How to get the real time of a midi event using Naudio - c#

I am trying to read midi notes and extract the real time of each one of them using NAudio library
I wrote this code but it isn't calculating the time correctly, I used a formula that i found here
((note.AbsTime - lastTempoEvent.AbsTime) / midi.ticksPerQuarterNote) * tempo + lastTempoEvent.RealTime
The code:
var strictMode = false;
var mf = new MidiFile("Assets/Audios/Evangelion Midi.mid", strictMode);
mf.Events.MidiFileType = 0;
List<MidiEvent> midiNotes = new List<MidiEvent>();
List<TempoEvent> tempoEvents = new List<TempoEvent>();
for (int n = 0; n < mf.Tracks; n++)
{
foreach (var midiEvent in mf.Events[n])
{
if (!MidiEvent.IsNoteOff(midiEvent))
{
midiNotes.Add(midiEvent);
TempoEvent tempoE;
try { tempoE = (TempoEvent)midiEvent; tempoEvents.Add(tempoE);
Debug.Log("Absolute Time " + tempoE.AbsoluteTime);
}
catch { }
}
}
}
notesArray = midiNotes.ToArray();
tempoEventsArr = tempoEvents.ToArray();
eventsTimesArr = new float[notesArray.Length];
eventsTimesArr[0] = 0;
for (int i = 1; i < notesArray.Length; i++)
{
((notesArray[i].AbsoluteTime - tempoEventsArr[tempoEventsArr.Length - 1].AbsoluteTime) / mf.DeltaTicksPerQuarterNote)
* tempoEventsArr[tempoEventsArr.Length - 1].MicrosecondsPerQuarterNote + eventsTimesArr[i-1];
}
I got these values which are clearly not correct
Does anyone where I am wrong?

It is really good to see someone into MIDI here.
The note.AbsTime - lastTempoEvent.AbsTime part in the referenced code is implemented incorrectly on your side.
The lastTempoEvent variable in this code can not mean the last tempo change in the midi file (as you've implemented it using notesArray[i].AbsoluteTime - tempoEventsArr[tempoEventsArr.Length - 1].AbsoluteTime).
What the referenced code is trying to do is to get the tempo at the time of the current note, (probably by storing the last appeared tempo change event in this variable) while your code is subtracting the absolute time of the latest tempo change in the whole midi file. This is the root cause of the negative numbers (if there are any tempo changes after the current note).
Side note: I also recommend keeping the timings of note-off events. How do you close a note if you don't know when it is released?
Try this. I tested it and it works. Please read the inline comments carefully.
Be safe.
static void CalculateMidiRealTimes()
{
var strictMode = false;
var mf = new MidiFile("C:\\Windows\\Media\\onestop.mid", strictMode);
mf.Events.MidiFileType = 0;
// Have just one collection for both non-note-off and tempo change events
List<MidiEvent> midiEvents = new List<MidiEvent>();
for (int n = 0; n < mf.Tracks; n++)
{
foreach (var midiEvent in mf.Events[n])
{
if (!MidiEvent.IsNoteOff(midiEvent))
{
midiEvents.Add(midiEvent);
// Instead of causing stack unwinding with try/catch,
// we just test if the event is of type TempoEvent
if (midiEvent is TempoEvent)
{
Debug.Write("Absolute Time " + (midiEvent as TempoEvent).AbsoluteTime);
}
}
}
}
// Now we have only one collection of both non-note-off and tempo events
// so we cannot be sure of the size of the time values array.
// Just employ a List<float>
List<float> eventsTimesArr = new List<float>();
// we introduce this variable to keep track of the tempo changes
// during play, which affects the timing of all the notes coming
// after it.
TempoEvent lastTempoChange = null;
for (int i = 0; i < midiEvents.Count; i++)
{
MidiEvent midiEvent = midiEvents[i];
TempoEvent tempoEvent = midiEvent as TempoEvent;
if (tempoEvent != null)
{
lastTempoChange = tempoEvent;
// Remove the tempo event to make events and timings match - index-wise
// Do not add to the eventTimes
midiEvents.RemoveAt(i);
i--;
continue;
}
if (lastTempoChange == null)
{
// If we haven't come accross a tempo change yet,
// set the time to zero.
eventsTimesArr.Add(0);
continue;
}
// This is the correct formula for calculating the real time of the event
// in microseconds:
var realTimeValue =
((midiEvent.AbsoluteTime - lastTempoChange.AbsoluteTime) / mf.DeltaTicksPerQuarterNote)
*
lastTempoChange.MicrosecondsPerQuarterNote + eventsTimesArr[eventsTimesArr.Count - 1];
// Add the time to the collection.
eventsTimesArr.Add(realTimeValue);
Debug.WriteLine("Time for {0} is: {1}", midiEvents.ToString(), realTimeValue);
}
}
EDIT:
The division while calculating the real times was an int/float which resulted in zero when the ticks between events are smaller than delta ticks per quarter note.
