I have an app that I would like to update on an interval. I am looking for maybe some type of if statement or try - catch statement. I already have a foreach statement in the same class, but i dont think I can put in there? I would also like to set it up so that the user can change the refresh rate. Any help is appreciated. Thanks
Here is the method that I would like to put the timer in...
private void _UpdatePortStatus(string[] files)
{
foreach (string file in files)
{
PortStatus ps = new PortStatus();
ps.ReadXml(new StreamReader(file));
if (!_dicPortStatus.ContainsKey(ps.General[0].Group))
{
_dicPortStatus.Add(ps.General[0].Group, ps);
}
PortStatus psOrig = _dicPortStatus[ps.General[0].Group];
foreach (PortStatus.PortstatusRow psr in ps.Portstatus.Rows)
{
DataRow[] drs = psOrig.Portstatus.Select("PortNumber = '" + psr.PortNumber + "'");
if (drs.Length == 1)
{
DateTime curDt = DateTime.Parse(drs[0]["LastUpdateDateTimeUTC"].ToString());
DateTime newDt = psr.LastUpdateDateTimeUTC;
if (newDt > curDt)
{
drs[0]["LastUpdateDateTimeUTC"] = newDt;
}
}
else if (drs.Length == 0)
{
psOrig.Portstatus.ImportRow(psr);
}
else
{
throw new Exception("More than one of the same portnumber on PortStatus file: " + file);
}
}
}
}
Look at the System.Timer class. You basically set an interval (eg. 10000 milliseconds) and it will raise an event every time that interval time passes.
To allow the use to change the refresh rate, write a method that receives input from the user and use that to update the TimerInterval. Note that the TimerInterval is in miliseconds, so you may need to convert to that from whatever the user input.
So, from the example, the event will be raised every 10 seconds:
System.Timers.Timer aTimer = new System.Timers.Timer(10000); //10 seconds
// Hook up the Elapsed event for the timer.
aTimer.Elapsed += new ElapsedEventHandler(OnTimedEvent);
aTimer.Enabled = true; // Starts the Timer
// Specify what you want to happen when the Elapsed event is raised
private static void OnTimedEvent(object source, ElapsedEventArgs e)
{
//Perform update
_UpdatePortStatus(files);
}
UPDATE: In response to your posted code, it appears you simply want to call _UpdatePortStatus to update the port status at regular intervals (see the updated example above).
One important point you need to bear in mind though is that the Timer will run on a separate thread, and as such could raise the event again before it has finished running from the last time if it takes more than the interval time to run.
Use System.Timers.Timer, System.Threading.Timer or System.Windows.Forms.Timer ... depending on what exactly it is that you "would like to update on an interval."
See the following articles:
http://www.intellitechture.com/System-Windows-Forms-Timer-vs-System-Threading-Timer-vs-System-Timers-Timer/
http://www.yoda.arachsys.com/csharp/threads/timers.shtml
Your question is somewhat vague as there an many different methods of achieving what you want to do. However in the simplest terms you need to create a System.Threading.Timer that ticks on whatever frequency you define, for example:
private System.Threading.Timer myTimer;
private void StartTimer()
{
myTimer = new System.Threading.Timer(TimerTick, null, 0, 5000);
}
private void TimerTick(object state)
{
Console.WriteLine("Tick");
}
In this example the timer will 'tick' every 5 seconds and perform whatever functionality you code into the TimerTick method. If the user wants to change the frequency then you would destroy the current timer and initialise with the new frequency.
All this said, I must stress that this is the simplest of implementation and may not suit your needs.
Related
in a company I'm working we want to build an automation tool that should run a script written in text. I'm new to timers, and what I want to do is to make a foreach (not a must) that will run line after line in the script and call a parser for later use.
What I want is something like this:
aTimer = new System.Timers.Timer(10000);
// Hook up the Elapsed event for the timer.
