c# get only child properties without parent class properties - c#

Is there a way, and not using reflection, of elegant get only child propeties of an object?
For example:
class A
{
public string PropA;
}
class B : A
{
public string PropB;
}
class C
{
var classB_instance = new B();
/* Only class B properties without parent so B.PropB; but no B.PropA;
}
I know it would be possible with reflection, but if this can be avoided?

You could create a specific interface for your inherited class like say
interface ISpecificB {
string PropB;
}
and then Create your class like
public class A {
public string PropA;
}
public class B: A, ISpecificB {
public string PropB;
}
and only make the variable as specific as ISpecificB when creating it or returning it from a function
ISpecificB classB = new B();
classB.PropA // shouldn't be available
However, classB could still be casted as B or A which would give access to the propA and it might increase complexity in your solution

Whether you can do this way ?
class A
{
private string PropA;
}
class B : A
{
public string PropB;
}
class C
{
var classB_instance = new B();
}

You could mark PropA as private, look at https://msdn.microsoft.com/en-us/library/ms173121.aspx:
private
The type or member can be accessed only by code in the same class or struct.
just a short note: most of the time, I use reflection to do exactly the opposite: access things I am not allowed, for example, because they are private... ;-) reflection is not a "tool" to hide something, AFAIK. it opens every door which is usually locked ;-)

You can use the protected accessibility modifier:
The type or member can be accessed only by code in the same class or struct, or in a class that is derived from that class.
public class A
{
protected string PropA { get; set; }
}
public class B : A
{
public string PropB { get; set; }
}
public class C
{
var classB_instance = new B();
//You can't access classB_instance.PropA
}

Declare variable PropA of Class A as private variable(as show in below code):
class A
{
private string PropA;
}

Related

C# : Override a property and return a derived type

Let's say I have a class A with the property "Details" that return an instance of class B.
public class A
{
public virtual B Details {get; set;}
}
Lets say also, I have a class Aext (A extended) that inherits from A.
But I want that Aext.Details return an instance of class Bext (B extended) :
public class Aext : A
{
public override Bext Details {get; set;}
}
This will not compile because the type Bext must match the type inherited from A.
Of course, I can easily solve that by just put B as return of Details for Aext.
public class Aext
{
B Details {get; set;}
}
Assignment will work, but I'll have to check everytime I use an instance of Aext if Details is Bext or B.
Do you see a way of doing something cleaner that this solution ?
Thank you.
Maybe you can try generics, something like this:
public class A<T> where T : B
{
public T Details { get; set; }
}
public class Aext : A<Bext>
{
}
public class B
{
}
public class Bext : B
{
}
If you need you can override T Details with Bext Details, it will work fine.
No - but I think therefore it indicates the base class is flawed in its design. You are trying to force Interface behaviours onto an Abstract class/method. The base method does nothing, do what exactly is being inherited ? The base class could have a protected member of type B accessed by each inheritor and exposed via their own strongly typed accessor method. The value would be available to all inheritors, but consumers would need to get/set a strongly typed version of the data.
If you do not want to introduce interfaces, you can do something like this:
public class B
{ }
public class Bext : B
{ }
public class A
{
public virtual B Details { get; set; }
public A()
{
Details = new B();
}
}
public class Aext : A
{
public override B Details => new Bext();
}
However, I would suggest you go with composition and use dependency injection, like this:
public interface IB
{ }
public class B : IB
{ }
public class Bext : IB
{ }
public class A
{
public virtual IB Details { get; set; }
public A(IB details)
{
Details = details;
}
}
public class TestClass
{
public void TestMethod()
{
IB details = new B();
IB extDetails = new Bext();
A instance1 = new A(details);
A instance2 = new A(extDetails);
}
}
This way, you do not need to extend the inheritance hierarchy by creating Aext class. You can contain that strictly to the properties in question.

How to downcast this to the base class?