Here is the correct way to calculate the values using the numeric type decimal which has the best precision.
The midi song onestop.mid İS 4:08 (248 seconds) long and our final event real time is 247.3594906770833
static void CalculateMidiRealTimes()
{
var strictMode = false;
var mf = new MidiFile("C:\\Windows\\Media\\onestop.mid", strictMode);
mf.Events.MidiFileType = 0;
// Have just one collection for both non-note-off and tempo change events
List<MidiEvent> midiEvents = new List<MidiEvent>();
for (int n = 0; n < mf.Tracks; n++)
{
foreach (var midiEvent in mf.Events[n])
{
if (!MidiEvent.IsNoteOff(midiEvent))
{
midiEvents.Add(midiEvent);
// Instead of causing stack unwinding with try/catch,
// we just test if the event is of type TempoEvent
if (midiEvent is TempoEvent)
{
Debug.Write("Absolute Time " + (midiEvent as TempoEvent).AbsoluteTime);
}
}
}
}
// Switch to decimal from float.
// decimal has 28-29 digits percision
// while float has only 6-9
// https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/floating-point-numeric-types
// Now we have only one collection of both non-note-off and tempo events
// so we cannot be sure of the size of the time values array.
// Just employ a List<float>
List<decimal> eventsTimesArr = new List<decimal>();
// Keep track of the last absolute time and last real time because
// tempo events also can occur "between" events
// which can cause incorrect times when calculated using AbsoluteTime
decimal lastRealTime = 0m;
decimal lastAbsoluteTime = 0m;
// instead of keeping the tempo event itself, and
// instead of multiplying every time, just keep
// the current value for microseconds per tick
decimal currentMicroSecondsPerTick = 0m;
for (int i = 0; i < midiEvents.Count; i++)
{
MidiEvent midiEvent = midiEvents[i];
TempoEvent tempoEvent = midiEvent as TempoEvent;
// Just append to last real time the microseconds passed
// since the last event (DeltaTime * MicroSecondsPerTick
if (midiEvent.AbsoluteTime > lastAbsoluteTime)
{
lastRealTime += ((decimal)midiEvent.AbsoluteTime - lastAbsoluteTime) * currentMicroSecondsPerTick;
}
lastAbsoluteTime = midiEvent.AbsoluteTime;
if (tempoEvent != null)
{
// Recalculate microseconds per tick
currentMicroSecondsPerTick = (decimal)tempoEvent.MicrosecondsPerQuarterNote / (decimal)mf.DeltaTicksPerQuarterNote;
// Remove the tempo event to make events and timings match - index-wise
// Do not add to the eventTimes
midiEvents.RemoveAt(i);
i--;
continue;
}
// Add the time to the collection.
eventsTimesArr.Add(lastRealTime);
Debug.WriteLine("Time for {0} is: {1}", midiEvent, lastRealTime / 1000000m);
}
}

Related

Peak generations for WaveSurfer.js using CSCore

I am trying to generate peaks using CSCore for WaveSurfer.js. I am essentially just trying to get peak value so it could be fed to the WaveSurfer.js element as prerendered peaks. Using CSCore as an alternative to AudioWaveForm.
Here is the code I am using:
var audioFile = CodecFactory.Instance.GetCodec("input.mp3");
var source = audioFile.ToSampleSource();
var peakMeter = new PeakMeter(source) { Interval = 40 };
var peakData = new float[source.Length / source.WaveFormat.BytesPerSample];
int read;
int i = 0;
while ((read = peakMeter.Read(peakData, i, peakData.Length - i)) > 0)
{
i += read;
}
// Convert the peak values from dB to linear scale
for (int j = 0; j < peakData.Length; j++)
{
decimal num = (decimal)peakData[j] * 100000;
var e = $"{num},";
File.AppendAllText("out.txt", e.ToString());
//peakData[j] = (float)Math.Pow(10, peakData[j] / 20);
}
I am trying to get a CSV or and array of values. Is this correct because I am getting wildly different results. I am new to CSCore and C# as a whole so any help would be helpful.
Thanks
When using the PeakMeter you have to use its PeakCalculated event which will provide the peaks. It gets fired while reading all samples as you are already doing using the Read method. So keep calling read till it returns zero and collect the peaks using the mentioned event.

Calculate max on a sliding window for TimeSeries

Input:
public class MyObject
{
public double Value { get; set; }
public DateTime Date { get; set; }
}
Method to generate test objects:
public static MyObject[] GetTestObjects()
{
var rnd = new Random();
var date = new DateTime(2021, 1, 1, 0, 0, 0);
var result = new List<MyObject>();
for (int i = 0; i < 50000; i++)
{
//this is to simulate real data having gaps
if (rnd.Next(100) < 25)
{
continue;
}
var myObject = new MyObject()
{
Value = rnd.NextDouble(),
Date = date.AddMinutes(15 * i)
};
result.Add(myObject);
}
return result.ToArray();
}
Given this I require to calculate maximum Value for previous 12 month for each myObject. I could just think of doing this InParallel, but maybe there is an optimized solution?