// Set the Interval to 2 seconds (2000 milliseconds).
aTimer.Interval = 2000;
aTimer.Enabled = true;
foreach (ScriptCell CELL in ScriptList)
{
//fire the method when time is up
aTimer.Elapsed += new ElapsedEventHandler(DoScriptCommand(CELL.CellText));
}
I know what I wrote doesnt make allot of sense , but I'm a BIT clueless here
PS. I was looking in other topics before posting this Q , but I didnt find nothing that seems to fill the gap
The introduction of await makes acting on each item in a sequence, while waiting for a period of time between each item, very easy:
foreach(var cell in ScriptList)
{
DoScriptCommand(cell.CellText)
await Task.Delay(TimeSpan.FromSeconds(2));
}
Do this IN the elapsed event, not a new handler for each line (otherwise they'll be executed in a parallel manner)
aTimer.Elapsed += new ElapsedEventHandler((sender, args) =>
{
foreach (ScriptCell CELL in ScriptList)
{
DoScriptCommand(CELL.CellText);
}
}
If you are simply looking at running a script or scripts on a regular basis I would search "cron" if you are using a Unix/Linux machine or "Windows Task Scheduler" if you are using a windows machine. Each of these tools lets you specify a path to a script, the interval they should run, what command line parameters to use etc.
I did little tetris in my application.
I used timer for this code: I hope it will help you.
İf you dont use thread, your program will stuck while timer is running
so i used thread like this:
private void ciz()
{
int beklemeSuresi = 1000;//1000 = 1sec
for (int i = 0; i < 15; i++)
{
if (g != null)
{
g.Clear(Color.AliceBlue);
}
solLCiz(100, 100 + i * 20, yon);
Application.DoEvents();
Thread.Sleep(beklemeSuresi);
}
}
Of course you must begin thread at beginning of program like this:
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
ciz();
}
private void Form1_Load(object sender, EventArgs e)
{
backgroundWorker1.RunWorkerAsync();
}
I have a service written in C# (.NET 1.1) and want it to perform some cleanup actions at midnight every night. I have to keep all code contained within the service, so what's the easiest way to accomplish this? Use of Thread.Sleep() and checking for the time rolling over?
I wouldn't use Thread.Sleep(). Either use a scheduled task (as others have mentioned), or set up a timer inside your service, which fires periodically (every 10 minutes for example) and check if the date changed since the last run:
private Timer _timer;
private DateTime _lastRun = DateTime.Now.AddDays(-1);
protected override void OnStart(string[] args)
{
_timer = new Timer(10 * 60 * 1000); // every 10 minutes
_timer.Elapsed += new System.Timers.ElapsedEventHandler(timer_Elapsed);
_timer.Start();
//...
}
private void timer_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
// ignore the time, just compare the date
if (_lastRun.Date < DateTime.Now.Date)
{
// stop the timer while we are running the cleanup task
_timer.Stop();
//
// do cleanup stuff
//
_lastRun = DateTime.Now;
_timer.Start();
}
}
Check out Quartz.NET. You can use it within a Windows service. It allows you to run a job based on a configured schedule, and it even supports a simple "cron job" syntax. I've had a lot of success with it.
Here's a quick example of its usage:
// Instantiate the Quartz.NET scheduler
var schedulerFactory = new StdSchedulerFactory();
var scheduler = schedulerFactory.GetScheduler();
// Instantiate the JobDetail object passing in the type of your
// custom job class. Your class merely needs to implement a simple
// interface with a single method called "Execute".
var job = new JobDetail("job1", "group1", typeof(MyJobClass));
// Instantiate a trigger using the basic cron syntax.
// This tells it to run at 1AM every Monday - Friday.
var trigger = new CronTrigger(
"trigger1", "group1", "job1", "group1", "0 0 1 ? * MON-FRI");
// Add the job to the scheduler
scheduler.AddJob(job, true);
scheduler.ScheduleJob(trigger);
A daily task? Sounds like it should just be a scheduled task (control panel) - no need for a service here.
Does it have to be an actual service? Can you just use the built in scheduled tasks in the windows control panel.
The way I accomplish this is with a timer.
Run a server timer, have it check the Hour/Minute every 60 seconds.
If it's the right Hour/Minute, then run your process.
I actually have this abstracted out into a base class I call OnceADayRunner.
