singleton
{
private static readonly Lazy<Singleton> lazy =
new Lazy<Singleton>(() => new Singleton(), true); // true for thread safety
public static Singleton Instance { get { return lazy.Value; } }
private Singleton()
{
}
}
It will be created only if it is accessed and only the first time and it is threadsafe.
The definition
static MoonDataManager _singletonInstance;
ensures that the instance of MoonDataManager is a GC root, and it will not be collected until the application domain ends, because it is a static value.
I'd return the private singleton and forego the auto property that you have.
public partial class MoonDataManager
{
private static readonly Lazy<MoonDataManager> _manager =
new Lazy<MoonDataManager>(() => new MoonDataManager());
public static MoonDataManager SingletonInstance => _manager.Value;
}
When MoonDataManager.Value is accessed for the first time, it is initialized using the Func<MoonDataManager> that was passed to the constructor for Lazy<T>. On subsequent accesses, the same instance is returned.
A Singleton creates itself the first time it's accessed, in a way that ensures only one instance will get created, even if a second thread tries to access it while it's still being instantiated
your CreateSingletonAsync() violates this, and looks like it'd allow for multi-thread nastiness
You want something like:
public static MoonDataManager SingletonInstance
{
get
{
if (_singletonInsatnce != null)
return _singletonInstance;
lock (lockobject)
{
// check for null again, as new one may have been created while a thread was waiting on the lock
if (_singletonInsatnce != null)
return _singletonInstance;
else
// create new one here.
}
}
// no setter, because by definition no other class can instantiate the singleton
}
All this is just to ensure that two threads asking for one object don't end up creating two objects, or the second thread getting a half-created object if the first thread's one is still being created.
NB: Singletons have become unfashionable.
NB: If you can be sure that you've got time to create your object before it's ever accessed, you can just use a static member and create it on application start.
Your question "should I return the property or field" doesn't make sense -- you're already returning the field from the property getter, which is standard practise. Where else are you wanting to return something?
You should return the private instance. You can read more about the singleton pattern on MSDN. The standard singleton implementation is as follows:
public class Singleton
{
private static Singleton instance;
private Singleton() {}
public static Singleton Instance
{
get
{
if (instance == null)
{
instance = new Singleton();
}
return instance;
}
}
}
Although, normally, you don't have a setter for the property. This pattern has already previously been discussed on SO.
I always see singletons implemented like this:
public class Singleton
{
static Singleton instance;
static object obj = new object();
public static Singleton Instance
{
get
{
lock (obj)
{
if (instance == null)
{
instance = new Singleton();
}
return instance;
}
}
}
protected Singleton() { }
}
Is there's something wrong with implementing it like this:
public class Singleton
{
static readonly Singleton instance = new Singleton();
public static Singleton Instance
{
get { return instance; }
}
protected Singleton() { }
}
? It gets lazy initialized on the very same moment as in the first implementation so I wonder why this isn't a popular solution?
It should be also faster because there's no need for a condition, locking and the field is marked as readonly which will let the compiler to do some optimisations
Let's not talk about the singleton (anti)pattern itself, please
The CLR will initialize the field upon the first use of that (or any other static) field. It promises to do so in a thread-safe manner.
The difference between your code is that the first bit of code supports thread-safe lazy initialization where the second doesn't. This means that when your code never accesses Singleton.Instance of the first code, no new Singleton() will ever be created. For the second class it will, as soon as you access Instance or (directly or indirect) any other static member of that class. Worse even - it may be initialized before that because you lack a static constructor.
Favoring shorter and more readable code, since .NET 4 you can use Lazy<T> to significantly shorten the first code block:
public class Singleton
{
static readonly Lazy<Singleton> instance =
new Lazy<Singleton>(() => new Singleton());
public static Singleton Instance
{
get { return instance.Value; }
}
static Singleton() { }
private Singleton() { }
}
As Lazy<T> also promises thread-safety. This will ensure new Singleton() is only called once, and only when Singleton.Instance is actually used.
On MSDN I found two approaches to creating a singleton class:
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static Singleton Instance {
get {
if (instance == null)
instance = new Singleton();
return instance;
}
}
}
and
public sealed class Singleton {
private static readonly Singleton instance = new Singleton();
private Singleton(){}
public static Singleton Instance {
get { return instance; }
}
}
My question is: can we just use a static constructor that will make for us this object before first use?
Can you use the static constructor, sure. I don't know why you'd want to use it over just using the second example you've shown, but you certainly could. It would be functionally identical to your second example, but just requiring more typing to get there.
Note that your first example cannot be safely used if the property is accessed from multiple threads, while the second is safe. Your first example would need to use a lock or other synchronization mechanism to prevent the possibility of multiple instances being created.