Sorry for being unclear, this is what I use right now to get what I want:
public MyObject[] BruteForceBackward(MyObject[] testData)
{
return testData.AsParallel().Select(point =>
{
var max = testData.Where(x => x.Date <= point.Date && x.Date >= point.Date.AddYears(-1)).Max(x => x.Value);
return new MyObject() { Date = point.Date, Value = point.Value / max };
}).OrderBy(r => r.Date).ToArray();
}
This works but it is slow and eats processor resources (imagine, you have 100k objects), I believe there must be something better
I had a simillar project where i had to calculate such stuff on tons of sensor data.
You can now find a little more refined version in my Github repository, which should be ready to use (.Net):
https://github.com/forReason/Statistics-Helper-Library
In general you want to reduce the amount of loops going over all your data. At best, you want to touch each element only one single time.
Process Array (equiv. of BruteForceBackwards)
public static MyObject[] FlowThroughForward(ref MyObject[] testData)
{
// generate return array
MyObject[] returnData = new MyObject[testData.Length];
// keep track to minimize processing
double currentMaximum = 0;
List<MyObject> maximumValues = new List<MyObject>();
// go through the elements
for (int i = 0; i < testData.Length; i++)
{
// calculate the oldest date to keep in tracking list
DateTime targetDate = testData[i].Date.AddYears(-1);
// maximum logic
if (testData[i].Value >= currentMaximum)
{
// new maximum found, clear tracking list
// this is the best case scenario
maximumValues.Clear();
currentMaximum = testData[i].Value;
}
else
{
// unfortunately, no new maximum was found
// go backwards the maximum tracking list and check for smaller values
// clear the list of all smaller values. The list should therefore always
// be in descending order
for (int b = maximumValues.Count - 1; b >= 0; b--)
{
if (maximumValues[b].Value <= testData[i].Value)
{
// a lower value has been found. We have a newer, higher value
// clear this waste value from the tracking list
maximumValues.RemoveAt(b);
}
else
{
// there are no more lower values.
// stop looking for smaller values to save time
break;
}
}
}
// append new value to tracking list, no matter if higher or lower
// all future values might be lower
maximumValues.Add(testData[i]);
// check if the oldest value is too old to be kept in the tracking list
while (maximumValues[0].Date < targetDate)
{
// oldest value is to be removed
maximumValues.RemoveAt(0);
// update maximum
currentMaximum = maximumValues[0].Value;
}
// add object to result list
returnData[i] = new MyObject() { Date = testData[i].Date, Value = testData[i].Value / currentMaximum }; ;
}
return returnData;
}
Real Time Data or Streamed Data
Note: If you have really large lists, you might get memory issues with your approach to pass a full array. In this case: pass one value at a time, pass them from oldest value to newest value. Store the values back one at a time.
This Function can also be used on real time data.
The test method is included in code.
static void Main(string[] args)
{
int length = 50000;
Stopwatch stopWatch1 = new Stopwatch();
stopWatch1.Start();
var myObject = new MyObject();
var result = new List<MyObject>();
var date = new DateTime(2021, 1, 1, 0, 0, 0);
for (int i = 0; i < length; i++)
{
//this is to simulate real data having gaps
if (rnd.Next(100) < 25)
{
continue;
}
myObject.Value = rnd.NextDouble();
myObject.Date = date.AddMinutes(15 * i);
result.Add(CalculateNextObject(ref myObject));
}
stopWatch1.Stop();
Console.WriteLine("test code executed in " + stopWatch1.ElapsedMilliseconds + " ms");
Thread.Sleep(1000000);
}
private static Random rnd = new Random();
private static double currentMaximum = 0;
private static List<MyObject> maximumValues = new List<MyObject>();
public static MyObject CalculateNextObject(ref MyObject input)
{
// calculate the oldest date to keep in tracking list
DateTime targetDate = input.Date.AddYears(-1);
// maximum logic
if (input.Value >= currentMaximum)
{
// new maximum found, clear tracking list
// this is the best case scenario
maximumValues.Clear();
currentMaximum = input.Value;
}
else
{
// unfortunately, no new maximum was found
// go backwards the maximum tracking list and check for smaller values
// clear the list of all smaller values. The list should therefore always
// be in descending order
for (int b = maximumValues.Count - 1; b >= 0; b--)
{
if (maximumValues[b].Value <= input.Value)
{
// a lower value has been found. We have a newer, higher value
// clear this waste value from the tracking list
maximumValues.RemoveAt(b);
}
else
{
// there are no more lower values.