Let me clean up the code a bit and I'll post it here.
private void OnceADayRunnerTimer_Elapsed(object sender, ElapsedEventArgs e)
{
using (NDC.Push(GetType().Name))
{
try
{
log.DebugFormat("Checking if it's time to process at: {0}", e.SignalTime);
log.DebugFormat("IsTestMode: {0}", IsTestMode);
if ((e.SignalTime.Minute == MinuteToCheck && e.SignalTime.Hour == HourToCheck) || IsTestMode)
{
log.InfoFormat("Processing at: Hour = {0} - Minute = {1}", e.SignalTime.Hour, e.SignalTime.Minute);
OnceADayTimer.Enabled = false;
OnceADayMethod();
OnceADayTimer.Enabled = true;
IsTestMode = false;
}
else
{
log.DebugFormat("Not correct time at: Hour = {0} - Minute = {1}", e.SignalTime.Hour, e.SignalTime.Minute);
}
}
catch (Exception ex)
{
OnceADayTimer.Enabled = true;
log.Error(ex.ToString());
}
OnceADayTimer.Start();
}
}
The beef of the method is in the e.SignalTime.Minute/Hour check.
There are hooks in there for testing, etc. but this is what your elapsed timer could look like to make it all work.
As others already wrote, a timer is the best option in the scenario you described.
Depending on your exact requirements, checking the current time every minute may not be necessary.
If you do not need to perform the action exactly at midnight, but just within one hour after midnight, you can go for Martin's approach of only checking if the date has changed.
If the reason you want to perform your action at midnight is that you expect a low workload on your computer, better take care: The same assumption is often made by others, and suddenly you have 100 cleanup actions kicking off between 0:00 and 0:01 a.m.
In that case you should consider starting your cleanup at a different time. I usually do those things not at clock hour, but at half hours (1.30 a.m. being my personal preference)
I would suggest that you use a timer, but set it to check every 45 seconds, not minute. Otherwise you can run into situations where with heavy load, the check for a particular minute is missed, because between the time the timer triggers and the time your code runs and checks the current time, you might have missed the target minute.
You can also try the TaskSchedulerLibrary here http://visualstudiogallery.msdn.microsoft.com/a4a4f042-ffd3-42f2-a689-290ec13011f8
Implement the abstract class AbstractScheduledTask and call the ScheduleUtilityFactory.AddScheduleTaskToBatch static method
For those that found the above solutions not working, it's because you may have a this inside your class, which implies an extension method which, as the error message says, only makes sense on a non-generic static class. Your class isn't static. This doesn't seem to be something that makes sense as an extension method, since it's acting on the instance in question, so remove the this.
Try this:
public partial class Service : ServiceBase
{
private Timer timer;
public Service()
{
InitializeComponent();
}
protected override void OnStart(string[] args)
{
SetTimer();
}
private void SetTimer()
{
if (timer == null)
{
timer = new Timer();
timer.AutoReset = true;
timer.Interval = 60000 * Convert.ToDouble(ConfigurationManager.AppSettings["IntervalMinutes"]);
timer.Elapsed += new ElapsedEventHandler(timer_Elapsed);
timer.Start();
}
}
private void timer_Elapsed(object source, System.Timers.ElapsedEventArgs e)
{
//Do some thing logic here
}
protected override void OnStop()
{
// disposed all service objects
}
}
I created a windows service, that is supposed to check a certain table in the db for new rows every 60 seconds. For every new row that was added, I need to do some heavy processing on the server that could sometimes take more than 60 seconds.
I created a Timer object in my service, that ticks every 60 seconds and invokes the wanted method.
Since I don't want this timer to tick while processing the new lines found, I wrapped the method in a lock { } block, so this won't be accessible by another thread.
It looks something like this :
Timer serviceTimer = new Timer();
serviceTimer.Interval = 60;
serviceTimer.Elapsed += new ElapsedEventHandler(serviceTimer_Elapsed);
serviceTimer.Start();
void serviceTimer_Elapsed(object sender, ElapsedEventArgs e)
{
lock (this)
{
// do some heavy processing...
}
}
Now, I'm wondering -
If my timer ticks, and finds a lot of new rows on the db, and now the processing will take more than 60 seconds, the next tick won't do any processing till the previous one finished. This is the effect I want.
But now, will the serviceTimer_Elapsed method go off immediatly once the first processing was finished, or will it wait for the timer to tick again.
