I have a Metafile object. For reasons outside of my control, it has been provided much larger (thousands of times larger) than what would be required to fit the image drawn inside it.
For example, it could be 40 000 x 40 000, yet only contains "real" (non-transparent) pixels in an area 2000 x 1600.
Originally, this metafile was simply drawn to a control, and the control bounds limited the area to a reasonable size.
Now I am trying to split it into different chunks of dynamic size, depending on user input. What I want to do it count how many of those chunks will be there (in x and in y, even the splitting is into a two-dimensional grid of chunks).
I am aware that, technically, I could go the O(N²) way, and just check the pixels one by one to find the "real" bounds of the drawn image.
But this will be painfully slow.
I am looking for a way of getting the position (x,y) of the very last drawn pixel in the entire metafile, without iterating through every single one of them.
Since The DrawImage method is not painfully slow, at least not N² slow, I assume that the metafile object has some optimisations on the inside that would allow something like this. Just like the List object has a .Count Property that is much faster than actually counting the objects, is there some way of getting the practical bounds of a metafile?
The drawn content, in this scenario, will always be rectangular. I can safely assume that the last pixel will be the same, whether I loop in x then y, or in y then x.
How can I find the coordinates of this "last" pixel?
Finding the bounding rectangle of the non-transparent pixels for such a large image is indeed an interesting challenge.
The most direct approach would be tackling the WMF content but that is also by far the hardest to get right.
Let's instead render the image to a bitmap and look at the bitmap.
First the basic approach, then a few optimizations.
To get the bounds one need to find the left, top, right and bottom borders.
Here is a simple function to do that:
Rectangle getBounds(Bitmap bmp)
{
int l, r, t, b; l = t = r = b = 0;
for (int x = 0; x < bmp.Width - 1; x++)
for (int y = 0; y < bmp.Height - 1; y++)
if (bmp.GetPixel(x,y).A > 0) { l = x; goto l1; }
l1:
for (int x = bmp.Width - 1; x > l ; x--)
for (int y = 0; y < bmp.Height - 1; y++)
if (bmp.GetPixel(x,y).A > 0) { r = x; goto l2; }
l2:
for (int y = 0; y < bmp.Height - 1; y++)
for (int x = l; x < r; x++)
if (bmp.GetPixel(x,y).A > 0) { t = y; goto l3; }
l3:
for (int y = bmp.Height - 1; y > t; y--)
for (int x = l; x < r; x++)
if (bmp.GetPixel(x,y).A > 0) { b = y; goto l4; }
l4:
return Rectangle.FromLTRB(l,t,r,b);
}
Note that is optimizes the last, vertical loops a little to look only at the portion not already tested by the horizontal loops.
It uses GetPixel, which is painfully slow; but even Lockbits only gains 'only' about 10x or so. So we need to reduce the sheer numbers; we need to do that anyway, because 40k x 40k pixels is too large for a Bitmap.
Since WMF is usually filled with vector data we probably can scale it down a lot. Here is an example:
string fn = "D:\\_test18b.emf";
Image img = Image.FromFile(fn);
int w = img.Width;
int h = img.Height;
float scale = 100;
Rectangle rScaled = Rectangle.Empty;
using (Bitmap bmp = new Bitmap((int)(w / scale), (int)(h / scale)))
using (Graphics g = Graphics.FromImage(bmp))
{
g.ScaleTransform(1f/scale, 1f/scale);
g.Clear(Color.Transparent);
g.DrawImage(img, 0, 0);
rScaled = getBounds(bmp);
Rectangle rUnscaled = Rectangle.Round(
new RectangleF(rScaled.Left * scale, rScaled.Top * scale,
rScaled.Width * scale, rScaled.Height * scale ));
}
Note that to properly draw the wmf file one may need to adapt the resolutions. Here is an example i used for testing:
using (Graphics g2 = pictureBox.CreateGraphics())
{
float scaleX = g2.DpiX / img.HorizontalResolution / scale;
float scaleY = g2.DpiY / img.VerticalResolution / scale;
g2.ScaleTransform(scaleX, scaleY);
g2.DrawImage(img, 0, 0); // draw the original emf image.. (*)
g2.ResetTransform();
// g2.DrawImage(bmp, 0, 0); // .. it will look the same as (*)
g2.DrawRectangle(Pens.Black, rScaled);
}
I left this out but for fully controlling the rendering, it ought have been included in the snippet above as well..