I have this class hierarchy:
public abstract class AClass : SomeFrameworkClass {
[WorkOnThisProperty(With.Some.Context)]
private MyObject MyProperty { get; set; }
public override void OnSomethingHappened() {
ExternalFramework.WorkOn(this);
}
}
public class BClass : AClass {
// ... Snip ...
}
ExternalFramework is operating on this: an instance of BClass but i need it to operate on this as an instance of AClass because ExternalFramework only works on the type of the object passed in and does not go up the inheritance hierarchy. How can i downcast this into AClass so ExternalFramework can actually detect MyProperty?
I've tried casting this to object and then to AClass, and casting it directly to AClass but as the cast is unnecessary it doesn't seem to run. What can i do about this?
EDIT: ExternalFramework is Cheeseknife. I am trying to inject a couple views into a base fragment class that has all the reusable logic while child fragment classes implement some specific behaviour tuning.
The problem is that all private members of a class can only be accessed inside of the same class.
With this code:
class A { private string Property { get; set; } }
class B : A { public string Proxy => Property; }
We'll get compilation error because class B cannot access private property from class A, but if change keyword to protected :
class A { protected string Property { get; set; } }
It should work.

How to write a class that can encompass other related classes?

Is it possible to write a class that acts like the super class of two other classes.
For example I have class A and class B. A and B share similar properties, but since I did not code A or B they do not extend an interface or class. Is it possible for me to create this super class so that when I generalize my code it can handle class A or B.
If this super class could be created this is some of what I would like to do in my class
class A
{
string Name { get; set;}
//does stuff
//I can't change this class
}
class B
{
string Name { get; set;}
//does similar stuff
//I can't change this class either
}
class MyClass
{
//I would like to create a list that can include both class B and class A
List<(pseudo superclass of A and B)> list;
//Both class A and class B have a name, I would like to get the name given a type of A or B
public (pseudo superclass of A and B) GetName((pseudo superclass of A and B) AorB)
{
//Write that name to the console
Console.WriteLine(AorB.Name);
}
}
Is this kind of wrapping possible, or will I need to do more work inside of MyClass (such as overloading methods) in order to accomplish what I need.
I'd suggest,
1 Create an interface:
interface IWrapper
{
string Name { get; set; }
...
}
2 Create wrapper classes:
class WrapperA : IWrapper
{
private A _a;
public WrapperA(A a) { _a = a; }
public Name
{
get { return _a.Name; }
set { _a.Name = value; }
}
// other properties here
}
and likewise for a BWrapper around B.
Then you can create your class as:
class MyClass
{
List<IWrapper> list;
public string GetName(IWrapper aOrB)
{
Console.WriteLine(aOrB.Name);
}
}

Is it possible in C# make public virtual method private/internal in overriding class? [duplicate]