What I want to happen is - if the processing requires more than 60 seconds, than the timer will notice the thread is locked, and wait another 60 seconds to check again so I will never get stuck in a situation where there are a queue of threads waiting for the previous one to finish.
How can i accomplish this result ?
What is the best practice for doing this ?
Thanks!
You might try disabling the timer during processing, something like
// Just in case someone wants to inherit your class and lock it as well ...
private static object _padlock = new object();
try
{
serviceTimer.Stop();
lock (_padlock)
{
// do some heavy processing...
}
}
finally
{
serviceTimer.Start();
}
Edit : OP didn't specify whether the reentrancy was caused only by the timer or whether the service was multi threaded. Have assumed the later, but if the former then locking should be unnecessary if the timer is stopped (AutoReset or manually)
You don't need the lock in this case. Set timer.AutoReset=false before starting it.
Restart the timer in the handler after you are done with your processing. This will ensure that the timer fires 60 seconds after each task.
A similar variation on other answers, that allows the timer to keep ticking and only do the work when the lock can be obtained, instead of stopping the timer.
Put this in the elapsed event handler:
if (Monitor.TryEnter(locker)
{
try
{
// Do your work here.
}
finally
{
Monitor.Exit(locker);
}
}
Put a quick check it see if the service is running. if it is running it will skip this event and wait for the next one to fire.
Timer serviceTimer = new Timer();
serviceTimer.Interval = 60;
serviceTimer.Elapsed += new ElapsedEventHandler(serviceTimer_Elapsed);
serviceTimer.Start();
bool isRunning = false;
void serviceTimer_Elapsed(object sender, ElapsedEventArgs e)
{
lock (this)
{
if(isRunning)
return;
isRunning = true;
}
try
{
// do some heavy processing...
}
finally
{
isRunning = false;
}
}
I recommend you don't let the timer tick at all while its processing.
Set the Timers AutoReset to false. And start it at the end. Here's a full answer you might be interested in
Needed: A Windows Service That Executes Jobs from a Job Queue in a DB; Wanted: Example Code
Other options might be to use a BackGroundWorker class, or TheadPool.QueueUserWorkItem.
Background worker would easily give you the option check for current processing still occurring and process 1 item at a time. The ThreadPool will give you the ability to continue queueing items every tick (if necessary) to background threads.
From your description, I assume you are checking for items in a queue in a database. In this case, I would use the ThreadPool to push the work to the background, and not slow/stop your checking mechanism.
For a Service, I would really suggest you look at using the ThreadPool approach. This way, you can check for new items every 60 seconds with your timer, then Queue them up, and let .Net figure out how much to allocate to each item, and just keep pushing the items into the queue.
For Example: If you just use a timer and you have 5 new rows, which require 65 seconds of processing time total. Using the ThreadPool approach, this would be done in 65 seconds, with 5 background work items. Using the Timer approach, this will take 4+ minutes (the minute you will wait between each row), plus this may cause a back-log of other work that is queueing up.
Here is an example of how this should be done:
Timer serviceTimer = new Timer();
void startTimer()
{
serviceTimer.Interval = 60;
serviceTimer.Elapsed += new ElapsedEventHandler(serviceTimer_Elapsed);
serviceTimer.AutoReset = false;
serviceTimer.Start();
}
void serviceTimer_Elapsed(object sender, ElapsedEventArgs e)
{
try
{
// Get your rows of queued work requests
// Now Push Each Row to Background Thread Processing
foreach (Row aRow in RowsOfRequests)
{
ThreadPool.QueueUserWorkItem(
new WaitCallback(longWorkingCode),
aRow);
}
}
finally
{
// Wait Another 60 Seconds and check again
serviceTimer.Stop();
}
}
void longWorkingCode(object workObject)
{
Row workRow = workObject as Row;
if (workRow == null)
return;
// Do your Long work here on workRow
}
There's quite a neat way of solving this with Reactive Extensions. Here's the code, and you can read a fuller explanation here: http://www.zerobugbuild.com/?p=259
public static IDisposable ScheduleRecurringAction(
this IScheduler scheduler,
TimeSpan interval,
Action action)
{
return scheduler.Schedule(
interval, scheduleNext =>
{
action();
scheduleNext(interval);
});
}
And you could use it like this:
TimeSpan interval = TimeSpan.FromSeconds(5);
Action work = () => Console.WriteLine("Doing some work...");
var schedule = Scheduler.Default.ScheduleRecurringAction(interval, work);
Console.WriteLine("Press return to stop.");
Console.ReadLine();
schedule.Dispose();
another posibility would be something like this:
void serviceTimer_Elapsed(object sender, ElapsedEventArgs e)
{
if (System.Threading.Monitor.IsLocked(yourLockingObject))
return;
else
lock (yourLockingObject)
// your logic
;
}
I want to do stuff every minute on the minute (by the clock) in a windows forms app using c#. I'm just wondering whats the best way to go about it ?