// stop looking for smaller values to save time
break;
}
}
}
// append new value to tracking list, no matter if higher or lower
// all future values might be lower
maximumValues.Add(input);
// check if the oldest value is too old to be kept in the tracking list
while (maximumValues[0].Date < targetDate)
{
// oldest value is to be removed
maximumValues.RemoveAt(0);
// update maximum
currentMaximum = maximumValues[0].Value;
}
// add object to result list
MyObject returnData = new MyObject() { Date = input.Date, Value = input.Value / currentMaximum };
return returnData;
}
Test Method
static void Main(string[] args)
{
MyObject[] testData = GetTestObjects();
Stopwatch stopWatch1 = new Stopwatch();
Stopwatch stopWatch2 = new Stopwatch();
stopWatch1.Start();
MyObject[] testresults1 = BruteForceBackward(testData);
stopWatch1.Stop();
Console.WriteLine("BruteForceBackward executed in " + stopWatch1.ElapsedMilliseconds + " ms");
stopWatch2.Start();
MyObject[] testresults2 = FlowThroughForward(ref testData);
stopWatch2.Stop();
Console.WriteLine("FlowThroughForward executed in " + stopWatch2.ElapsedMilliseconds + " ms");
Console.WriteLine();
Console.WriteLine("Comparing some random test results: ");
var rnd = new Random();
for (int i = 0; i < 10; i++)
{
int index = rnd.Next(0, testData.Length);
Console.WriteLine("Index: " + index + " brute: " + testresults1[index].Value + " flow: " + testresults2[index].Value);
}
Thread.Sleep(1000000);
}
Test result
Tests were performed on a machine with 32 cores, so in teory multithreaded aproach should be at advantage but youll see ;)
Function
Function Time
time %
BruteForceBackward
5334 ms
99.9%
FlowThroughForward
5 ms
0.094%
Performance improvement factor: ~time/1000
console output with data validation:
BruteForceBackward executed in 5264 ms
FlowThroughForward executed in 5 ms
Comparing some random test results:
Index: 25291 brute: 0.989688139105413 flow: 0.989688139105413
Index: 11945 brute: 0.59670821976193 flow: 0.59670821976193
Index: 30282 brute: 0.413238225210297 flow: 0.413238225210297
Index: 33898 brute: 0.38258761939139 flow: 0.38258761939139
Index: 8824 brute: 0.833512217105447 flow: 0.833512217105447
Index: 22092 brute: 0.648052464067263 flow: 0.648052464067263
Index: 24633 brute: 0.35859417692481 flow: 0.35859417692481
Index: 24061 brute: 0.540642018793402 flow: 0.540642018793402
Index: 34219 brute: 0.498785766613022 flow: 0.498785766613022
Index: 2396 brute: 0.151471808392111 flow: 0.151471808392111
Cpu usage was a lot higher on Bruteforce backwards due to parallelisation.
The worst case scenario are long periods of decreasing values. The code can still be vastly optimized but I guess this should be sufficient. For further optimisation, one might look to reduce the list shuffles when removing/adding elements to maximumValues.
An interesting and challenging problem. I put together a solution using a dynamic programming approach (first learned back in CS algorithms class back in '78). First, a tree is constructed containing pre-calculated local max values over recursively defined ranges. Once constructed, the max value for an arbitrary range can be efficiently calculated mostly using the pre-calculated values. Only at the fringes of the range does the calculation drop down to the element level.
It is not as fast as julian bechtold's FlowThroughForward method, but random access to ranges may be a plus.
Code to add to Main:
Console.WriteLine();
Stopwatch stopWatch3 = new Stopwatch();
stopWatch3.Start();
MyObject[] testresults3 = RangeTreeCalculation(ref testData, 10);
stopWatch3.Stop();
Console.WriteLine($"RangeTreeCalculation executed in {stopWatch3.ElapsedMilliseconds} ms");
... test comparison
Console.WriteLine($"Index: {index} brute: {testresults1[index].Value} flow: {testresults2[index].Value} rangeTree: {testresults3[index].Value}");
Test function:
public static MyObject[] RangeTreeCalculation(ref MyObject[] testDataArray, int partitionThreshold)
{
// For this implementation, we need to convert the Array to an ArrayList, because we need a
// reference type object that can be shared.
List<MyObject> testDataList = testDataArray.ToList();
// Construct a tree containing recursive collections of pre-calculated values
var rangeTree = new RangeTree(testDataList, partitionThreshold);
MyObject[] result = new MyObject[testDataList.Count];
Parallel.ForEach(testDataList, (item, state, i) =>
{
var max = rangeTree.MaxForDateRange(item.Date.AddYears(-1), item.Date);
result[i] = new MyObject() { Date = item.Date, Value = item.Value / max };
});
return result;
}
Supporting class:
// Class used to divide and conquer using dynamic programming.
public class RangeTree
{
public List<MyObject> Data; // This reference is shared by all members of the tree
public int Start { get; } // Index of first element covered by this node.
public int Count { get; } // Number of elements covered by this node.
public DateTime FirstDateTime { get; }
public DateTime LastDateTime { get; }
public double MaxValue { get; } // Pre-calculated max for all elements covered by this node.
