keep windows.forms controls in same Main thread - c#

So, I have a win form that calls a method
dvm.SetVoltage(excitationVoltage, rigNo);
which runs a task in another class
public void SetVoltage(double voltage, int rigNum)
{
Task.Run(() => ReadDVMWorker());
}
Once the worker is finished (voltage set) it triggers an event In the main Form1.cs
private void dvmVoltageSet(object sender, VoltageEventArgs e)
{
VoltageSet = e.VolSet;
TestLvdtNull();
}
Calling TestLvdtNull method:
private void TestLvdtNull()
{
tbMessage.Location = new Point((int)(x / 2 - 250), 150);
}
As soon as the tbMessage line is reached it causes an exception because it has started another thread other than the one tbMessage was created in, how can I prevent it from starting a new thread and continue using the Main thread please?
I have looked at singlethreadsynchronizationcontext, but couldn't make it compile and I know that you can invoke:
tbMessage.Invoke((Action)delegate
{
tbMessage.Location = new Point((int)(x / 2 - 250), 150);
});
But I have many controls with many attributes changing, there must be a way to keep the UI on the main thread?

All UI controls are created at one thread. That is by design in many UI frameworks. After you finish your task you have to return to the UI thread to access UI controls.
One option mentioned in comments is to use async/await where the part of the method after await keyword is executed on the same thread as was before the async method.
// UI thread
await ReadDVMWorker(); // executed at ThreadPool
// UI thread
If you prefer to stay with Task, you can use ContinueWith method with correct TaskScheduler parameter, which ensures that you're back to UI thread. Eg. TaskScheduler.FromCurrentSynchronizationContext()
Async/await attempt code:
private async void button1_Click(object sender, EventArgs e)
{
// Call the method that runs asynchronously.
string result = await WaitAsynchronouslyAsync();
// Display the result.
textBox1.Text += result;
}
//The following method runs asynchronously.The UI thread is not
//blocked during the delay.You can move or resize the Form1 window
//while Task.Delay is running.
public async Task<string> WaitAsynchronouslyAsync()
{
await dvm.SetVoltage(5, rigNo); //Task.Delay(10000);
return "Finished";
}

You could have a method to update arbitrary controls
private void dvmVoltageSet(object sender, VoltageEventArgs e)
{
VoltageSet = e.VolSet;
TestLvdtNull(tbMessage);
TestLvdtNull(tbMessage2);
}
private void TestLvdtNull(Control control)
{
control.BeginInvoke((MethodInvoker)delegate()
{
control.Location += new Point((int)(x / 2 - 250), 150);
});
}

After trying several different ways to solve the problem, I solved the problem by using SynchronizationContext.
This grabs the SyncronizationContext of the thread:
private SynchronizationContext _synchronizationContext;
SynchronizationContext uiContext = SynchronizationContext.Current;
Then after running my task in another class, where previously I was getting an cross thread call exception, I call the method that wants use the same UI thread:
uiContext.Post(MethodToCallOnTheSameUIThread, "string");
After this I can modify and update my textboxes and other controls!
You can check the thread id by:
int id = Thread.CurrentThread.ManagedThreadId;
Console.WriteLine("Thread: " + id);
With thanks to Mike Peretz and his CodeProject