I could use a timer and set its interval to 60000, but to get it to run on the minute, I would have to enable it on the minute precisely, not really viable.
I could use a timer and set its interval to 1000. Then within its tick event, I could check the clocks current minute against a variable that I set, if the minute has changed then run my code. This worries me because I am making my computer do a check every 1 second in order to carry out work every 1 minutes. Surely this is ugly ?
I'm using windows forms and .Net 2.0 so do not want to use the DispatchTimer that comes with .Net 3.5
This must be a fairly common problem. Have any of you a better way to do this?
Building on the answer from aquinas which can drift and which doesn't tick exactly on the minute just within one second of the minute:
static System.Timers.Timer t;
static void Main(string[] args)
{
t = new System.Timers.Timer();
t.AutoReset = false;
t.Elapsed += new System.Timers.ElapsedEventHandler(t_Elapsed);
t.Interval = GetInterval();
t.Start();
Console.ReadLine();
}
static double GetInterval()
{
DateTime now = DateTime.Now;
return ((60 - now.Second) * 1000 - now.Millisecond);
}
static void t_Elapsed(object sender, System.Timers.ElapsedEventArgs e)
{
Console.WriteLine(DateTime.Now.ToString("o"));
t.Interval = GetInterval();
t.Start();
}
On my box this code ticks consistently within .02s of each minute:
2010-01-15T16:42:00.0040001-05:00
2010-01-15T16:43:00.0014318-05:00
2010-01-15T16:44:00.0128643-05:00
2010-01-15T16:45:00.0132961-05:00
How about:
int startin = 60 - DateTime.Now.Second;
var t = new System.Threading.Timer(o => Console.WriteLine("Hello"),
null, startin * 1000, 60000);
Creating a Timer control that fires every 1 second (and usually does nothing but a simple check) will add negligible overhead to your application.
Simply compare the value of Environment.TickCount or DateTime.Now to the last stored time (the previous 'minute tick'), and you should have a reasonably precise solution. The resolution of these two time values is about 15ms, which should be sufficient for your purposes.
Do note however that the interval of the Timer control is not guaranteed to be that precise or even anywhere now, since it runs on the Windows message loop, which is tied in with the responsiveness of the UI. Never rely on it for even moderately precise timing - though it is good enough for firing repeating events where you can check the time using a more sensitive method such as one of the two given above.
You can nail this with reactive extensions which will take care of lots of timer related problems for you (clock changes, app hibernation etc). Use Nuget package Rx-Main and code like this:
Action work = () => Console.WriteLine(DateTime.Now.ToLongTimeString());
Scheduler.Default.Schedule(
// start in so many seconds
TimeSpan.FromSeconds(60 - DateTime.Now.Second),
// then run every minute
() => Scheduler.Default.SchedulePeriodic(TimeSpan.FromMinutes(1), work));
Console.WriteLine("Press return.");
Console.ReadLine();
Read here (search for "Introducing ISchedulerPeriodic") to see all the issues this is taking care of: http://blogs.msdn.com/b/rxteam/archive/2012/06/20/reactive-extensions-v2-0-release-candidate-available-now.aspx
I jsut wrote this class using the WPF DispatcherTimer but you can swap the dispatcher for any timer that supports changing when it's woken from sleep state.
The class is constructed with a fixed time step and supprts Start/Stop/Reset, Start/Stop/Start works like a resume operation. The timer is like a stopwatch in that regard.
A clock implementation would simply create the class with a interval of 1 second and listen to the event. Be wary though that this is a real-time clock, if the tick event takes longer than the interval to finish you'll notice that the clock will try and catch up to real-time this will cause a burst of tick events being raised.
public class FixedStepDispatcherTimer
{
/// <summary>
/// Occurs when the timer interval has elapsed.