This may or may not be good enough, depending on the accuracy needed.
To measure the bounds perfectly one can do this trick: Use the bounds from the scaled down test and measure unscaled but only a tiny stripe around the four bound numbers. When creating the render bitmap we move the origin accordingly.
Example for the right bound:
Rectangle rScaled2 = Rectangle.Empty;
int delta = 80;
int right = (int)(rScaled.Right * scale);
using (Bitmap bmp = new Bitmap((int)(delta * 2 ), (int)(h )))
using (Graphics g = Graphics.FromImage(bmp))
{
g.Clear(Color.Transparent);
g.DrawImage(img, - right - delta, 0);
rScaled2 = getBounds(bmp);
}
I could have optimized by not going over the full height but only the portion (plus delte) we already found..
Further optimization can be achieved if one can use knowledge about the data. If we know that the image data are connected we could use larger steps in the loops until a pixel is found and then trace back one step..
Related
I have black image with white lines. Is it possible to exclude chunks of whihte pixels, that are smaller than specific number? For example: change color of chunks of pixels that are made from less than 10 pixels from white to black.
Original Image:
Image on the output(small areas of white pixels are removed):
Right now I work with AForge library for C#, but C++ ways of solving this are also apreciated(Open CV, for example). And hint, on how this functionality might be called are also appreciated.
Without worrying to much about your details, it does seem trivially simple
Use bitmap in 32bits and use LockBits to get scanlines and direct pointer access to the array.
Scan every pixel with 2 for loops
Every time you find one that matches your target color, scan left right and up and down (X) Amount of pixels to determine if it matches your requirements,
If it does, leave the pixel, if not change it.
if you wanted more speed you could chuck this all in a parallel workload, also there is probably more you could do with a mask array to save you researching dead paths (just a thought)
Note, Obviously you can smarten this up a bit
Exmaple
// lock the array for direct access
var bitmapData = bitmap.LockBits(Bounds, ImageLockMode.ReadWrite, Bitmap.PixelFormat);
// get the pointer
var scan0Ptr = (int*)_bitmapData.Scan0;
// get the stride
var stride = _bitmapData.Stride / BytesPerPixel;
// local method
void Workload(Rectangle bounds)
{
// this is if synchronous, Bounds is just the full image rectangle
var rect = bounds ?? Bounds;
var white = Color.White.ToArgb();
var black = Color.Black.ToArgb();
// scan all x
for (var x = rect.Left; x < rect.Right; x++)
{
var pX = scan0Ptr + x;
// scan all y
for (var y = rect.Top; y < rect.Bottom; y++)
{
if (*(pX + y * stride ) != white)
{
// this will turn it to monochrome
// so add your threshold here, ie some more for loops
//*(pX + y * Stride) = black;
}
}
}
}
// unlock the bitmap
bitmap.UnlockBits(_bitmapData);
To parallel'ize it
You could use something like this to break your image up into smaller regions
public static List<Rectangle> GetSubRects(this Rectangle source, int size)
{
var rects = new List<Rectangle>();
for (var x = 0; x < size; x++)
{
var width = Convert.ToInt32(Math.Floor(source.Width / (double)size));
var xCal = 0;
if (x == size - 1)
{
xCal = source.Width - (width * size);
}
for (var y = 0; y < size; y++)
{
var height = Convert.ToInt32(Math.Floor(source.Height / (double)size));
var yCal = 0;
if (y == size - 1)
{
yCal = source.Height - (height * size) ;
}
rects.Add(new Rectangle(width * x, height * y, width+ xCal, height + yCal));
}
}
return rects;
}
And this
private static void DoWorkload(Rectangle bounds, ParallelOptions options, Action<Rectangle?> workload)
{
if (options == null)
{
workload(null);
}
else
{
var size = 5 // how many rects to work on, ie 5 x 5
Parallel.ForEach(bounds.GetSubRects(size), options, rect => workload(rect));
}
}
Usage
DoWorkload(Bounds, options, Workload);
While using a self-written graphing control I noticed that the painting of the graph was much slower while displaying noisy data than when it displayed clean data.
I dug further into and narrowed the problem down to its bare minimum difference: Drawing the same amount of lines with varying Y values versus drawing lines with the same Y value.
