System.Timers.Timer elapsed event fires too early - c#

I'm running into an issue where the Elapsed event is triggered prior to the interval. I have the interval set for say.. 10000ms and the event will get triggered at roughly 4500ms. I know that this specific timer is not too precise but I do know for sure that it is far more precise than what it is showing.
I have checked to make sure that there is not more than one timer calling this event as well. This solution works perfectly on two out of the three windows machines that it is installed on.
Could it be a problem with the .net version, clr version, etc.
I know that there are other ways of accomplishing this but I am just looking for suggestions on what could be causing this to work on only 2 out of 3 servers.
Below I am creating the timer only once at startup of the service..
checkTimer = new System.Timers.Timer(getSecondsLeft());
checkTimer.Elapsed += checkNowEvent;
checkTimer.AutoReset = true;
checkTimer.Enabled = true;
Here is the method that is used to calculate the number of milliseconds until the next minute
private double getSecondsLeft()
{
DateTime now = DateTime.Now;
// Has a chance to trigger a few milliseconds before new minute. Added 50ms to interval
return ((60 - now.Second) * 1000 - now.Millisecond) + 50;
}
And finally the elapsed time event.
private void checkNowEvent(object sender, ElapsedEventArgs e)
{
try
{
// Stop timer to keep from firing this event again
checkTimer.Enabled = false;
// DOING WORK HERE
}
finally
{
// Set the interval as to tick on the start of the next minute
checkTimer.Interval = getSecondsLeft();
// Start timer again
checkTimer.Enabled = true;
}
}
I just did some more testing with this and I added some stopwatch functionality to see if the interval was actually firing when it is supposed to and it looks like it is. However, when i calculate the correct number of milliseconds to the next minute BUT it is acting as if this implementation of Timer is running faster than the system clock... If that makes any sense.
Here is the code i used to find that out.
private void checkNowEvent(object sender, ElapsedEventArgs e)
{
stopWatch.Stop();
_Log.LogDebug(stopWatch.Elapsed.ToString());
try
{
// Stop timer to keep from firing this event again
checkTimer.Enabled = false;
// DOING WORK HERE
}
catch (Exception ex)
{
// CATCHING EXCEPTIONS HERE IF ANY
}
finally
{
// Set the interval as to tick on the start of the next minute
checkTimer.Interval = getSecondsLeft();
_Log.LogDebug(checkTimer.Interval.ToString());
// Start timer again
checkTimer.Enabled = true;
stopWatch.Reset();
stopWatch.Start();
}
}

The reason that it is firing before the new minute is due to the fact that there is a problem with the system time. DateTime.Now returns the correct number of milliseconds until the next minute but the system time is moving very slow. The timer implementation seems to be working correctly as I verified with the stopwatch. I just synced the system time with the other two working pcs and not but 5 minutes later it is a couple minutes slow again.

Related

In what time interval is the conditions in a while clause checked?

How do I wait for a specified time while showing the remaining time to wait?
I now solved it like this but I feel like this is a really bad way to do it:
//This is running in a BackgroundWorker:
Stopwatch watch = new Stopwatch();
watch.Start();
while(watch.ElapsedMilliseconds != SecondsToWait * 1000)
{
TimeToNextRefresh = ((SecondsToWait * 1000) - watch.ElapsedMilliseconds) / 1000;
Thread.Sleep(1);
}
watch.Stop();
So here I am guessing that the condition (watch.ElapsedMilliseconds != SecondsToWait * 1000) is checked every millisecond.
So the main question is; In what period is the condition of while checked and/or how do I improve the code I've written?
It depends on what's the code inside while loop!
For example, if you write some really long/time-consuming code in a while loop, each iteration of the while loop, or course, will be longer than a while loop that only has short/fast code.
Compare these two while loops:
while (true) {
Console.WriteLine("Hello");
}
and
while (true) {
Console.Beep(5000);
}
Each iteration of the first while loop is faster than that of the second one because Console.Beep(5000) takes 5 seconds and Console.WriteLine only takes a fraction of a second.