/// </summary>
public event EventHandler Tick;
DispatcherTimer timer;
public bool IsRunning { get { return timer.IsEnabled; } }
long step, nextTick, n;
public TimeSpan Elapsed { get { return new TimeSpan(n * step); } }
public FixedStepDispatcherTimer(TimeSpan interval)
{
if (interval < TimeSpan.Zero)
{
throw new ArgumentOutOfRangeException("interval");
}
this.timer = new DispatcherTimer();
this.timer.Tick += new EventHandler(OnTimerTick);
this.step = interval.Ticks;
}
TimeSpan GetTimerInterval()
{
var interval = nextTick - DateTime.Now.Ticks;
if (interval > 0)
{
return new TimeSpan(interval);
}
return TimeSpan.Zero; // yield
}
void OnTimerTick(object sender, EventArgs e)
{
if (DateTime.Now.Ticks >= nextTick)
{
n++;
if (Tick != null)
{
Tick(this, EventArgs.Empty);
}
nextTick += step;
}
var interval = GetTimerInterval();
Trace.WriteLine(interval);
timer.Interval = interval;
}
public void Reset()
{
n = 0;
nextTick = 0;
}
public void Start()
{
var now = DateTime.Now.Ticks;
nextTick = now + (step - (nextTick % step));
timer.Interval = GetTimerInterval();
timer.Start();
}
public void Stop()
{
timer.Stop();
nextTick = DateTime.Now.Ticks % step;
}
}
Create a method or put this code where you want the timer to start:
int time = 60 - DateTime.Now.Second; // Gets seconds to next minute
refreshTimer.Interval = time * 1000;
refreshTimer.Start();
And then on your tick event set the interval to 60000:
private void refreshTimer_Tick(object sender, EventArgs e)
{
refreshTimer.Interval = 60000; // Sets interval to 60 seconds
// Insert Refresh logic
}
By making use of ReactiveExtensions you could use the following code if you were interested in doing something as simple as printing to the console.
using System;
using System.Reactive.Linq;
namespace ConsoleApplicationExample
{
class Program
{
static void Main()
{
Observable.Interval(TimeSpan.FromMinutes(1))
.Subscribe(_ =>
{
Console.WriteLine(DateTime.Now.ToString());
});
Console.WriteLine(DateTime.Now.ToString());
Console.ReadLine();
}
}
}
Running a bit of code to see if the minute has changed once per second should not require much CPU time, and should be acceptable.
What about Quartz.NET? I think its a good framework to do timed actions.
You could set up two timers. An initial short interval timer (perhaps to fire every second, but dependent on how presice the second timer must fire on the minute).
You would fire the short interval timer only until the desired start time of the main interval timer is reached. Once the initial time is reached, the second main interval timer can be activated, and the short interval timer can be deactivated.
void StartTimer()
{
shortIntervalTimer.Interval = 1000;
mainIntervalTimer.Interval = 60000;
shortIntervalTimer.Tick +=
new System.EventHandler(this.shortIntervalTimer_Tick);
mainIntervalTimer.Tick +=
new System.EventHandler(mainIntervalTimer_Tick);
shortIntervalTimer.Start();
}
private void shortIntervalTimer_Tick(object sender, System.EventArgs e)
{
if (DateTime.Now.Second == 0)
{
mainIntervalTimer.Start();
shortIntervalTimer.Stop();
}
}
private void mainIntervalTimer_Tick(object sender, System.EventArgs e)
{
// do what you need here //
}
Alternatively, you could sleep to pause execution until it times out which should be close to your desired time. This will only wake the computer when the sleep finishes so it'll save you CPU time and let the CPU power down between processing events.
This has the advantage of modifying the timeout so that it will not drift.
int timeout = 0;
while (true) {
timeout = (60 - DateTime.Now.Seconds) * 1000 - DateTime.Now.Millisecond;
Thread.Sleep(timeout);
// do your stuff here
}
Use a timer set to run every second (or millisecond, whatever your accuracy threshold is), and then code the method to run your functionality if and only if the current time is within that threshold past the "on the minute" point.