List<RangeTree> ChildRanges { get; }
// Top level node constructor
public RangeTree(List<MyObject> data, int partitionThreshold)
: this(data, 0, data.Count, partitionThreshold)
{
}
// Child node constructor, which covers an recursively decreasing range of element.
public RangeTree(List<MyObject> data, int start, int count, int partitionThreshold)
{
Data = data;
Start = start;
Count = count;
FirstDateTime = Data[Start].Date;
LastDateTime = Data[Start + Count - 1].Date;
if (count <= partitionThreshold)
{
// If the range is smaller than the threshold, just calculate the local max
// directly from the items. No child ranges are defined.
MaxValue = Enumerable.Range(Start, Count).Select(i => Data[i].Value).Max();
}
else
{
// We still have a significant range. Decide how to further divide them up into sub-ranges.
// (There may be room for improvement here to better balance the tree.)
int partitionSize = (count - 1) / partitionThreshold + 1;
int partitionCount = (count - 1) / partitionSize + 1;
if (count < partitionThreshold * partitionThreshold)
{
// When one away from leaf nodes, prefer fewer full leaf nodes over more
// less populated leaf nodes.
partitionCount = (count - 1) / partitionThreshold + 1;
partitionSize = (count - 1) / partitionCount + 1;
}
ChildRanges = Enumerable.Range(0, partitionCount)
.Select(partitionNum => new {
ChildStart = Start + partitionNum * partitionSize,
ChildCount = Math.Min(partitionSize, Count - partitionNum * partitionSize)
})
.Where(part => part.ChildCount > 0) // Defensive
.Select(part => new RangeTree(Data, part.ChildStart, part.ChildCount, partitionThreshold))
.ToList();
// Now is the dynamic programming part:
// Calculate the local max as the max of all child max values.
MaxValue = ChildRanges.Max(chile => chile.MaxValue);
}
}
// Get the max value for a given range of dates withing this rangeTree node.
// This used the precalculated values as much as possible.
// Only at the fringes of the date range to we calculate at the element level.
public double MaxForDateRange(DateTime fromDate, DateTime thruDate)
{
double calculatedMax = Double.MinValue;
if (fromDate > this.LastDateTime || thruDate < this.FirstDateTime)
{
// Entire range is excluded. Nothing of interest here folks.
calculatedMax = Double.MinValue;
}
else if (fromDate <= this.FirstDateTime && thruDate >= this.LastDateTime)
{
// Entire range is included. Use the already-calculated max.
calculatedMax = this.MaxValue;
}
else if (ChildRanges != null)
{
// We have child ranges. Recurse and accumulate.
// Possible optimization: Calculate max for middle ranges first, and only bother
// with extreme partial ranges if their local max values exceed the preliminary result.
for (int i = 0; i < ChildRanges.Count; ++i)
{
double childMax = ChildRanges[i].MaxForDateRange(fromDate, thruDate);
if (childMax > calculatedMax)
{
calculatedMax = childMax;
}
}
}
else
{
// Leaf range. Loop through just this limited range of notes, checking individually for
// date in range and accumulating the result.
for (int i = 0; i < this.Count; ++i)
{
var element = Data[this.Start + i];
if (fromDate <= element.Date && element.Date <= thruDate && element.Value > calculatedMax)
{
calculatedMax = element.Value;
}
}
}
return calculatedMax;
}
}
There's plenty of room for improvement, such as parameterizing the types and generalizing the functionality to support more than just Max(Value), but the framework is there.
Assuming you meant you need the maximum Value for each of the last 12 months from result, then you can use LINQ:
var beginDateTime = DateTime.Now.AddMonths(-12);
var ans = result.Where(r => r.Date >= beginDateTime).GroupBy(r => r.Date.Month).Select(mg => mg.MaxBy(r => r.Value)).ToList();
Running some timing, I get that putting AsParallel after result changes the run time from around 16ms (first run) to around 32ms, so it is actually slower. It is about the same after the Where and about 23ms after the GroupBy (processing the 12 groups in parallel). On my PC at least, there isn't enough data or complex operations for parallelism, but the GroupBy isn't the most efficient.
Using an array and testing each element, I get the results in about 1.2ms:
var maxMOs = new MyObject[12];
foreach (var r in result.Where(r => r.Date >= beginDateTime)) {
var monthIndex = r.Date.Month-1;
if (maxMOs[monthIndex] == null || r.Value > maxMOs[monthIndex].Value)
maxMOs[monthIndex] = r;
}
Note that the results are not chronological; you could offset monthIndex by today's month to order the results if desired.
var maxMOs = new MyObject[12];
var offset = DateTime.Now.Month-11;
foreach (var r in result.Where(r => r.Date >= beginDateTime)) {
var monthIndex = r.Date.Month-offset;
if (maxMOs[monthIndex] == null || r.Value > maxMOs[monthIndex].Value)
maxMOs[monthIndex] = r;
}
A micro-optimization (mostly useful on repeat runnings) is to invert the test and use the null-propagating operator:
if (!(r.Value <= maxMOs[monthIndex]?.Value))
This saves about 0.2ms on the first run but up to 0.5ms on subsequent runs.