So you can't rely on while loops to count time.
This is what you should do:
Create an instance of System.Windows.Forms.Timer, not the System.Timers.Timer nor the System.Threading.Timer. I find the first one the most useful (others are more advanced).
Timer timer = new Timer();
timer.Interval = 1000; // 1000 means 1000ms aka 1 second
timer.Tick += TimerTicked;
timer.Start();
Now the compiler will tell you that TimerTicked is not defined, so let's go define that:
private void TimerTicked(object sender, EventArgs e) {
}
Now you're all set. The code in TimerTicked will be called every one second.
Let's say you want to measure a time of 10 seconds. After 10 seconds, you want to do something. So first create a variable called secondsLeft in the class level:
int secondsLeft = 10;
Now in TimerTicked, you want to check whether secondsLeft is 0. If it is, do that something, else, minus one:
if (secondsLeft == 0) {
DoSomething();
} else {
secondsLeft--;
}
And secondsLeft is the time remaining! You can display it on a label or something.
To pause the timer, simply
timer.Stop();
The exact interval in which your while condition is checked is hard to predict. Thread.Sleep(1); only tells the operating system that you want your thread to sleep for at least 1 millisecond. There is no guarantee that your thread will be active again after exactly 1ms. Actually you can rather be sure that it will be more than that. The thread is scheduled again after 1ms, but there will be a delay until he gets his CPU time slot.
The interval you want for your loop actually depends how you want to display the remaining time. If you want to display only seconds, why would you update that display every millisecond, although the text would change only every 1000ms?
A loop like that is probably not a good way to implement something like that. I would recommend a System.Threading.Timer:
// this Timer will call TimerTick every 1000ms
Timer timer = new Timer(TimerTick, null, 0, 1000);
and implement the handler
public void TimerTick(object sender)
{
// update your display
}
Note that you will have the "update your display" part on the UI thread again, as this method is called by the Timer on a different thread.
This code is can really make an infinite loop if a calculation just take longer than 1 miliseconds.
You can achieve your desired behaviour with a simple System.Winforms.Forms.Timer like this snipped below :
private int tickCount = 0;
private int remaining = 10;
private void timer1_Tick(object sender, EventArgs e)
{
remaining--;
textBox1.Text = remaining.ToString();
}
private void Form1_Load(object sender, EventArgs e)
{
timer1.Interval = 1000;
timer1.Enabled = true;
}
With this you can countdown from 10 seconds and every tick you write to a textbox the remaining seconds

How to create an event that fires at certain time [duplicate]

I have a service written in C# (.NET 1.1) and want it to perform some cleanup actions at midnight every night. I have to keep all code contained within the service, so what's the easiest way to accomplish this? Use of Thread.Sleep() and checking for the time rolling over?
I wouldn't use Thread.Sleep(). Either use a scheduled task (as others have mentioned), or set up a timer inside your service, which fires periodically (every 10 minutes for example) and check if the date changed since the last run:
private Timer _timer;
private DateTime _lastRun = DateTime.Now.AddDays(-1);
protected override void OnStart(string[] args)
{
_timer = new Timer(10 * 60 * 1000); // every 10 minutes
_timer.Elapsed += new System.Timers.ElapsedEventHandler(timer_Elapsed);
_timer.Start();
//...
}
private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
// ignore the time, just compare the date
if (_lastRun.Date < DateTime.Now.Date)
{
// stop the timer while we are running the cleanup task
_timer.Stop();
//
// do cleanup stuff
//
_lastRun = DateTime.Now;
_timer.Start();
}
}
Check out Quartz.NET. You can use it within a Windows service. It allows you to run a job based on a configured schedule, and it even supports a simple "cron job" syntax. I've had a lot of success with it.
Here's a quick example of its usage:
// Instantiate the Quartz.NET scheduler
var schedulerFactory = new StdSchedulerFactory();
var scheduler = schedulerFactory.GetScheduler();
// Instantiate the JobDetail object passing in the type of your
// custom job class. Your class merely needs to implement a simple
// interface with a single method called "Execute".
var job = new JobDetail("job1", "group1", typeof(MyJobClass));
// Instantiate a trigger using the basic cron syntax.