What I'm using for scheduled tasks is a System.Threading.Timer(System.Threading.TimerCallback, object, int, int) with the callback set to the code I want to execute based on the interval which is supplied in milliseconds for the period value.
What about a combination of aquinas' answer and 'polling': (apologies for the mixture of languages)
def waitForNearlyAMinute:
secsNow = DateTime.Now.Second;
waitFor = 55 - secsNow;
setupTimer(waitFor, pollForMinuteEdge)
def pollForMinuteEdge:
if (DateTime.Now.Second == 0):
print "Hello, World!";
waitForNearlyAMinute();
else:
setupTimer(0.5, pollForMinuteEdge)
I have a solution based on Environment.TickCount
static void Main(string[] args)
{
//constatnt total miliseconds to one minute
const Int32 minuteMilisecond = 60 * 1000;
//get actual datetime
DateTime actualDateTime = DateTime.UtcNow;
//compenzation to one minute
Int32 nexTimer = Environment.TickCount + ((59 - actualDateTime.Second) * 1000) + (999 - actualDateTime.Millisecond);
//random fuction to simulate different delays on thread
Random rnd = new Random();
//main loop
while (true)
{
if (Environment.TickCount > nexTimer)
{
nexTimer += minuteMilisecond;
//execute your code here every minute
Console.WriteLine($"actual DateTime: {DateTime.Now.ToString("yyyy.MM.dd HH:mm:ss:ffff")}");
}
//random sleep between 100 - 200 ms
Thread.Sleep(rnd.Next(100, 200));
}
}
I'm working on a little web crawler that will run in the system tray and crawl a web site every hour on the hour.
What is the best way to get .NET to raise an event every hour or some other interval to perform some task. For example I want to run an event every 20 minutes based on the time. The event would be raised at:
00:20
00:40
01:00
01:20
01:40
and so on. The best way I can think of to do this is by creating a loop on a thread, that constantly checks if the time is divisible by a given interval and raises a callback event if the time is reached. I feel like there has got to be a better way.
I'd use a Timer but I'd prefer something that follows a "schedule" that runs on the hour or something along those lines.
Without setting up my application in the windows task scheduler is this possible?
UPDATE:
I'm adding my algorithm for calculating the time interval for a timer. This method takes a "minute" parameter, which is what time the timer should trigger a tick. For example, if the "minute" parameter is 20, then the timer will tick at the intervals in the timetable above.
int CalculateTimerInterval(int minute)
{
if (minute <= 0)
minute = 60;
DateTime now = DateTime.Now;
DateTime future = now.AddMinutes((minute - (now.Minute % minute))).AddSeconds(now.Second * -1).AddMilliseconds(now.Millisecond * -1);
TimeSpan interval = future - now;
return (int)interval.TotalMilliseconds;
}
This code is used as follows:
static System.Windows.Forms.Timer t;
const int CHECK_INTERVAL = 20;
static void Main()
{
t = new System.Windows.Forms.Timer();
t.Interval = CalculateTimerInterval(CHECK_INTERVAL);
t.Tick += new EventHandler(t_Tick);
t.Start();
}
static void t_Tick(object sender, EventArgs e)
{
t.Interval = CalculateTimerInterval(CHECK_INTERVAL);
}
System.Timers.Timer. If you want to run at specific times of the day, you will need to figure out how long it is until the next time and set that as your interval.
This is just the basic idea. Depending on how precise you need to be you can do more.
int minutes = DateTime.Now.Minute;
int adjust = 10 - (minutes % 10);
timer.Interval = adjust * 60 * 1000;
You may find help from Quartz.net http://quartznet.sourceforge.net/
Here is an example of a lightweight system using thread timing and an asynch call.
I know there are some downsides, but I like using this instead of a timer when kicking off a long running process (like schedualed backend services). Since it runs inline in the timer thread, you don't have to worry about it getting kicked off again before the the original call has finished. This could be extended quite a bit to make it use an array of datetimes as the trigger times or add some more abilities to it. I am sure some of you guys out there know some better ways.
public Form1()
{
InitializeComponent();
//some fake data, obviously you would have your own.