So for example I put together the following tests. I generate lists of points, one with random Y values, one with the same Y, and one with a Zig-Zag Y pattern.
private List<PointF> GenerateRandom(int n, int width, int height)
{
//Generate random pattern
Random rnd = new Random();
float stepwidth = Convert.ToSingle(width / n);
float mid = Convert.ToSingle(height / 2);
float lastx = 0;
float lasty = mid;
List<PointF> res = new List<PointF>();
res.Add(new PointF(lastx, lasty));
for (int i = 1; i <= n; i++)
{
var x = stepwidth * i;
var y = Convert.ToSingle(height * rnd.NextDouble());
res.Add(new PointF(x, y));
}
return res;
}
private List<PointF> GenerateUnity(int n, int width, int height)
{
//Generate points along a simple line
float stepwidth = Convert.ToSingle(width / n);
float mid = Convert.ToSingle(height / 2);
float lastx = 0;
float lasty = mid;
List<PointF> res = new List<PointF>();
res.Add(new PointF(lastx, lasty));
for (int i = 1; i <= n; i++)
{
var x = stepwidth * i;
var y = mid;
res.Add(new PointF(x, y));
}
return res;
}
private List<PointF> GenerateZigZag(int n, int width, int height)
{
//Generate an Up/Down List
float stepwidth = Convert.ToSingle(width / n);
float mid = Convert.ToSingle(height / 2);
float lastx = 0;
float lasty = mid;
List<PointF> res = new List<PointF>();
res.Add(new PointF(lastx, lasty));
var state = false;
for (int i = 1; i <= n; i++)
{
var x = stepwidth * i;
var y = mid - (state ? 50 : -50);
res.Add(new PointF(x, y));
state = !state;
}
return res;
}
I now draw each list of points a few times and compare how long it takes:
private void DoTheTest()
{
Bitmap bmp = new Bitmap(970, 512);
var random = GenerateRandom(2500, bmp.Width, bmp.Height).ToArray();
var unity = GenerateUnity(2500, bmp.Width, bmp.Height).ToArray();
var ZigZag = GenerateZigZag(2500, bmp.Width, bmp.Height).ToArray();
using (Graphics g = Graphics.FromImage(bmp))
{
var tUnity = BenchmarkDraw(g, 200, unity);
var tRandom = BenchmarkDraw(g, 200, random);
var tZigZag = BenchmarkDraw(g, 200, ZigZag);
MessageBox.Show(tUnity.ToString() + "\r\n" + tRandom.ToString() + "\r\n" + tZigZag.ToString());
}
}
private double BenchmarkDraw(Graphics g, int n, PointF[] Points)
{
var Times = new List<double>();
for (int i = 1; i <= n; i++)
{
g.Clear(Color.White);
System.DateTime d3 = DateTime.Now;
DrawLines(g, Points);
System.DateTime d4 = DateTime.Now;
Times.Add((d4 - d3).TotalMilliseconds);
}
return Times.Average();
}
private void DrawLines(Graphics g, PointF[] Points)
{
g.DrawLines(Pens.Black, Points);
}
I come up with the following durations per draw:
Straight Line: 0.095 ms
Zig-Zag Pattern: 3.24 ms
Random Pattern: 5.47 ms
So it seems to get progressively worse, the more change there is in the lines to be drawn, and that is also a real world effect I encountered in the control painting I mentioned in the beginning.
My questions are thus the following:
Why does it make a such a brutal difference, which lines are to be drawn?
How can I improve the drawing speed for the noisy data?
Three reasons come to mind:
Line Length : Depending on the actual numbers sloped lines may be longer by just a few pixels or a lot or even by some substantial factor. Looking at your code I suspect the latter..
Algorithm : Drawing sloped lines does take some algorithm to find the next pixels. Even fast drawing routines need to do some computations as opposed to vertical or horizontal lines, which run straight through the pixel arrays.
Anti-Aliasing : Unless you turn off anti-aliasing completely (with all the ugly consequences) the number of pixels to paint will also be around 2-3 times more as all those anti-aliasing pixels above and below the center lines must also be calculated and drawn. Not to forget calculating their colors!
The remedy for the latter part is obviously to turn off anti-aliasing, but the other problems are simply the way things are. So best don't worry and be happy about the speedy straight lines :-)
If you really have a lot of lines or your lines could be very long (a few time the size of the screen), or if you have a lot of almost 0 pixel line, you have to wrote code to reduce useless drawing of lines.