// This tells it to run at 1AM every Monday - Friday.
var trigger = new CronTrigger(
"trigger1", "group1", "job1", "group1", "0 0 1 ? * MON-FRI");
// Add the job to the scheduler
scheduler.AddJob(job, true);
scheduler.ScheduleJob(trigger);
A daily task? Sounds like it should just be a scheduled task (control panel) - no need for a service here.
Does it have to be an actual service? Can you just use the built in scheduled tasks in the windows control panel.
The way I accomplish this is with a timer.
Run a server timer, have it check the Hour/Minute every 60 seconds.
If it's the right Hour/Minute, then run your process.
I actually have this abstracted out into a base class I call OnceADayRunner.
Let me clean up the code a bit and I'll post it here.
private void OnceADayRunnerTimer_Elapsed(object sender, ElapsedEventArgs e)
{
using (NDC.Push(GetType().Name))
{
try
{
log.DebugFormat("Checking if it's time to process at: {0}", e.SignalTime);
log.DebugFormat("IsTestMode: {0}", IsTestMode);
if ((e.SignalTime.Minute == MinuteToCheck && e.SignalTime.Hour == HourToCheck) || IsTestMode)
{
log.InfoFormat("Processing at: Hour = {0} - Minute = {1}", e.SignalTime.Hour, e.SignalTime.Minute);
OnceADayTimer.Enabled = false;
OnceADayMethod();
OnceADayTimer.Enabled = true;
IsTestMode = false;
}
else
{
log.DebugFormat("Not correct time at: Hour = {0} - Minute = {1}", e.SignalTime.Hour, e.SignalTime.Minute);
}
}
catch (Exception ex)
{
OnceADayTimer.Enabled = true;
log.Error(ex.ToString());
}
OnceADayTimer.Start();
}
}
The beef of the method is in the e.SignalTime.Minute/Hour check.
There are hooks in there for testing, etc. but this is what your elapsed timer could look like to make it all work.
As others already wrote, a timer is the best option in the scenario you described.
Depending on your exact requirements, checking the current time every minute may not be necessary.
If you do not need to perform the action exactly at midnight, but just within one hour after midnight, you can go for Martin's approach of only checking if the date has changed.
If the reason you want to perform your action at midnight is that you expect a low workload on your computer, better take care: The same assumption is often made by others, and suddenly you have 100 cleanup actions kicking off between 0:00 and 0:01 a.m.
In that case you should consider starting your cleanup at a different time. I usually do those things not at clock hour, but at half hours (1.30 a.m. being my personal preference)
I would suggest that you use a timer, but set it to check every 45 seconds, not minute. Otherwise you can run into situations where with heavy load, the check for a particular minute is missed, because between the time the timer triggers and the time your code runs and checks the current time, you might have missed the target minute.
You can also try the TaskSchedulerLibrary here http://visualstudiogallery.msdn.microsoft.com/a4a4f042-ffd3-42f2-a689-290ec13011f8
Implement the abstract class AbstractScheduledTask and call the ScheduleUtilityFactory.AddScheduleTaskToBatch static method
For those that found the above solutions not working, it's because you may have a this inside your class, which implies an extension method which, as the error message says, only makes sense on a non-generic static class. Your class isn't static. This doesn't seem to be something that makes sense as an extension method, since it's acting on the instance in question, so remove the this.
