What are the differences in implementing interfaces implicitly and explicitly in C#?
When should you use implicit and when should you use explicit?
Are there any pros and/or cons to one or the other?
Microsoft's official guidelines (from first edition Framework Design Guidelines) states that using explicit implementations are not recommended, since it gives the code unexpected behaviour.
I think this guideline is very valid in a pre-IoC-time, when you don't pass things around as interfaces.
Could anyone touch on that aspect as well?
Implicit is when you define your interface via a member on your class. Explicit is when you define methods within your class on the interface. I know that sounds confusing but here is what I mean: IList.CopyTo would be implicitly implemented as:
public void CopyTo(Array array, int index)
{
throw new NotImplementedException();
}
and explicitly as:
void ICollection.CopyTo(Array array, int index)
{
throw new NotImplementedException();
}
The difference is that implicit implementation allows you to access the interface through the class you created by casting the interface as that class and as the interface itself. Explicit implementation allows you to access the interface only by casting it as the interface itself.
MyClass myClass = new MyClass(); // Declared as concrete class
myclass.CopyTo //invalid with explicit
((IList)myClass).CopyTo //valid with explicit.
I use explicit primarily to keep the implementation clean, or when I need two implementations. Regardless, I rarely use it.
I am sure there are more reasons to use/not use explicit that others will post.
See the next post in this thread for excellent reasoning behind each.
Implicit definition would be to just add the methods / properties, etc. demanded by the interface directly to the class as public methods.
Explicit definition forces the members to be exposed only when you are working with the interface directly, and not the underlying implementation. This is preferred in most cases.
By working directly with the interface, you are not acknowledging,
and coupling your code to the underlying implementation.
In the event that you already have, say, a public property Name in
your code and you want to implement an interface that also has a
Name property, doing it explicitly will keep the two separate. Even
if they were doing the same thing I'd still delegate the explicit
call to the Name property. You never know, you may want to change
how Name works for the normal class and how Name, the interface
property works later on.
If you implement an interface implicitly then your class now exposes
new behaviours that might only be relevant to a client of the
interface and it means you aren't keeping your classes succinct
enough (my opinion).
In addition to excellent answers already provided, there are some cases where explicit implementation is REQUIRED for the compiler to be able to figure out what is required. Take a look at IEnumerable<T> as a prime example that will likely come up fairly often.
Here's an example:
public abstract class StringList : IEnumerable<string>
{
private string[] _list = new string[] {"foo", "bar", "baz"};
// ...
#region IEnumerable<string> Members
public IEnumerator<string> GetEnumerator()
{
foreach (string s in _list)
{ yield return s; }
}
#endregion
#region IEnumerable Members
IEnumerator IEnumerable.GetEnumerator()
{
return this.GetEnumerator();
}
#endregion
}
Here, IEnumerable<string> implements IEnumerable, hence we need to too. But hang on, both the generic and the normal version both implement functions with the same method signature (C# ignores return type for this). This is completely legal and fine. How does the compiler resolve which to use? It forces you to only have, at most, one implicit definition, then it can resolve whatever it needs to.
ie.
StringList sl = new StringList();
// uses the implicit definition.
IEnumerator<string> enumerableString = sl.GetEnumerator();
// same as above, only a little more explicit.
IEnumerator<string> enumerableString2 = ((IEnumerable<string>)sl).GetEnumerator();
// returns the same as above, but via the explicit definition
IEnumerator enumerableStuff = ((IEnumerable)sl).GetEnumerator();
PS: The little piece of indirection in the explicit definition for IEnumerable works because inside the function the compiler knows that the actual type of the variable is a StringList, and that's how it resolves the function call. Nifty little fact for implementing some of the layers of abstraction some of the .NET core interfaces seem to have accumulated.
Reason #1
I tend to use explicit interface implementation when I want to discourage "programming to an implementation" (Design Principles from Design Patterns).