Related

Threadsafe logging not working with Task or Thread in debugger

I try to log text messages from a Task or Thread to a textbox on my form. For that i use Invoke and InvokeRequired methods to syncronize with the main thread, as i can be found in many examples on the internet. See LogMessage_Delegate and LogMessage_Threadsafe below. When i close the app, a boolean flag finished is set to true and the task/thread should stop the work.
This all works fine until i set a breakpoint on the first line of the Form1_FormClosing event handler (finished = true;). Then i see only the console message "LogMessage InvokeRequired", but no corresponding "LogMessage" and the app is hanging.
If i comment out the LogMessage_Threadsafe call in Work (only console messages), then it works again. The app is closing, as expected.
So, can anybody explain this behavior to me? I can find no reason for it.
Please note, i do the flagging in the Form1_FormClosing event handler, so the form is still alive and working.
namespace MultiThreadedTest
{
public partial class Form1 : Form
{
//************************************************************
// Fields
Thread worker = null;
Task task = null;
bool finished = false;
//************************************************************
// Constructor
public Form1()
{
InitializeComponent();
worker = new Thread(Work);
worker.Start();
//task = Task.Factory.StartNew(Work);
}
//************************************************************
// Helper methods
public void LogMessage(string sMessage)
{
LogTextBox.Text += sMessage + Environment.NewLine;
}
/// <summary>
/// Threadsafe wrapper for LogMessage
/// </summary>
delegate void LogMessage_Delegate(string sMessage);
public void LogMessage_Threadsafe(string sMessage)
{
// InvokeRequired required compares the thread ID of the
// calling thread to the thread ID of the creating thread.
// If these threads are different, it returns true.
if (this.InvokeRequired)
{
Console.WriteLine("LogMessage InvokeRequired");
LogMessage_Delegate callback = new LogMessage_Delegate(LogMessage_Threadsafe);
this.Invoke(callback, new object[] { sMessage });
}
else
{
Console.WriteLine("LogMessage");
LogMessage(sMessage);
}
}
//************************************************************
// Commands
void Work()
{
while (!finished)
{
Console.WriteLine("Tread/Task Waiting...");
LogMessage_Threadsafe("Tread/Task Waiting...");
Thread.Sleep(1000); // Wait a little...
}
Console.WriteLine("Thread/Task Done");
}
//************************************************************
// Events
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
finished = true;
if (worker != null) worker.Join();
if (task != null) Task.WaitAll(task);
Console.WriteLine("App Done");
}
}
}
You don't need to use raw threads since .NET 4 with the introduction of Tasks. Invoke wasn't needed either but became obsolete since .NET 4.5 with the introduction of async/await. 4.5 also introduced thread-safe progress reporting and cancellation with the IProgress< T> inteface and Progress< T> implementation, as explained in Async in 4.5: Enabling Progress and Cancellation in Async APIs.
Progress<T> calls its delegate on the thread it was created on, in this case the UI thread. You can pass the interface to any background method (task, thread method etc) and use it to report progress.
Given that the earliest supported .NET version is 4.5.2, you can assume these classes will always be available. BTW, TLS 1.2 support was added in 4.5.2 so any holdouts are forced to upgrade already, as they find they can't connect to GMail or other services that demand TLS 1.2.
Your code can be simplified a lot by using these classes. A quick&dirty form with a background timer and thread-safe reporting is the following:
public partial class Form1 : Form
{
System.Threading.Timer _timer;
IProgress<string> _progress;
public Form1()
{
InitializeComponent();
_progress = new Progress<string>(msg => textBox1.Text += msg + "\r\n");
_timer = new System.Threading.Timer(theCallback);
}
private async void theCallback(object state)
{
for (int i = 0; i < 5; i++)
{
await Task.Delay(100);
_progress.Report($"Boo {i}");
}
}
private void Form1_Load(object sender, EventArgs e)
{
_timer.Change(0, 10000);
}
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
_timer.Dispose();
_timer = null;
_progress = null;
}
}
UPDATE
As for why the original code blocks, it's because Thread.Join() is called from the UI thread in Form.Closing. If the background thread tries to call Invoke to marshal a call to the UI thread, it will get blocked itself precisely because the UI thread is blocked.
This can be avoided by calling BeginInvoke instead of Invoke(). This was the typical way to handle callbacks into the UI thread before .NET 4.
The blocking behaviour can be seen in the Parallel Stacks debugger window (Debug / Windows / Parallel Stacks). When the form deadlocks, two stacks appear, one in the Form.Closing method and one in the LogMessage_Threadsafe method
If you're paused at a breakpoint in the UI thread, calls marshaled to the UI thread via Invoke won't execute, because they run on the UI thread, which is paused.
But judging from your comment, that doesn't seem to be the issue. So I would guess the problem is that, by pausing at that breakpoint, you've allowed the background thread to get into a state where it's blocking on Invoke(), and then you're trying to join that background thread, which will block until the Invoke completes, which will never happen.
As a separate issue, if you're accessing finished from multiple threads, you need to surround the reads and writes with lock blocks to ensure thread safety.

Why does Thread.Sleep() freeze the Form?