Try this:
public partial class Service : ServiceBase
{
private Timer timer;
public Service()
{
InitializeComponent();
}
protected override void OnStart(string[] args)
{
SetTimer();
}
private void SetTimer()
{
if (timer == null)
{
timer = new Timer();
timer.AutoReset = true;
timer.Interval = 60000 * Convert.ToDouble(ConfigurationManager.AppSettings["IntervalMinutes"]);
timer.Elapsed += new ElapsedEventHandler(timer_Elapsed);
timer.Start();
}
}
private void timer_Elapsed(object source, System.Timers.ElapsedEventArgs e)
{
//Do some thing logic here
}
protected override void OnStop()
{
// disposed all service objects
}
}

run every min in sync with system clock (not working on Windows Server 2003)

I am trying to get a timer run every minute in sync with the system clock (00:01:00, 00:02:00, 00:03:00, etc). This is my code.
private System.Timers.Timer timer;
public frmMain()
{
timer = new System.Timers.Timer();
timer.AutoReset = false;
timer.Elapsed += new System.Timers.ElapsedEventHandler(timer_Elapsed);
timer.Interval = GetInterval();
timer.Start();
}
private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
System.Diagnostics.Trace.WriteLine(DateTime.Now.ToString("hh:mm:ss tt"));
timer.Interval = GetInterval();
timer.Start();
}
private double GetInterval()
{
DateTime now = DateTime.Now;
return ((60 - now.Second) * 1000 - now.Millisecond);
}
It runs perfectly on my home PC.
12:12:00 AM
12:13:00 AM
12:14:00 AM
12:15:00 AM
12:16:00 AM
12:17:00 AM
12:18:00 AM
12:19:00 AM
12:20:00 AM
12:21:00 AM
However I'm getting weird results on my VPS (windows server 2003).
12:11:59 AM
12:12:59 AM
12:13:00 AM
12:13:59 AM
12:14:00 AM
12:14:59 AM
12:15:00 AM
12:15:59 AM
12:16:00 AM
12:16:59 AM
12:17:00 AM
12:17:59 AM
12:18:00 AM
12:18:59 AM
12:19:00 AM
12:19:59 AM
12:20:00 AM
12:20:59 AM
12:21:00 AM
Is it because System.Timers.Timer does not work well on windows server 2003? Or is it an issue with my VPS?
Instead of using DateTime.Now and pulling the individual parts, just use the Ticks. Get the ticks when you start, then calculate what the ticks should be for the next timer tick. Once that timer tick occurs use the last value to calculate what the next value should be.
Example:
private const long MILLISECOND_IN_MINUTE = 60 * 1000;
private const long TICKS_IN_MILLISECOND = 10000;
private const long TICKS_IN_MINUTE = MILLISECOND_IN_MINUTE * TICKS_IN_MILLISECOND;
private System.Timers.Timer timer;
private long nextIntervalTick;
public void frmMain()
{
timer = new System.Timers.Timer();
timer.AutoReset = false;
timer.Elapsed += new System.Timers.ElapsedEventHandler(timer_Elapsed);
timer.Interval = GetInitialInterval();
timer.Start();
}
private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
System.Diagnostics.Trace.WriteLine(DateTime.Now.ToString("hh:mm:ss tt"));
timer.Interval = GetInterval();
timer.Start();
}
private double GetInitialInterval()
{
DateTime now = DateTime.Now;
double timeToNextMin = ((60 - now.Second) * 1000 - now.Millisecond) + 15;
nextIntervalTick = now.Ticks + ((long)timeToNextMin * TICKS_IN_MILLISECOND);
return timeToNextMin;
}
private double GetInterval()
{
nextIntervalTick += TICKS_IN_MINUTE;
return TicksToMs(nextIntervalTick - DateTime.Now.Ticks);
}
private double TicksToMs(long ticks)
{
return (double)(ticks / TICKS_IN_MILLISECOND);
}
You could probably do this using Seconds and Milliseconds like you were. The trick is to have one starting point to calculate off of (rather then determining how many seconds to the next minute). If there are additional concerns not mentioned in the original problem, like the code in timer_Elapsed might take longer then a minute to run, then you will need to add code to handle this.
Please leave a comment if you need additional help. Otherwise please select a correct answer.
((60 - now.Second) * 1000 - now.Millisecond)
This means that if now.Second happens to be 59 your time will fire again in less than a second. This is the reason for your weird results (the timer not firing at exactly 0 second offsets).