I want to hide the base public property(a data member) in my derived class:
class Program
{
static void Main(string[] args)
{
b obj = new b();
obj.item1 = 4;// should show an error but it doent ???
}
}
class a
{
public int item1 {get; set;}
public int item2 { get; set; }
}
class b : a
{
new private int item1;
}
class c : a
{
}
i have member as public because i want the member to be inherited in c class , but want to hide the member in b class , how can i do this ?
dont i have an option to selectively inherite the variable i want in my base class ??? thats really bad , i think ms should provide us with an option (may be a modifier) to perform this
Edit:
I found the answer myself (i heard lots of them telling this is not possible in c#, but you can kind of do it)
I am including the code in case it is useful
class Program
{
static void Main(string[] args)
{
b obj = new b();
obj.item1 = 4; // shows an error : )
}
}
class a
{
public int item1 { get; set; }
public int item2 { get; set; }
}
class b : a
{
new public static int item1
{
get;
private set;
}
}
I'm going to attempt to explain with examples why this is a bad idea, rather than using cryptic terms.
Your proposal would be to have code that looks like this:
public class Base
{
public int Item1 { get; set; }
public int Item2 { get; set; }
}
public class WithHidden : Base
{
hide Item1; // Assuming some new feature "hide" in C#
}
public class WithoutHidden : Base { }
This would then make the following code invalid:
WithHidden a = new WithHidden();
a.Item1 = 10; // Invalid - cannot access property Item1
int i = a.Item1; // Invalid - cannot access property Item1
And that would be just what you wanted. However, suppose we now have the following code:
Base withHidden = new WithHidden();
Base withoutHidden = new WithoutHidden();
SetItem1(withHidden);
SetItem1(withoutHidden);
public void SetItem1(Base base)
{
base.Item1 = 10;
}
The compiler doesn't know what runtime type the argument base in SetItem1 will be, only that it is at least of type Base (or some type derived from Base, but it can't tell which -- it may be obvious looking at the code snippet, but more complex scenarios make it practically impossible).
So the compiler will not, in a large percentage of the cases, be able to give a compiler error that Item1 is in fact inaccessible. So that leaves the possibility of a runtime check. When you try and set Item1 on an object which is in fact of type WithHidden it would throw an exception.
Now accessing any member, any property on any non-sealed class (which is most of them) may throw an exception because it was actually a derived class which hid the member. Any library which exposes any non-sealed types would have to write defensive code when accessing any member just because someone may have hidden it.
A potential solution to this is to write the feature such that only members which declare themselves hideable can be hidden. The compiler would then disallow any access to the hidden member on variables of that type (compile time), and also include runtime checks so that a FieldAccessException is thrown if it is cast to the base type and tried to be accessed from that (runtime).
But even if the C# developers did go to the huge trouble and expense of this feature (remember, features are expensive, especially in language design) defensive code still has to be written to avoid the problems of potential FieldAccessExceptions being thrown, so what advantage over reorganising your inheritance hierarchy have you gained? With the new member hiding feature there would be a huge number of potential places for bugs to creep into your application and libraries, increasing development and testing time.
What you want to do goes directly against the grain of OO, you can't 'unpublish' members as this violates the substitution principle. You have to refactor this into something else.
Vadim's response reminded me of how MS achieve this in the Framework in certain places. The general strategy is to hide the member from Intellisense using the EditorBrowsable attribute. (N.B. This only hides it if it is in another assembly) Whilst it does not stop anyone from using the attribute, and they can see it if they cast to the base type (see my previous explination) it makes it far less discoverable as it doesn't appear in Intellisense and keeps the interface of the class clean.
It should be used sparingly though, only when other options like restructuring the inheritance hierarchy would make it a lot more complex. It's a last resort rather than the first solution to think of.
If you use an interface instead of a base class for defining the property, you could implement the property explicitly. The would require an explicit cast to the interface to use the property.
public interface IMyInterface
{
string Name { get; set; }
}
public class MyClass : IMyInterface
{
string IMyInterface.Name { get; set; }
}
You can find more out here.
The only thing I can think of is to make item1 virtual in class a:
class a
{
public virtual int item1 { get; set; }
public int item2 { get; set; }
}
and then override it in class b but throw an exception in getter and setter. Also if this property is used in a visual designer you can use Browsable attribute to not display.
class b : a
{
[Browsable(false)]
public override int item1
{
get
{