I try to experiment with Thread.Sleep(). I created basic Windows Forms application with one button.
private void button1_Click(object sender, EventArgs e)
{
Thread thread1 = new Thread(DoStuff);
thread1.Start();
for (int i = 0; i < 100000; i++)
{
Thread.Sleep(500);
button1.Text +=".";
}
}
public void DoStuff()
{
//DoStuff
}
When I click my button the DoStuff method works fine, but the GUI freezes and nothing happens. Can someone explain me why?
Thread.Sleep just sleeps the current thread (i.e. stops it from doing anything, such as redrawing, processing clicks etc), which in your case is the UI thread. If you put the Sleep in DoStuff you wouldn't experience the block as you'd be on a separate thread although you wouldn't be able to update button1. Depending on the version of .NET you're using consider using the Task Parallel Library, something like this:
private TaskScheduler _uiScheduler;
public Form1()
{
InitializeComponent();
_uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();
}
private void button1_Click(object sender, EventArgs e)
{
Thread thread1 = new Thread(DoStuff);
thread1.Start();
// Create a task on a new thread.
Task.Factory.StartNew(() =>
{
for (int i = 0; i < 100000; i++)
{
Thread.Sleep(500);
// Create a new task on the UI thread to update the button
Task.Factory.StartNew(() =>
{ button1.Text += "."; }, CancellationToken.None, TaskCreationOptions.None, _uiScheduler);
}
});
}
To keep the UI active, you need for the main UI thread to service its message pump. It can only do that when it is not handling UI events. In your case the function
private void button1_Click(object sender, EventArgs e)
{
Thread thread1 = new Thread(DoStuff);
thread1.Start();
for (int i = 0; i < 100000; i++)
{
Thread.Sleep(500);
button1.Text +=".";
}
}
does not return for around 100000*500 milliseconds. While this event handler is executing, the UI thread is busy. It is executing this event handler. As such it is not able to service the message pump. Hence your application's UI freezes.
For that you better use a Timer but if you want your current code to work you need to add Application.DoEvents(); after you update the button.Label += "."
If you're new to multithreading, I strongly encourage you to look at the Task Parallel Library (TPL). It simplifies threading, and gives you tools to help guarantee callback (continuation) threads occur on the UI thread.
The TPL is in the System.Threading.Tasks namespace.
Update: just seen your comment about .Net v2. TPL was introduced in .NET v3.5 or possibly as late as v4.
EDIT: After programming for a few more years, I now know how terrible of a practice this is. DO NOT DO ANYTHING I SUGGESTED BELOW. It's all crap. A more proper solution would be doing all of your intensive methods async all together. Regardless, don't do what I mention below.
All The methods above do work however, I do recommend just using an async void.
Sleep() just pauses the current thread for int amount of milliseconds, and if your whole program runs off of 1 thread, it'll pause the whole program. Don't quote me on this, I do believe that async creates a new thread specifically for that function.
Below I've included a better sleep function.
To call the function asleep(milliseconds),
replace "milliseconds" with how many milliseconds you wish to sleep for.
Function Code:
public async void asleep(int time){
await Task.Delay(time)
}
Re-arrange code as following
private void button1_Click(object sender, EventArgs e)
{
Thread thread1 = new Thread(DoStuff);
thread1.Start();
}
public void DoStuff()
{
for (int i = 0; i < 100000; i++)
{
Thread.Sleep(500);
//Invoke goes here
}
}
Now you run your WORK in a separate thread and release your UI thread for usual work (Drawing related or other work)
NOTE - Now you will need Invoke methods to change Button text , else you will get warning for "Cross-thread operation not valid"
More on Invokes - How to update the GUI from another thread in C#?