It's probably more productive for you to have the timer fire every second, keep the previous date/time value in a separate variable, and update the on-screen timer when the second portion changes.
Normal timers like System.Timers.Timer are not accurate and not nearly good enough to achieve a 1 msec interval.
Firstly they have an internal update rate of 10-15 msec. Secondly depending on the system other threads may run for ~15 msec delaying your timer before Windows forces them to yield.
If you want more accuracy than Timer use System.Diagnostics.Stopwatch as reported in another thread it can go from 0.3 ms and is integrated with your .NET environment.
Another option is to use a multimedia time (accurate to around 1ms).
Either way here is an excellent tutorial on the issue.
Breaking it down:
Timer drift normally adds a delay to the timer. But you are seeing the opposite happen. As timers do not have millisecond accuracy (they are only accurate to in the 15ms range) they will often be fired with that granularity. So in effect firing the timer a few milliseconds before the minute mark on some occasions (causing it to fire immediately afterwards aswell). If you require it to only fire in the new minute I would add in a few milliseconds of a wait time to compensate (5ms should do it).
Your home pc is not so fast (which means it exhibits extra timer drift dealing with the timer handler) and normally fires the event in the next second. Your work PC sometimes manages to handle the timer event quick enough that it records 59 seconds past (which I do believe is truncated and probably 59.900 ~ 59.999). This may also occur if the machine is multi-cored as there is no thread yeilding delay and the timer can be fired very quickly.
That is the cause of your Timer irregularities.
Hi another example is use the Timer from System.Windows.Threading.
using System;
using System.Windows.Threading;
namespace Yournamespace
{
public partial class TestTimer
{
DispatcherTimer dispatcherTimer1m;
public TestTimer()
{
dispatcherTimer1m = new DispatcherTimer();
dispatcherTimer1m.Tick += new EventHandler(DispatcherTimer1m_Tick);
dispatcherTimer1m.Interval = TaskHelper.GetSyncIntervalms;
dispatcherTimerm.Start();
}
private void DispatcherTimer1m_Tick(object sender, EventArgs e)
{
try
{
dispatcherTimer1m.Stop();
//Do your effort here
}
catch (Exception exc)
{
//Your exception handled here
}
finally
{
dispatcherTimer1m.Interval = TaskHelper.GetSyncInterval1m;
dispatcherTimer1m.Start();
}
}
}
public class TaskHelper
{
private const ushort internalUpdate = 15;//ms
public static TimeSpan GetSyncInterval1m => new TimeSpan(0, 0, 0, 60,internalUpdate).Subtract( new TimeSpan(0, 0, 0, DateTime.Now.Second, 0));
}
}
Remember that Windows Server is by default set up to share resources with background tasks more willingly than the client versions so timer accuracy can be affected if the server is running a number of background tasks.
You could try temporarily changing it to prioritise the foreground task to see if that gives different results - the setting is somewhere in the System control panel, you're looking for two radio buttons, one that says "Programs" and one that says "Background services" or similar.

How to add a timer to an app!

I have an app that I would like to update on an interval. I am looking for maybe some type of if statement or try - catch statement. I already have a foreach statement in the same class, but i dont think I can put in there? I would also like to set it up so that the user can change the refresh rate. Any help is appreciated. Thanks
Here is the method that I would like to put the timer in...
private void _UpdatePortStatus(string[] files)
{
foreach (string file in files)
{
PortStatus ps = new PortStatus();
ps.ReadXml(new StreamReader(file));
if (!_dicPortStatus.ContainsKey(ps.General[0].Group))
{
_dicPortStatus.Add(ps.General[0].Group, ps);
}
PortStatus psOrig = _dicPortStatus[ps.General[0].Group];
foreach (PortStatus.PortstatusRow psr in ps.Portstatus.Rows)
{
DataRow[] drs = psOrig.Portstatus.Select("PortNumber = '" + psr.PortNumber + "'");
if (drs.Length == 1)
{
DateTime curDt = DateTime.Parse(drs[0]["LastUpdateDateTimeUTC"].ToString());
DateTime newDt = psr.LastUpdateDateTimeUTC;
if (newDt > curDt)
{
drs[0]["LastUpdateDateTimeUTC"] = newDt;
}
}
else if (drs.Length == 0)
{
psOrig.Portstatus.ImportRow(psr);
}
else
{
throw new Exception("More than one of the same portnumber on PortStatus file: " + file);
}
}
}
}
Look at the System.Timer class. You basically set an interval (eg. 10000 milliseconds) and it will raise an event every time that interval time passes.