Here is a solution similar to julian bechtold's answer. Difference is that the maximum (and all related variables) are kept hidden away from the main implementation, in a separate class whose purpose is solely to keep track of the maximum over the past year. Algorithm is the same, I just use a few Linq expressions here and there.
We keep track of the maximum in the following class:
public class MaxSlidingWindow
{
private readonly List<MyObject> _maximumValues;
private double _max;
public MaxSlidingWindow()
{
_maximumValues = new List<MyObject>();
_max = double.NegativeInfinity;
}
public double Max => _max;
public void Add(MyObject myObject)
{
if (myObject.Value >= _max)
{
_maximumValues.Clear();
_max = myObject.Value;
}
else
{
RemoveValuesSmallerThan(myObject.Value);
}
_maximumValues.Add(myObject);
RemoveObservationsBefore(myObject.Date.AddYears(-1));
_max = _maximumValues[0].Value;
}
private void RemoveObservationsBefore(DateTime targetDate)
{
var toRemoveFromFront = 0;
while (_maximumValues[toRemoveFromFront].Date < targetDate && toRemoveFromFront <= maximumValues3.Count -1)
{
toRemoveFromFront++;
}
_maximumValues.RemoveRange(0, toRemoveFromFront);
}
private void RemoveValuesSmallerThan(double targetValue)
{
var maxEntry = _maximumValues.Count - 1;
var toRemoveFromBack = 0;
while (toRemoveFromBack <= maxEntry && _maximumValues[maxEntry - toRemoveFromBack].Value <= targetValue)
{
toRemoveFromBack++;
}
_maximumValues.RemoveRange(maxEntry - toRemoveFromBack + 1, toRemoveFromBack);
}
}
It can be used as follows:
public static MyObject[] GetTestObjects_MaxSlidingWindow()
{
var rnd = new Random();
var date = new DateTime(2021, 1, 1, 0, 0, 0);
var result = new List<MyObject>();
var maxSlidingWindow = new MaxSlidingWindow();
for (int i = 0; i < 50000; i++)
{
//this is to simulate real data having gaps
if (rnd.Next(100) < 25)
{
continue;
}
var myObject = new MyObject()
{
Value = rnd.NextDouble(),
Date = date.AddMinutes(15 * i)
};
maxSlidingWindow.Add(myObject);
var max = maxSlidingWindow.Max;
result.Add(new MyObject { Date = myObject.Date, Value = myObject.Value / max });
}
return result.ToArray();
}
See the relative timings below - above solution is slightly faster (timed over 10 million runs), but barely noticeable:
Relative timings

How to get time in milliseconds?

I want to calculate the time of bubble sort algorithm in C#. But it always give 0. This is my code.
public void bubbleSort(int[] arr, ref double time)
{
var sp = new Stopwatch();
sp.Start();
int temp = 0;
for (int i = 0; i < arr.Length; i++)
{
for (int sort = 0; sort < arr.Length - 1; sort++)
{
if (arr[sort] > arr[sort + 1])
{
temp = arr[sort + 1];
arr[sort + 1] = arr[sort];
arr[sort] = temp;
}
}
}
sp.Stop();
time = sp.Elapsed.Milliseconds*1000;
}
in main the time is always 0. What mistake i have done in this code.
When you get Milliseconds, you're only getting the millisecond component of the time. Thus, 1.0501s will only be listed as 50ms, not 1050.1ms. Also, since this returns an int, you will not see fractional milliseconds, which may be the case for such a short algorythm.
Instead, use TotalMilliseconds, which will return the entire time in units of milliseconds, as well as retuning a double - which includes the fractional parts.
You need to use TotalMilliseconds property
Gets the value of the current TimeSpan structure expressed in whole and fractional milliseconds.
time = sp.Elapsed.TotalMilliseconds * 1000;

Calculate all possible permutations/combinations, then check if the result is equal to a value

Best way I can explain it is using an example:
You are visiting a shop with $2000, your goal is to have $0 at the end of your trip.
You do not know how many items are going to be available, nor how much they cost.
Say that there are currently 3 items costing $1000, $750, $500.
(The point is to calculate all possible solutions, not the most efficient one.)
You can spend $2000, this means:
You can buy the $1000 item 0, 1 or 2 times.
You can buy the $750 item 0, 1 or 2 times.
You can buy the $500 item 0, 1, 2, 3 or 4 times.