How to update UI from another thread running in another class

I am currently writing my first program on C# and I am extremely new to the language (used to only work with C so far). I have done a lot of research, but all answers were too general and I simply couldn't get it t work.
So here my (very common) problem:
I have a WPF application which takes inputs from a few textboxes filled by the user and then uses that to do a lot of calculations with them. They should take around 2-3 minutes, so I would like to update a progress bar and a textblock telling me what the current status is.
Also I need to store the UI inputs from the user and give them to the thread, so I have a third class, which I use to create an object and would like to pass this object to the background thread.
Obviously I would run the calculations in another thread, so the UI doesn't freeze, but I don't know how to update the UI, since all the calculation methods are part of another class.
After a lot of reasearch I think the best method to go with would be using dispatchers and TPL and not a backgroundworker, but honestly I am not sure how they work and after around 20 hours of trial and error with other answers, I decided to ask a question myself.
Here a very simple structure of my program:
public partial class MainWindow : Window
{
public MainWindow()
{
Initialize Component();
}
private void startCalc(object sender, RoutedEventArgs e)
{
inputValues input = new inputValues();
calcClass calculations = new calcClass();
try
{
input.pota = Convert.ToDouble(aVar.Text);
input.potb = Convert.ToDouble(bVar.Text);
input.potc = Convert.ToDouble(cVar.Text);
input.potd = Convert.ToDouble(dVar.Text);
input.potf = Convert.ToDouble(fVar.Text);
input.potA = Convert.ToDouble(AVar.Text);
input.potB = Convert.ToDouble(BVar.Text);
input.initStart = Convert.ToDouble(initStart.Text);
input.initEnd = Convert.ToDouble(initEnd.Text);
input.inita = Convert.ToDouble(inita.Text);
input.initb = Convert.ToDouble(initb.Text);
input.initc = Convert.ToDouble(initb.Text);
}
catch
{
MessageBox.Show("Some input values are not of the expected Type.", "Wrong Input", MessageBoxButton.OK, MessageBoxImage.Error);
}
Thread calcthread = new Thread(new ParameterizedThreadStart(calculations.testMethod);
calcthread.Start(input);
}
public class inputValues
{
public double pota, potb, potc, potd, potf, potA, potB;
public double initStart, initEnd, inita, initb, initc;
}
public class calcClass
{
public void testmethod(inputValues input)
{
Thread.CurrentThread.Priority = ThreadPriority.Lowest;
int i;
//the input object will be used somehow, but that doesn't matter for my problem
for (i = 0; i < 1000; i++)
{
Thread.Sleep(10);
}
}
}
I would be very grateful if someone had a simple explanation how to update the UI from inside the testmethod. Since I am new to C# and object oriented programming, too complicated answers I will very likely not understand, I'll do my best though.
Also if someone has a better idea in general (maybe using backgroundworker or anything else) I am open to see it.
First you need to use Dispatcher.Invoke to change the UI from another thread and to do that from another class, you can use events.
Then you can register to that event(s) in the main class and Dispatch the changes to the UI and in the calculation class you throw the event when you want to notify the UI:
class MainWindow : Window
{
private void startCalc()
{
//your code
CalcClass calc = new CalcClass();
calc.ProgressUpdate += (s, e) => {
Dispatcher.Invoke((Action)delegate() { /* update UI */ });
};
Thread calcthread = new Thread(new ParameterizedThreadStart(calc.testMethod));
calcthread.Start(input);
}
}
class CalcClass
{
public event EventHandler ProgressUpdate;
public void testMethod(object input)
{
//part 1
if(ProgressUpdate != null)
ProgressUpdate(this, new YourEventArgs(status));
//part 2
}
}
UPDATE:
As it seems this is still an often visited question and answer I want to update this answer with how I would do it now (with .NET 4.5) - this is a little longer as I will show some different possibilities:
class MainWindow : Window
{
Task calcTask = null;
void buttonStartCalc_Clicked(object sender, EventArgs e) { StartCalc(); } // #1
async void buttonDoCalc_Clicked(object sender, EventArgs e) // #2
{
await CalcAsync(); // #2
}
void StartCalc()
{
var calc = PrepareCalc();
calcTask = Task.Run(() => calc.TestMethod(input)); // #3
}
Task CalcAsync()
{
var calc = PrepareCalc();
return Task.Run(() => calc.TestMethod(input)); // #4
}
CalcClass PrepareCalc()
{
//your code
var calc = new CalcClass();
calc.ProgressUpdate += (s, e) => Dispatcher.Invoke((Action)delegate()
{
// update UI
});
return calc;
}
}
class CalcClass
{
public event EventHandler<EventArgs<YourStatus>> ProgressUpdate; // #5
public TestMethod(InputValues input)
{
//part 1
ProgressUpdate.Raise(this, status); // #6 - status is of type YourStatus
// alternative version to the extension for C# 6+:
ProgressUpdate?.Invoke(this, new EventArgs<YourStatus>(status));
//part 2
}
}
static class EventExtensions
{
public static void Raise<T>(this EventHandler<EventArgs<T>> theEvent,
object sender, T args)