To allow the use to change the refresh rate, write a method that receives input from the user and use that to update the TimerInterval. Note that the TimerInterval is in miliseconds, so you may need to convert to that from whatever the user input.
So, from the example, the event will be raised every 10 seconds:
System.Timers.Timer aTimer = new System.Timers.Timer(10000); //10 seconds
// Hook up the Elapsed event for the timer.
aTimer.Elapsed += new ElapsedEventHandler(OnTimedEvent);
aTimer.Enabled = true; // Starts the Timer
// Specify what you want to happen when the Elapsed event is raised
private static void OnTimedEvent(object source, ElapsedEventArgs e)
{
//Perform update
_UpdatePortStatus(files);
}
UPDATE: In response to your posted code, it appears you simply want to call _UpdatePortStatus to update the port status at regular intervals (see the updated example above).
One important point you need to bear in mind though is that the Timer will run on a separate thread, and as such could raise the event again before it has finished running from the last time if it takes more than the interval time to run.
Use System.Timers.Timer, System.Threading.Timer or System.Windows.Forms.Timer ... depending on what exactly it is that you "would like to update on an interval."
See the following articles:
http://www.intellitechture.com/System-Windows-Forms-Timer-vs-System-Threading-Timer-vs-System-Timers-Timer/
http://www.yoda.arachsys.com/csharp/threads/timers.shtml
Your question is somewhat vague as there an many different methods of achieving what you want to do. However in the simplest terms you need to create a System.Threading.Timer that ticks on whatever frequency you define, for example:
private System.Threading.Timer myTimer;
private void StartTimer()
{
myTimer = new System.Threading.Timer(TimerTick, null, 0, 5000);
}
private void TimerTick(object state)
{
Console.WriteLine("Tick");
}
In this example the timer will 'tick' every 5 seconds and perform whatever functionality you code into the TimerTick method. If the user wants to change the frequency then you would destroy the current timer and initialise with the new frequency.
All this said, I must stress that this is the simplest of implementation and may not suit your needs.

.NET, event every minute (on the minute). Is a timer the best option?

I want to do stuff every minute on the minute (by the clock) in a windows forms app using c#. I'm just wondering whats the best way to go about it ?
I could use a timer and set its interval to 60000, but to get it to run on the minute, I would have to enable it on the minute precisely, not really viable.
I could use a timer and set its interval to 1000. Then within its tick event, I could check the clocks current minute against a variable that I set, if the minute has changed then run my code. This worries me because I am making my computer do a check every 1 second in order to carry out work every 1 minutes. Surely this is ugly ?
I'm using windows forms and .Net 2.0 so do not want to use the DispatchTimer that comes with .Net 3.5
This must be a fairly common problem. Have any of you a better way to do this?
Building on the answer from aquinas which can drift and which doesn't tick exactly on the minute just within one second of the minute:
static System.Timers.Timer t;
static void Main(string[] args)
{
t = new System.Timers.Timer();
t.AutoReset = false;
t.Elapsed += new System.Timers.ElapsedEventHandler(t_Elapsed);
t.Interval = GetInterval();
t.Start();
Console.ReadLine();
}
static double GetInterval()
{
DateTime now = DateTime.Now;
return ((60 - now.Second) * 1000 - now.Millisecond);
}
static void t_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
Console.WriteLine(DateTime.Now.ToString("o"));
t.Interval = GetInterval();
t.Start();
}
On my box this code ticks consistently within .02s of each minute:
2010-01-15T16:42:00.0040001-05:00
2010-01-15T16:43:00.0014318-05:00
2010-01-15T16:44:00.0128643-05:00
2010-01-15T16:45:00.0132961-05:00
How about:
int startin = 60 - DateTime.Now.Second;
var t = new System.Threading.Timer(o => Console.WriteLine("Hello"),
null, startin * 1000, 60000);
Creating a Timer control that fires every 1 second (and usually does nothing but a simple check) will add negligible overhead to your application.