Well, here are some ideas:
If you write many lines at the same x, then you could replace those by a single line between min and max y at that x.
If your line goes way beyond the screen boundary, you should clip them.
If a line is completly outside of the visible area, you should skip it.
If a line have a 0 length, you should not write it.
If a line has a single pixel length, you should write only that pixel.
Obviously, the benefit depends a lot on how many lines you draw... And also the alternative might not give the exact same result...
In practice, it you draw a chart on a screen, then if you display only useful information, it should be pretty fast on modern hardware.
Well if you use style or colors, it might not be as trivial to optimize the displaying of the data.
Alternatively, they are some charting component that are optimized for display large data... The good one are generally expensive but it might still worth it. Often trials are available so you can get a good idea on how much you might increase the performance and then decide what to do.
I have a bitmap and I am wanting to get the colour values from the pixels but only in certain areas of the image. I am wanting to the get the pixels of a image for the full width and only a bit of the height (say height =1) and then I want to move the position to one down and get the same values.
I am using
for (int i = 0; i < 302; i++)
{
Rectangle cloneRect = new Rectangle(0, i, 514, 1);
System.Drawing.Imaging.PixelFormat format = bm.PixelFormat;
Bitmap cloneBitmap = bm.Clone(cloneRect, format);
bitMapList.Add(cloneBitmap);
}
foreach (Bitmap bmp in bitMapList)
{
c = bmp.GetPixel(514, 1);
r = Convert.ToInt16(c.R);
lumi.Add(r);
}
The for statement to create the areas I want on the bitmap and then the foreach to loop through these bitmaps and then get the values. Only problem is I am getting the error message "Parameter must be positive and < Width."
On the line
c = bmp.GetPixel(514, 1);
anyone know why?
Thanks
You need to make sure that the pixel you are getting is inside of the image (which must not be the case). You could wrap this in a call to run a check first something like:
public static Color GetPixelSafe(Bitmap image, int x, int y) {
if (x >= image.Width) x = image.Width - 1;
else if (x < 0) x = 0;
if (y >= image.Height) y = image.Height - 1;
else if (y < 0) y = 0;
return image.GetPixel(x, y);
}
Now, this is not going to fix your processing algorithm itself, but it should at least fix the exception. One other pointer is that if you are going to be processing lots of color values and performance is a concern you should really consider using image.LockBits instead of GetPixel. For more information on that see here: http://msdn.microsoft.com/en-us/library/5ey6h79d(v=vs.110).aspx.
It seems that 514 is bigger then your image actual Width. How did you come up with that number?
I'm trying to draw the Mandelbrot fractal, using the following method that I wrote:
public void Mendelbrot(int MAX_Iterations)
{
int iterations = 0;
for (float x = -2; x <= 2; x += 0.001f)
{
for (float y = -2; y <= 2; y += 0.001f)
{
Graphics gpr = panel.CreateGraphics();
//System.Numerics
Complex C = new Complex(x, y);
Complex Z = new Complex(0, 0);
for (iterations = 0; iterations < MAX_Iterations && Complex.Abs(Z) < 2; Iterations++)
Z = Complex.Pow(Z, 2) + C;
//ARGB color based on Iterations
int r = (iterations % 32) * 7;
int g = (iterations % 16) * 14;
int b = (iterations % 128) * 2;
int a = 255;
Color c = Color.FromArgb(a,r,g,b);
Pen p = new Pen(c);
//Tranform the coordinates x(real number) and y(immaginary number)
//of the Gauss graph in x and y of the Cartesian graph
float X = (panel.Width * (x + 2)) / 4;
float Y = (panel.Height * (y + 2)) / 4;
//Draw a single pixel using a Rectangle
gpr.DrawRectangle(p, X, Y, 1, 1);
}
}
}
It works, but it's slow, because I need to add the possibility of zooming. Using this method of drawing it isn't possible, so I need something fast. I tried to use a FastBitmap, but it isn't enough, the SetPixel of the FastBitmap doesn't increase the speed of drawing. So I'm searching for something very fast, I know that C# isn't like C and ASM, but it would be interesting do this in C# and Winforms.
Suggestions are welcome.