{
if (theEvent != null)
theEvent(sender, new EventArgs<T>(args));
}
}
#1) How to start the "synchronous" calculations and run them in the background
#2) How to start it "asynchronous" and "await it": Here the calculation is executed and completed before the method returns, but because of the async/await the UI is not blocked (BTW: such event handlers are the only valid usages of async void as the event handler must return void - use async Task in all other cases)
#3) Instead of a new Thread we now use a Task. To later be able to check its (successfull) completion we save it in the global calcTask member. In the background this also starts a new thread and runs the action there, but it is much easier to handle and has some other benefits.
#4) Here we also start the action, but this time we return the task, so the "async event handler" can "await it". We could also create async Task CalcAsync() and then await Task.Run(() => calc.TestMethod(input)).ConfigureAwait(false); (FYI: the ConfigureAwait(false) is to avoid deadlocks, you should read up on this if you use async/await as it would be to much to explain here) which would result in the same workflow, but as the Task.Run is the only "awaitable operation" and is the last one we can simply return the task and save one context switch, which saves some execution time.
#5) Here I now use a "strongly typed generic event" so we can pass and receive our "status object" easily
#6) Here I use the extension defined below, which (aside from ease of use) solve the possible race condition in the old example. There it could have happened that the event got null after the if-check, but before the call if the event handler was removed in another thread at just that moment. This can't happen here, as the extensions gets a "copy" of the event delegate and in the same situation the handler is still registered inside the Raise method.
I am going to throw you a curve ball here. If I have said it once I have said it a hundred times. Marshaling operations like Invoke or BeginInvoke are not always the best methods for updating the UI with worker thread progress.
In this case it usually works better to have the worker thread publish its progress information to a shared data structure that the UI thread then polls at regular intervals. This has several advantages.
It breaks the tight coupling between the UI and worker thread that Invoke imposes.
The UI thread gets to dictate when the UI controls get updated...the way it should be anyway when you really think about it.
There is no risk of overrunning the UI message queue as would be the case if BeginInvoke were used from the worker thread.
The worker thread does not have to wait for a response from the UI thread as would be the case with Invoke.
You get more throughput on both the UI and worker threads.
Invoke and BeginInvoke are expensive operations.
So in your calcClass create a data structure that will hold the progress information.
public class calcClass
{
private double percentComplete = 0;
public double PercentComplete
{
get
{
// Do a thread-safe read here.
return Interlocked.CompareExchange(ref percentComplete, 0, 0);
}
}
public testMethod(object input)
{
int count = 1000;
for (int i = 0; i < count; i++)
{
Thread.Sleep(10);
double newvalue = ((double)i + 1) / (double)count;
Interlocked.Exchange(ref percentComplete, newvalue);
}
}
}
Then in your MainWindow class use a DispatcherTimer to periodically poll the progress information. Configure the DispatcherTimer to raise the Tick event on whatever interval is most appropriate for your situation.
public partial class MainWindow : Window
{
public void YourDispatcherTimer_Tick(object sender, EventArgs args)
{
YourProgressBar.Value = calculation.PercentComplete;
}
}
You're right that you should use the Dispatcher to update controls on the UI thread, and also right that long-running processes should not run on the UI thread. Even if you run the long-running process asynchronously on the UI thread, it can still cause performance issues.
It should be noted that Dispatcher.CurrentDispatcher will return the dispatcher for the current thread, not necessarily the UI thread. I think you can use Application.Current.Dispatcher to get a reference to the UI thread's dispatcher if that's available to you, but if not you'll have to pass the UI dispatcher in to your background thread.
Typically I use the Task Parallel Library for threading operations instead of a BackgroundWorker. I just find it easier to use.
For example,
Task.Factory.StartNew(() =>
SomeObject.RunLongProcess(someDataObject));
where
void RunLongProcess(SomeViewModel someDataObject)
{
for (int i = 0; i <= 1000; i++)
{
Thread.Sleep(10);
// Update every 10 executions
if (i % 10 == 0)
{
// Send message to UI thread
Application.Current.Dispatcher.BeginInvoke(
DispatcherPriority.Normal,
(Action)(() => someDataObject.ProgressValue = (i / 1000)));
}
}
}
Everything that interacts with the UI must be called in the UI thread (unless it is a frozen object). To do that, you can use the dispatcher.
var disp = /* Get the UI dispatcher, each WPF object has a dispatcher which you can query*/