Simply compare the value of Environment.TickCount or DateTime.Now to the last stored time (the previous 'minute tick'), and you should have a reasonably precise solution. The resolution of these two time values is about 15ms, which should be sufficient for your purposes.
Do note however that the interval of the Timer control is not guaranteed to be that precise or even anywhere now, since it runs on the Windows message loop, which is tied in with the responsiveness of the UI. Never rely on it for even moderately precise timing - though it is good enough for firing repeating events where you can check the time using a more sensitive method such as one of the two given above.
You can nail this with reactive extensions which will take care of lots of timer related problems for you (clock changes, app hibernation etc). Use Nuget package Rx-Main and code like this:
Action work = () => Console.WriteLine(DateTime.Now.ToLongTimeString());
Scheduler.Default.Schedule(
// start in so many seconds
TimeSpan.FromSeconds(60 - DateTime.Now.Second),
// then run every minute
() => Scheduler.Default.SchedulePeriodic(TimeSpan.FromMinutes(1), work));
Console.WriteLine("Press return.");
Console.ReadLine();
Read here (search for "Introducing ISchedulerPeriodic") to see all the issues this is taking care of: http://blogs.msdn.com/b/rxteam/archive/2012/06/20/reactive-extensions-v2-0-release-candidate-available-now.aspx
I jsut wrote this class using the WPF DispatcherTimer but you can swap the dispatcher for any timer that supports changing when it's woken from sleep state.
The class is constructed with a fixed time step and supprts Start/Stop/Reset, Start/Stop/Start works like a resume operation. The timer is like a stopwatch in that regard.
A clock implementation would simply create the class with a interval of 1 second and listen to the event. Be wary though that this is a real-time clock, if the tick event takes longer than the interval to finish you'll notice that the clock will try and catch up to real-time this will cause a burst of tick events being raised.
public class FixedStepDispatcherTimer
{
/// <summary>
/// Occurs when the timer interval has elapsed.
/// </summary>
public event EventHandler Tick;
DispatcherTimer timer;
public bool IsRunning { get { return timer.IsEnabled; } }
long step, nextTick, n;
public TimeSpan Elapsed { get { return new TimeSpan(n * step); } }
public FixedStepDispatcherTimer(TimeSpan interval)
{
if (interval < TimeSpan.Zero)
{
throw new ArgumentOutOfRangeException("interval");
}
this.timer = new DispatcherTimer();
this.timer.Tick += new EventHandler(OnTimerTick);
this.step = interval.Ticks;
}
TimeSpan GetTimerInterval()
{
var interval = nextTick - DateTime.Now.Ticks;
if (interval > 0)
{
return new TimeSpan(interval);
}
return TimeSpan.Zero; // yield
}
void OnTimerTick(object sender, EventArgs e)
{
if (DateTime.Now.Ticks >= nextTick)
{
n++;
if (Tick != null)
{
Tick(this, EventArgs.Empty);
}
nextTick += step;
}
var interval = GetTimerInterval();
Trace.WriteLine(interval);
timer.Interval = interval;
}
public void Reset()
{
n = 0;
nextTick = 0;
}
public void Start()
{
var now = DateTime.Now.Ticks;
nextTick = now + (step - (nextTick % step));
timer.Interval = GetTimerInterval();
timer.Start();
}
public void Stop()
{
timer.Stop();
nextTick = DateTime.Now.Ticks % step;
}
}
Create a method or put this code where you want the timer to start:
int time = 60 - DateTime.Now.Second; // Gets seconds to next minute
refreshTimer.Interval = time * 1000;
refreshTimer.Start();
And then on your tick event set the interval to 60000:
private void refreshTimer_Tick(object sender, EventArgs e)
{
refreshTimer.Interval = 60000; // Sets interval to 60 seconds
// Insert Refresh logic
}
By making use of ReactiveExtensions you could use the following code if you were interested in doing something as simple as printing to the console.