throw new NotSupportedException();
}
set
{
throw new NotSupportedException();
}
}
}
First of all this is not good idea if you using some methods, that operates base class.
You can try to use obsolete argument to make users twice think to use this property.
[System.Obsolete("Do not use this property",true)]
public override YourType YourProperty { get; set; }
What you are describing is something akin to 'private inheritance' from C++, and is not available in C#.
You cant do it directly, but you could override the properties in the child class and make them readonly e.g.
class Program
{
static void Main(string[] args)
{
b obj = new b();
obj.item1 = 4;// should show an error but it doent ???
}
}
class a
{
public virtual int item1 {get; set;}
public virtual int item2 { get; set; }
}
class b : a
{
public override int item1
{
get { return base.item1; }
set { }
}
}
class c : a
{
}
You could use interfaces to hide the property. The child class would implemented an interface that didn't have the property then it wouldn't appear.
You would need two interfaces for when you want the property and when you don't, thus making it a horrible hack.
You can override it and then Add a [Browsable(false)] tag to prevent showing it in designer.
Simple:
public class a:TextBox
{
[Browsable(false)]
public override string Text
{
get { return ""; }
set { }
}
}
Changing the accessibility of a virtual member is an inheriting class is specifically prohibited by the C# language spec:
The override declaration and the overridden base method have the same
declared accessibility. In other words, an override declaration cannot
change the accessibility of the virtual method. However, if the
overridden base method is protected internal and it is declared in a
different assembly than the assembly containing the override method
then the override method’s declared accessibility must be protected.
From section 10.6.4 Override methods
The same rules which apply to overriding method also apply to properties, so going from public to private by inheriting from the base class can't be done in C#.
What you actually need are interfaces:
public interface ProvidesItem1
{
int item1 { get; set; }
}
public interface ProvidesItem2
{
int item2 { get; set; }
}
class a : ProvidesItem1, ProvidesItem2
{
public int item1 { get; set; }
public int item2 { get; set; }
}
class b : ProvidesItem1
{
public int item1 { get; set; }
}
Then just pass the interfaces around. If the classes should use a common implementation, put that in a third class and let them derive from that class aswell as implement their respective interface.
Yes, it is possible. What say you on the delegation. I will try to give an idea of what is called "delegation" in OOP with a piece of code:
public class ClassA
{
// public
public virtual int MyProperty { get; set; }
// protected
protected virtual int MyProperty2 { get; set; }
}
public class ClassB
{
protected ClassC MyClassC;
public ClassB()
{
MyClassC = new ClassC();
}
protected int MyProperty2
{
get { return MyClassC.MyProperty2; }
set { MyClassC.MyProperty2 = value; }
}
protected int MyProperty
{
get { return MyClassC.MyProperty; }
set { MyClassC.MyProperty = value; }
}
protected class ClassC : ClassA
{
public new int MyProperty2
{
get { return base.MyProperty2; }
set { base.MyProperty2 = value; }
}
public override int MyProperty
{
get { return base.MyProperty; }
set { base.MyProperty = value; }
}
}
}
namespace PropertyTest
{
class a
{
int nVal;
public virtual int PropVal
{
get
{
return nVal;
}
set
{
nVal = value;
}
}
}
class b : a
{
public new int PropVal
{
get
{
return base.PropVal;
}
}
}
class Program
{
static void Main(string[] args)
{
a objA = new a();
objA.PropVal = 1;
Console.WriteLine(objA.PropVal);
b objB = new b();
objB.PropVal = 10; // ERROR! Can't set PropVal using B class obj.
Console.Read();
}
}
}
You can user new modifer.
Sample;
public class Duck
{
public string Color{get; set;}
public void Swim() { }
}
public class DonaldDuck : Duck
{
new public void Swim()
{
/*you could call in DonaldDuck.Swim only here but not public for DonaldDuck client.*/
}
}
If you wanna hide a member from base class then you will need to add a new base class let's call it baseA and your code should be as follows:
class Program
{
static void Main(string[] args)
{
b obj = new b();
obj.item1 = 4;// should show an error but it doent ???
}
}
class baseA
{
public int item2 { get; set; }
}
class a:baseA
{
public int item1 { get; set; }
}
class b : baseA { }
class c : a { }

In a private class : access to a member of the "outer class"?

Here is my code (just a snippet to expose the problem) :
public class A
{
class B
{
//private class
}
public int nb;
}
Im tired but why can't I access to "nb" in my private class ?
You're gonna need an instance of A in order to access the instance member nb:
public class A
{
class B
{
public B()
{
A a = new A();
int nb = a.nb;
}
}
public int nb;
}
It's possible in java but not in C#.
You need to pass an instance of A to B.
In C# an 'outer' class is just a 'namespace' to the inner class. So the outer class is not being instantiated.
You need to pass an instance of A to B, like so:
public class A
{
class B
{
private A _outerClass;
public B(A outerClass)
{
_outerClass = outerClass;
// Then you can access nb thus:
_outerClass.nb;
}
}
public int nb;
}

Categories