disp.BeginInvoke(DispatcherPriority.Normal,
(Action)(() => /*Do your UI Stuff here*/));
I use BeginInvoke here, usually a backgroundworker doesn't need to wait that the UI updates. If you want to wait, you can use Invoke. But you should be careful not to call BeginInvoke to fast to often, this can get really nasty.
By the way, The BackgroundWorker class helps with this kind of taks. It allows Reporting changes, like a percentage and dispatches this automatically from the Background thread into the ui thread. For the most thread <> update ui tasks the BackgroundWorker is a great tool.
If this is a long calculation then I would go background worker. It has progress support. It also has support for cancel.
http://msdn.microsoft.com/en-us/library/cc221403(v=VS.95).aspx
Here I have a TextBox bound to contents.
private void backgroundWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
Debug.Write("backgroundWorker_RunWorkerCompleted");
if (e.Cancelled)
{
contents = "Cancelled get contents.";
NotifyPropertyChanged("Contents");
}
else if (e.Error != null)
{
contents = "An Error Occured in get contents";
NotifyPropertyChanged("Contents");
}
else
{
contents = (string)e.Result;
if (contentTabSelectd) NotifyPropertyChanged("Contents");
}
}
You are going to have to come back to your main thread (also called UI thread) in order to update the UI.
Any other thread trying to update your UI will just cause exceptions to be thrown all over the place.
So because you are in WPF, you can use the Dispatcher and more specifically a beginInvoke on this dispatcher. This will allow you to execute what needs done (typically Update the UI) in the UI thread.
You migh also want to "register" the UI in your business, by maintaining a reference to a control/form, so you can use its dispatcher.
Thank God, Microsoft got that figured out in WPF :)
Every Control, like a progress bar, button, form, etc. has a Dispatcher on it. You can give the Dispatcher an Action that needs to be performed, and it will automatically call it on the correct thread (an Action is like a function delegate).
You can find an example here.
Of course, you'll have to have the control accessible from other classes, e.g. by making it public and handing a reference to the Window to your other class, or maybe by passing a reference only to the progress bar.
Felt the need to add this better answer, as nothing except BackgroundWorker seemed to help me, and the answer dealing with that thus far was woefully incomplete. This is how you would update a XAML page called MainWindow that has an Image tag like this:
<Image Name="imgNtwkInd" Source="Images/network_on.jpg" Width="50" />
with a BackgroundWorker process to show if you are connected to the network or not:
using System.ComponentModel;
using System.Windows;
using System.Windows.Controls;
public partial class MainWindow : Window
{
private BackgroundWorker bw = new BackgroundWorker();
public MainWindow()
{
InitializeComponent();
// Set up background worker to allow progress reporting and cancellation
bw.WorkerReportsProgress = true;
bw.WorkerSupportsCancellation = true;
// This is your main work process that records progress
bw.DoWork += new DoWorkEventHandler(SomeClass.DoWork);
// This will update your page based on that progress
bw.ProgressChanged += new ProgressChangedEventHandler(bw_ProgressChanged);
// This starts your background worker and "DoWork()"
bw.RunWorkerAsync();
// When this page closes, this will run and cancel your background worker
this.Closing += new CancelEventHandler(Page_Unload);
}
private void bw_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
BitmapImage bImg = new BitmapImage();
bool connected = false;
string response = e.ProgressPercentage.ToString(); // will either be 1 or 0 for true/false -- this is the result recorded in DoWork()
if (response == "1")
connected = true;
// Do something with the result we got
if (!connected)
{
bImg.BeginInit();
bImg.UriSource = new Uri("Images/network_off.jpg", UriKind.Relative);
bImg.EndInit();
imgNtwkInd.Source = bImg;
}
else
{
bImg.BeginInit();
bImg.UriSource = new Uri("Images/network_on.jpg", UriKind.Relative);
bImg.EndInit();
imgNtwkInd.Source = bImg;
}
}
private void Page_Unload(object sender, CancelEventArgs e)
{
bw.CancelAsync(); // stops the background worker when unloading the page
}
}
public class SomeClass
{
public static bool connected = false;
public void DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker bw = sender as BackgroundWorker;
int i = 0;
do
{
connected = CheckConn(); // do some task and get the result
if (bw.CancellationPending == true)
{
e.Cancel = true;
break;
}
else
{
Thread.Sleep(1000);
// Record your result here
if (connected)
bw.ReportProgress(1);
else
bw.ReportProgress(0);
}
}
while (i == 0);
}
private static bool CheckConn()
{
bool conn = false;
Ping png = new Ping();
string host = "SomeComputerNameHere";
try
{
PingReply pngReply = png.Send(host);
if (pngReply.Status == IPStatus.Success)
conn = true;
}
catch (PingException ex)
{
// write exception to log
}
return conn;
}
}
For more information: https://msdn.microsoft.com/en-us/library/cc221403(v=VS.95).aspx