DateTime someStart = DateTime.Now.AddMinutes(1);
TimeSpan someInterval = TimeSpan.FromMinutes(2);
//sample call
StartTimer(someStart,someInterval,doSomething);
}
//just a fake function to call
private bool doSomething()
{
DialogResult keepGoing = MessageBox.Show("Hey, I did something! Keep Going?","Something!",MessageBoxButtons.YesNo);
return (keepGoing == DialogResult.Yes);
}
//The following is the actual guts.. and can be transplanted to an actual class.
private delegate void voidFunc<P1,P2,P3>(P1 p1,P2 p2,P3 p3);
public void StartTimer(DateTime startTime, TimeSpan interval, Func<bool> action)
{
voidFunc<DateTime,TimeSpan,Func<bool>> Timer = TimedThread;
Timer.BeginInvoke(startTime,interval,action,null,null);
}
private void TimedThread(DateTime startTime, TimeSpan interval, Func<bool> action)
{
bool keepRunning = true;
DateTime NextExecute = startTime;
while(keepRunning)
{
if (DateTime.Now > NextExecute)
{
keepRunning = action.Invoke();
NextExecute = NextExecute.Add(interval);
}
//could parameterize resolution.
Thread.Sleep(1000);
}
}
Another strategy for this would be to record the LAST TIME that the process was run and determine if your desired interval has elapsed since that time. In this strategy, you would code your event to fire if the elapsed time is equal to OR GREATER THAN the desired interval. In this way you can handle instances where long intervals (once per day, for example) could be missed if the computer were to be down for some reason.
So for example:
lastRunDateTime = 5/2/2009 at 8pm
I want to run my process every 24 hours
On a timer event, check whether 24 hours OR MORE passed since the last time the process was run.
If yes, run the process, update lastRunDateTime by adding the desired interval to it (24 hours in this case, but whatever you need it to be)
Obviously, for this to recover after the system has gone down, you will need to store lastRunDateTime in a file or database somewhere so the program could pick up where it left off on recovery.
System.Windows.Forms.Timer (or System.Timers.Timer)
but since now you say you don't want to use Timers, you can run a lightweight wait process on another thread (check time, sleep a few seconds, check time again...) or make a component that raises an event (using a lightweight wait process) on certain scheduled times or intervals
The following should do the trick.
static void Main(string[] Args)
{
try
{
MainAsync().GetAwaiter().GetResult();
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
}
static async Task MainAsync()
{
CancellationTokenSource tokenSource = new CancellationTokenSource();
// Start the timed event here
StartAsync(tokenSource.Token);
Console.ReadKey();
tokenSource.Cancel();
tokenSource.Dispose();
}
public Task StartAsync(CancellationToken cancellationToken)
{
var nextRunTime = new DateTime();
switch (DateTime.Now.AddSeconds(1) < DateTime.Today.AddHours(12)) // add a second to current time to account for time needed to setup the task.
{
case true:
nextRunTime = DateTime.Today.AddHours(12); // Run at midday today.
break;
case false:
nextRunTime = DateTime.Today.AddDays(1).AddHours(12); // Run at midday tomorrow.
break;
}
var firstInterval = nextRunTime.Subtract(DateTime.Now);
Action action = () =>
{
// Run the task at the first interval, then run the task again at midday every day.
_timer = new Timer(
EventMethod,
null,
firstInterval,
DateTime.Today.AddDays(1).AddHours(12).Subtract(DateTime.Now)
);
};
// no need to await this call here because this task is scheduled to run later.
Task.Run(action);
return Task.CompletedTask;
}
private async void EventMethod(object state)
{
// do work
}
My goal is to run an import around 03:00 every night.
Here's my approach, using System.Timers.Timer:
private Timer _timer;
private Int32 _hours = 0;
private Int32 _runAt = 3;
protected override void OnStart(string[] args)
{
_hours = (24 - (DateTime.Now.Hour + 1)) + _runAt;
_timer = new Timer();
_timer.Interval = _hours * 60 * 60 * 1000;
_timer.Elapsed += new ElapsedEventHandler(Tick);
_timer.Start();
}
void Tick(object sender, ElapsedEventArgs e)
{
if (_hours != 24)
{
_hours = 24;
_timer.Interval = _hours * 60 * 60 * 1000;
}
RunImport();
}