At the end I need to be able to have all solutions, in this case it will be
2*$1000
1*$1000 and 2*$500
2*$750 and 1*$500
4*$500
Side note: you can't have a duplicate solution (like this)
1*$1000 and 2*$500
2*$500 and 1*$1000
This is what I tried:
You first call this function using
goalmoney = convert.ToInt32(goalMoneyTextBox.Text);
totalmoney = Convert.ToInt32(totalMoneyTextBox.Text);
int[] list = new int[usingListBox.Items.Count];
Calculate(0, currentmoney, list);
The function:
public void Calculate(int level, int money, int[] list)
{
string item = usingListBox.Items[level].ToString();
int cost = ItemDict[item];
for (int i = 0; i <= (totalmoney / cost); i++)
{
int[] templist = list;
int tempmoney = money - (cost * i);
templist[level] = i;
if (tempmoney == goalmoney)
{
resultsFound++;
}
if (level < usingListBox.Items.Count - 1 && tempmoney != goalmoney) Calculate(level + 1, tempmoney, templist);
}
}
Your problem can be reduced to a well known mathematical problem labeled Frobenius equation which is closely related to the well known Coin problem. Suppose you have N items, where i-th item costs c[i] and you need to spent exactly S$. So you need to find all non negative integer solutions (or decide whether there are no solutions at all) of equation
c[1]*n[1] + c[2]*n[2] + ... + c[N]*n[N] = S
where all n[i] are unknown variables and each n[i] is the number of bought items of i-th type.
This equation can be solved in a various ways. The following function allSolutions (I suppose it can be additionally simplified) finds all solutions of a given equation:
public static List<int[]> allSolutions(int[] system, int total) {
ArrayList<int[]> all = new ArrayList<>();
int[] solution = new int[system.length];//initialized by zeros
int pointer = system.length - 1, temp;
out:
while (true) {
do { //the following loop can be optimized by calculation of remainder
++solution[pointer];
} while ((temp = total(system, solution)) < total);
if (temp == total && pointer != 0)
all.add(solution.clone());
do {
if (pointer == 0) {
if (temp == total) //not lose the last solution!
all.add(solution.clone());
break out;
}
for (int i = pointer; i < system.length; ++i)
solution[i] = 0;
++solution[--pointer];
} while ((temp = total(system, solution)) > total);
pointer = system.length - 1;
if (temp == total)
all.add(solution.clone());
}
return all;
}
public static int total(int[] system, int[] solution) {
int total = 0;
for (int i = 0; i < system.length; ++i)
total += system[i] * solution[i];
return total;
}
In the above code system is array of coefficients c[i] and total is S. There is an obvious restriction: system should have no any zero elements (this lead to infinite number of solutions). A slight modification of the above code avoids this restriction.
Assuming you have class Product which exposes a property called Price, this is a way to do it:
public List<List<Product>> GetAffordableCombinations(double availableMoney, List<Product> availableProducts)
{
List<Product> sortedProducts = availableProducts.OrderByDescending(p => p.Price).ToList();
//we have to cycle through the list multiple times while keeping track of the current
//position in each subsequent cycle. we're using a list of integers to save these positions
List<int> layerPointer = new List<int>();
layerPointer.Add(0);
int currentLayer = 0;
List<List<Product>> affordableCombinations = new List<List<Product>>();
List<Product> tempList = new List<Product>();
//when we went through all product on the top layer, we're done
while (layerPointer[0] < sortedProducts.Count)
{
//take the product in the current position on the current layer
var currentProduct = sortedProducts[layerPointer[currentLayer]];
var currentSum = tempList.Sum(p => p.Price);
if ((currentSum + currentProduct.Price) <= availableMoney)
{
//if the sum doesn't exeed our maximum we add that prod to a temp list
tempList.Add(currentProduct);
//then we advance to the next layer
currentLayer++;
//if it doesn't exist, we create it and set the 'start product' on that layer
//to the current product of the current layer
if (currentLayer >= layerPointer.Count)
layerPointer.Add(layerPointer[currentLayer - 1]);
}
else
{
//if the sum would exeed our maximum we move to the next prod on the current layer
layerPointer[currentLayer]++;
if (layerPointer[currentLayer] >= sortedProducts.Count)
{
//if we've reached the end of the list on the current layer,
//there are no more cheaper products to add, and this cycle is complete
//so we add the list we have so far to the possible combinations
affordableCombinations.Add(tempList);
tempList = new List<Product>();
//move to the next product on the top layer
layerPointer[0]++;
currentLayer = 0;
//set the current products on each subsequent layer to the current of the top layer
for (int i = 1; i < layerPointer.Count; i++)
{
layerPointer[i] = layerPointer[0];
}
}
}
}
return affordableCombinations;
}

C# - Getting a RawFraction Performance Counter to show a persistent value

I've created a performance counter that shows a fraction of an incremented value (RawFraction type) over a base value (RawBase).
Unfortunately, when monitoring this value, it only shows the percentage when one of the counters is incremented. At all other times it it is sampled, it shows 0. Is there some way to tell the counter to hold onto the last value until the next time it needs to recalculate the fraction?