Thread Safe calls to Winform controls

References:
http://msdn.microsoft.com/en-us/library/ms171728.aspx
http://stackoverflow.com/questions/5408155/how-to-make-delegate-thread-sta
I wanted to create a new Thread and make it STA therefore I was not able to use asynchronous delegates or BackgroudWorker (as mentioned in references link 1) Therefore I end up creating a Thread of my own make it STA and attach a callback to know when the Task is complete. The code is something like below and even though I am using invoke required, I still get InvalidOperationException (once in a while)
delegate UpdateEventHander(Object sender, EventArgs e);
class MyTask{
// to generate an event
public event UpdateEventHandler Finished;
public void Start(){
Result = // something that require the thread to be STA.
Finished(this, EventArgs.Empty);
}
public Result GetResult(){
return Result;
}
}
Class Foo : Form{
// It has many UI Controls obviously
public void doSomething(){
MyTask task = new MyTask();
task.Finished += new UpdateEventHander(CompletionHandler);
Thread thread = new Thread(new ThreadStart(task.Start));
thread.setAppartmetnState(AppartmentState.STA);
thread.start();
}
public void CompletionHandler(Object sender, EventArgs e){
MyTask task = (MyTask) sender;
if (oneOfMyControls.InvokeRequired){
delegateToUpdateUIconrols del = new delegateToUpdateUIconrols(updateUIControls);
del.invoke();
}else{
UpdateUIControls();
}
}
public delegate void delegateToUpdateUIconrols();
public void UpdateUIControls(){
// It updates UI controls
// Datagrid view value properties like backgroud color and stuff.
// change text in the label.
}
}
Question 1: Which thread will UpdateUIControls execute ? - if you say "Main UI Thread" - then in that case how will the system know if its supposed to run in Main UI thead and NOT some OTHER thread? I am not passing any reference (about Main UI thread) when I call invoke() .. so invoke() is technically executed on the same thread..
Question 2: Once in a while, I get the InvalidOperationException. Exactly this one
http://social.msdn.microsoft.com/Forums/en-US/winforms/thread/6b450a21-e588-414a-afae-9adabfd03674/
If UpdateUIControls is executing in the main UI thread, there should be not prblem, Right? So, I guess answer to my question really depends upon question 1.
I will appreciate if someone share his/her wisdom on this
Karephul
Controls have thread-affinity; you can only safely talk to them from their creating thread.
You are checking InvokeRequired; however, you are mixing up Delegate.Invoke (runs on the current thread) with Control.Invoke (runs on the UI thread); very different meaning. It should be:
oneOfMyControls.Invoke(del [, args]);

WPF / XAML: How do I execute threaded processes and prevent the main UI from being busy / freezing?