using System;
using System.Reactive.Linq;
namespace ConsoleApplicationExample
{
class Program
{
static void Main()
{
Observable.Interval(TimeSpan.FromMinutes(1))
.Subscribe(_ =>
{
Console.WriteLine(DateTime.Now.ToString());
});
Console.WriteLine(DateTime.Now.ToString());
Console.ReadLine();
}
}
}
Running a bit of code to see if the minute has changed once per second should not require much CPU time, and should be acceptable.
What about Quartz.NET? I think its a good framework to do timed actions.
You could set up two timers. An initial short interval timer (perhaps to fire every second, but dependent on how presice the second timer must fire on the minute).
You would fire the short interval timer only until the desired start time of the main interval timer is reached. Once the initial time is reached, the second main interval timer can be activated, and the short interval timer can be deactivated.
void StartTimer()
{
shortIntervalTimer.Interval = 1000;
mainIntervalTimer.Interval = 60000;
shortIntervalTimer.Tick +=
new System.EventHandler(this.shortIntervalTimer_Tick);
mainIntervalTimer.Tick +=
new System.EventHandler(mainIntervalTimer_Tick);
shortIntervalTimer.Start();
}
private void shortIntervalTimer_Tick(object sender, System.EventArgs e)
{
if (DateTime.Now.Second == 0)
{
mainIntervalTimer.Start();
shortIntervalTimer.Stop();
}
}
private void mainIntervalTimer_Tick(object sender, System.EventArgs e)
{
// do what you need here //
}
Alternatively, you could sleep to pause execution until it times out which should be close to your desired time. This will only wake the computer when the sleep finishes so it'll save you CPU time and let the CPU power down between processing events.
This has the advantage of modifying the timeout so that it will not drift.
int timeout = 0;
while (true) {
timeout = (60 - DateTime.Now.Seconds) * 1000 - DateTime.Now.Millisecond;
Thread.Sleep(timeout);
// do your stuff here
}
Use a timer set to run every second (or millisecond, whatever your accuracy threshold is), and then code the method to run your functionality if and only if the current time is within that threshold past the "on the minute" point.
What I'm using for scheduled tasks is a System.Threading.Timer(System.Threading.TimerCallback, object, int, int) with the callback set to the code I want to execute based on the interval which is supplied in milliseconds for the period value.
What about a combination of aquinas' answer and 'polling': (apologies for the mixture of languages)
def waitForNearlyAMinute:
secsNow = DateTime.Now.Second;
waitFor = 55 - secsNow;
setupTimer(waitFor, pollForMinuteEdge)
def pollForMinuteEdge:
if (DateTime.Now.Second == 0):
print "Hello, World!";
waitForNearlyAMinute();
else:
setupTimer(0.5, pollForMinuteEdge)
I have a solution based on Environment.TickCount
static void Main(string[] args)
{
//constatnt total miliseconds to one minute
const Int32 minuteMilisecond = 60 * 1000;
//get actual datetime
DateTime actualDateTime = DateTime.UtcNow;
//compenzation to one minute
Int32 nexTimer = Environment.TickCount + ((59 - actualDateTime.Second) * 1000) + (999 - actualDateTime.Millisecond);
//random fuction to simulate different delays on thread
Random rnd = new Random();
//main loop
while (true)
{
if (Environment.TickCount > nexTimer)
{
nexTimer += minuteMilisecond;
//execute your code here every minute
Console.WriteLine($"actual DateTime: {DateTime.Now.ToString("yyyy.MM.dd HH:mm:ss:ffff")}");
}
//random sleep between 100 - 200 ms
Thread.Sleep(rnd.Next(100, 200));
}
}

Categories