It's hard to know what went wrong for you without seeing any of your code but here's an example of it being used correctly (from: http://msdn.microsoft.com/en-us/library/system.diagnostics.performancecountertype.aspx)
using System;
using System.Collections;
using System.Collections.Specialized;
using System.Diagnostics;
public class App
{
private static PerformanceCounter PC;
private static PerformanceCounter BPC;
public static void Main()
{
ArrayList samplesList = new ArrayList();
// If the category does not exist, create the category and exit.
// Performance counters should not be created and immediately used.
// There is a latency time to enable the counters, they should be created
// prior to executing the application that uses the counters.
// Execute this sample a second time to use the counters.
if (SetupCategory())
return;
CreateCounters();
CollectSamples(samplesList);
CalculateResults(samplesList);
}
private static bool SetupCategory()
{
if (!PerformanceCounterCategory.Exists("RawFractionSampleCategory"))
{
CounterCreationDataCollection CCDC = new CounterCreationDataCollection();
// Add the counter.
CounterCreationData rf = new CounterCreationData();
rf.CounterType = PerformanceCounterType.RawFraction;
rf.CounterName = "RawFractionSample";
CCDC.Add(rf);
// Add the base counter.
CounterCreationData rfBase = new CounterCreationData();
rfBase.CounterType = PerformanceCounterType.RawBase;
rfBase.CounterName = "RawFractionSampleBase";
CCDC.Add(rfBase);
// Create the category.
PerformanceCounterCategory.Create("RawFractionSampleCategory",
"Demonstrates usage of the RawFraction performance counter type.",
PerformanceCounterCategoryType.SingleInstance, CCDC);
return (true);
}
else
{
Console.WriteLine("Category exists - RawFractionSampleCategory");
return (false);
}
}
private static void CreateCounters()
{
// Create the counters.
PC = new PerformanceCounter("RawFractionSampleCategory",
"RawFractionSample",
false);
BPC = new PerformanceCounter("RawFractionSampleCategory",
"RawFractionSampleBase",
false);
PC.RawValue = 0;
BPC.RawValue = 0;
}
private static void CollectSamples(ArrayList samplesList)
{
Random r = new Random(DateTime.Now.Millisecond);
// Initialize the performance counter.
PC.NextSample();
// Loop for the samples.
for (int j = 0; j < 100; j++)
{
int value = r.Next(1, 10);
Console.Write(j + " = " + value);
// Increment the base every time, because the counter measures the number
// of high hits (raw fraction value) against all the hits (base value).
BPC.Increment();
// Get the % of samples that are 9 or 10 out of all the samples taken.
if (value >= 9)
PC.Increment();
// Copy out the next value every ten times around the loop.
if ((j % 10) == 9)
{
Console.WriteLine("; NextValue() = " + PC.NextValue().ToString());
OutputSample(PC.NextSample());
samplesList.Add(PC.NextSample());
}
else
Console.WriteLine();
System.Threading.Thread.Sleep(50);
}
}
private static void CalculateResults(ArrayList samplesList)
{
for (int i = 0; i < samplesList.Count; i++)
{
// Output the sample.
OutputSample((CounterSample)samplesList[i]);
// Use .NET to calculate the counter value.
Console.WriteLine(".NET computed counter value = " +
CounterSampleCalculator.ComputeCounterValue((CounterSample)samplesList[i]));
// Calculate the counter value manually.
Console.WriteLine("My computed counter value = " +
MyComputeCounterValue((CounterSample)samplesList[i]));
}
}
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
// Formula from MSDN -
// Description - This counter type shows the ratio of a subset to its set as a percentage.
// For example, it compares the number of bytes in use on a disk to the
// total number of bytes on the disk. Counters of this type display the
// current percentage only, not an average over time.
//
// Generic type - Instantaneous, Percentage
// Formula - (N0 / D0), where D represents a measured attribute and N represents one
// component of that attribute.
//
// Average - SUM (N / D) /x
// Example - Paging File\% Usage Peak
//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++//++++++++
private static Single MyComputeCounterValue(CounterSample rfSample)
{
Single numerator = (Single)rfSample.RawValue;
Single denomenator = (Single)rfSample.BaseValue;
Single counterValue = (numerator / denomenator) * 100;
return (counterValue);
}
// Output information about the counter sample.
private static void OutputSample(CounterSample s)
{
Console.WriteLine("+++++++++++");
Console.WriteLine("Sample values - \r\n");
Console.WriteLine(" BaseValue = " + s.BaseValue);
Console.WriteLine(" CounterFrequency = " + s.CounterFrequency);
Console.WriteLine(" CounterTimeStamp = " + s.CounterTimeStamp);
Console.WriteLine(" CounterType = " + s.CounterType);
Console.WriteLine(" RawValue = " + s.RawValue);
Console.WriteLine(" SystemFrequency = " + s.SystemFrequency);
Console.WriteLine(" TimeStamp = " + s.TimeStamp);
Console.WriteLine(" TimeStamp100nSec = " + s.TimeStamp100nSec);
Console.WriteLine("++++++++++++++++++++++");
}
}

Categories