I have a XAML application that serves as the UI for an automation. The entire automation can take anywhere from 20-30 hours to fully execute so I created a Task class object that essentially wraps Thread methods (Start/Stop/Reset).
However, when I run the automation method under the Task object, the XAML UI is busy and I cannot interact with the other controls, including the Pause button which toggles the Thread.Set() flag.
There is another post
Prevent UI from freezing without additional threads
where someone recommended the BackgroundWorker class this MSDN article mentions it is a bad idea to use this when if it manipulates objects in the UI, which mine does for purposes of displaying status counts:
http://msdn.microsoft.com/en-us/library/system.componentmodel.backgroundworker.aspx
Any idea around this?
private void OnButtonStartAutomationClick(object sender, RoutedEventArgs e)
{
btnPauseAutomation.IsEnabled = true;
Automation.Task AutomationThread = new Automation.Task(RunFullAutomation);
}
private void RunFullAutomation()
{
// do stuff that can take 20+ hours
// threaded so I can utilize a pause button (block)
}
class Task
{
private ManualResetEvent _shutdownFlag = new ManualResetEvent(false);
private ManualResetEvent _pauseFlag = new ManualResetEvent(true);
private Thread _thread;
private readonly Action _action;
public Task(Action action)
{
_action = action;
}
public void Start()
{
ThreadStart ts = new ThreadStart(DoDelegatedMethod);
_thread = new Thread(ts);
_thread.Start();
_thread.Priority = ThreadPriority.Lowest;
}
public void Resume()
{
_pauseFlag.Set();
}
public void Stop()
{
_shutdownFlag.Set();
_pauseFlag.Set();
_thread.Join();
}
private void DoDelegatedMethod()
{
do
{
_action();
}
while (!_shutdownFlag.WaitOne(0));
}
}
where someone recommended the BackgroundWorker class this MSDN article mentions it is a bad idea to use this when if it manipulates objects in the UI, which mine does for purposes of displaying status counts
BackgroundWorker is actually ideal for this, as it was designed for this type of scenario. The warning is that you shouldn't change UI elements inside of DoWork, but rather via ReportProgress and the ProgressChanged event.
The reason the warning exists is "DoWork" is executed on a background thread. If you set a UI element value from there, you'll get a cross threading exception. However, ReportProgress/ProgressChanged automatically marshals the call back into the proper SynchronizationContext for you.
Take a look at the Dispatcher object in WPF. You can, and should in your scenario, run the long running tasks on a background thread and the BackgroundWorker is a good way to do it. When you need to update the UI you need to verify access to the UI thread and if you don't have it use the dispatcher to invoke an update method on the UI thread.
There are two possible causes here: first, that the blocking task is blocking the UI thread rather than running on a background thread, and second, that the background thread is starving the UI thread so that it never gets the chance to respond to input. You need to find out which of these is the case. A crude way to do this is, in your Click handler, Debug.WriteLine the current thread ID (Thread.CurrentThread.ManagedThreadId), and do the same in the RunFullAutomation callback.
If these print the same number, then you have the first problem. Reed and TheZenker have provided solutions to this.
If these print different numbers, then you are already on a worker thread, and you have the second problem. (BackgroundWorker may get you to the worker thread more elegantly, and will help with updating the UI, but it won't stop starvation.) In this case the simplest fix is probably to set _thread.Priority = ThreadPriority.BelowNormal; before starting the worker thread.
By the way, your code never appears to actually call AutomationThread.Start, which means the RunFullAutomation callback isn't even executed. Is this just a typo?
I'd advise against rolling out your own Task class given that .NET 4 has full support for running tasks asynchronously in the background using the Task Parallel Library
That said,you can do what Reed suggests and use a BackgroundWorker which is ideal or if you prefer more control over the nature of how the task si executing, you could use the Task class from System.Threading.Tasks and implement something like so:
public partial class MainWindow : Window
{
CancellationTokenSource source = new CancellationTokenSource();
SynchronizationContext context = SynchronizationContext.Current;
Task task;
public MainWindow()
{
InitializeComponent();
}
private void DoWork()
{
for (int i = 0; i <= 100; i++)
{
Thread.Sleep(500); //simulate long running task
if (source.IsCancellationRequested)
{
context.Send((_) => labelPrg.Content = "Cancelled!!!", null);
break;
}
context.Send((_) => labelPrg.Content = prg.Value = prg.Value + 1, null);
}
}
private void Start_Click(object sender, RoutedEventArgs e)
{
task = Task.Factory.StartNew(DoWork, source.Token);
}
private void Cancel_Click(object sender, RoutedEventArgs e)
{
source.Cancel();
}
}
In DoWork() you use the WPF SynchronizationContext and post messages to update the UI wiget you need.
The example has a progress bar and a label control that is updated on each iteration of the for loop.Cancellation is supported using CancellationTokenSource which is checked in each iteration.
Hope this helps.

Categories