EDIT: Mendelbrot Set Zoom Animation
I assume it would be significantly more efficient to first populate your RGB values into a byte array in memory, then write them in bulk into a Bitmap using LockBits and Marshal.Copy (follow the link for an example), and finally draw the bitmap using Graphics.DrawImage.
You need to understand some essential concepts, such as stride and image formats, before you can get this to work.
As comment said put out CreateGraphics() out of the double loop, and this is already a good imrovement.
But also
Enable double buffering
For zooming use MatrixTransformation functions like:
ScaleTransform
RotateTransform
TranslateTransform
An interesting article on CodeProject can be found here. It goes a little bit further than just function calls, by explaining actually Matrix calculus ( a simple way, don't worry), which is good and not difficult to understand, in order to know what is going on behind the scenes.
I'm trying to remove all white or transparent pixels from an image, leaving the actual image (cropped). I've tried a few solutions, but none seem to work. Any suggestions or am I going to spend the night writing image cropping code?
So, what you want to do is find the top, left most non white/transparent pixel and the bottom, right most non white/transparent pixel. These two coordinates will give you a rectangle that you can then extract.
// Load the bitmap
Bitmap originalBitmap = Bitmap.FromFile("d:\\temp\\test.bmp") as Bitmap;
// Find the min/max non-white/transparent pixels
Point min = new Point(int.MaxValue, int.MaxValue);
Point max = new Point(int.MinValue, int.MinValue);
for (int x = 0; x < originalBitmap.Width; ++x)
{
for (int y = 0; y < originalBitmap.Height; ++y)
{
Color pixelColor = originalBitmap.GetPixel(x, y);
if (!(pixelColor.R == 255 && pixelColor.G == 255 && pixelColor.B == 255)
|| pixelColor.A < 255)
{
if (x < min.X) min.X = x;
if (y < min.Y) min.Y = y;
if (x > max.X) max.X = x;
if (y > max.Y) max.Y = y;
}
}
}
// Create a new bitmap from the crop rectangle
Rectangle cropRectangle = new Rectangle(min.X, min.Y, max.X - min.X, max.Y - min.Y);
Bitmap newBitmap = new Bitmap(cropRectangle.Width, cropRectangle.Height);
using (Graphics g = Graphics.FromImage(newBitmap))
{
g.DrawImage(originalBitmap, 0, 0, cropRectangle, GraphicsUnit.Pixel);
}
public Bitmap CropBitmap(Bitmap original)
{
// determine new left
int newLeft = -1;
for (int x = 0; x < original.Width; x++)
{
for (int y = 0; y < original.Height; y++)
{
Color color = original.GetPixel(x, y);
if ((color.R != 255) || (color.G != 255) || (color.B != 255) ||
(color.A != 0))
{
// this pixel is either not white or not fully transparent
newLeft = x;
break;
}
}
if (newLeft != -1)
{
break;
}
// repeat logic for new right, top and bottom
}
Bitmap ret = new Bitmap(newRight - newLeft, newTop - newBottom);
using (Graphics g = Graphics.FromImage(ret)
{
// copy from the original onto the new, using the new coordinates as
// source coordinates for the original
g.DrawImage(...);
}
return ret
}
Note that this function will be slow as dirt. GetPixel() is unbelievably slow, and accessing the Width and Height properties of a Bitmap inside a loop is also slow. LockBits would be the proper way to do this - there are tons of examples here on StackOverflow.
Per-pixel check should do the trick. Scan each line to find empty line from the top & bottom, scan each row to find left & right constraints (this can be done in one pass with either rows or columns). When the constraint is found - copy the part of the image to another buffer.
In WPF we have a WriteableBitmap class. Is this what are you looking for ? If it is the case please have a look at http://blogs.msdn.com/b/jgalasyn/archive/2008/04/17/using-writeablebitmap-to-display-a-procedural-texture.aspx
I found a method to batch trim a few thousand .jpg files in about 10 minutes, but I didn't do it in code. I used the Convert feature of Snag-It Editor. I don't know if this is an option for you, if you need to do this trimming once or your need is ongoing, but for the price of the software, which isn't a whole lot, I considered this a decent workaround.
(I do not work for or represent Techsmith.)
Joey
Adding to this, if you are in WPF and you have excess space around your image, check the properties of the image and make sure your Stretch property is set to fill. This eliminated the space around the image.
Screen shot of the property in WPF