For example, in an MVP-based web application:
public interface INavigator {
void Redirect(string url);
}
public sealed class StandardNavigator : INavigator {
void INavigator.Redirect(string url) {
Response.Redirect(url);
}
}
Now another class (such as a presenter) is less likely to depend on the StandardNavigator implementation and more likely to depend on the INavigator interface (since the implementation would need to be cast to an interface to make use of the Redirect method).
Reason #2
Another reason I might go with an explicit interface implementation would be to keep a class's "default" interface cleaner. For example, if I were developing an ASP.NET server control, I might want two interfaces:
The class's primary interface, which is used by web page developers; and
A "hidden" interface used by the presenter that I develop to handle the control's logic
A simple example follows. It's a combo box control that lists customers. In this example, the web page developer isn't interested in populating the list; instead, they just want to be able to select a customer by GUID or to obtain the selected customer's GUID. A presenter would populate the box on the first page load, and this presenter is encapsulated by the control.
public sealed class CustomerComboBox : ComboBox, ICustomerComboBox {
private readonly CustomerComboBoxPresenter presenter;
public CustomerComboBox() {
presenter = new CustomerComboBoxPresenter(this);
}
protected override void OnLoad() {
if (!Page.IsPostBack) presenter.HandleFirstLoad();
}
// Primary interface used by web page developers
public Guid ClientId {
get { return new Guid(SelectedItem.Value); }
set { SelectedItem.Value = value.ToString(); }
}
// "Hidden" interface used by presenter
IEnumerable<CustomerDto> ICustomerComboBox.DataSource { set; }
}
The presenter populates the data source, and the web page developer never needs to be aware of its existence.
But's It's Not a Silver Cannonball
I wouldn't recommend always employing explicit interface implementations. Those are just two examples where they might be helpful.
To quote Jeffrey Richter from CLR via C#
(EIMI means Explicit Interface Method Implementation)
It is critically important for you to
understand some ramifications that
exist when using EIMIs. And because of
these ramifications, you should try to
avoid EIMIs as much as possible.
Fortunately, generic interfaces help
you avoid EIMIs quite a bit. But there
may still be times when you will need
to use them (such as implementing two
interface methods with the same name
and signature). Here are the big
problems with EIMIs:
There is no documentation explaining how a type specifically
implements an EIMI method, and there
is no Microsoft Visual Studio
IntelliSense support.
Value type instances are boxed when cast to an interface.
An EIMI cannot be called by a derived type.
If you use an interface reference ANY virtual chain can be explicitly replaced with EIMI on any derived class and when an object of such type is cast to the interface, your virtual chain is ignored and the explicit implementation is called. That's anything but polymorphism.
EIMIs can also be used to hide non-strongly typed interface members from basic Framework Interfaces' implementations such as IEnumerable<T> so your class doesn't expose a non strongly typed method directly, but is syntactical correct.
I use explicit interface implementation most of the time. Here are the main reasons.
Refactoring is safer
When changing an interface, it's better if the compiler can check it. This is harder with implicit implementations.
Two common cases come to mind:
Adding a function to an interface, where an existing class that implements this interface already happens to have a method with the same signature as the new one. This can lead to unexpected behavior, and has bitten me hard several times. It's difficult to "see" when debugging because that function is likely not located with the other interface methods in the file (the self-documenting issue mentioned below).
Removing a function from an interface. Implicitly implemented methods will be suddenly dead code, but explicitly implemented methods will get caught by compile error. Even if the dead code is good to keep around, I want to be forced to review it and promote it.
It's unfortunate that C# doesn't have a keyword that forces us to mark a method as an implicit implementation, so the compiler could do the extra checks. Virtual methods don't have either of the above problems due to required use of 'override' and 'new'.
Note: for fixed or rarely-changing interfaces (typically from vendor API's), this is not a problem. For my own interfaces, though, I can't predict when/how they will change.
It's self-documenting
If I see 'public bool Execute()' in a class, it's going to take extra work to figure out that it's part of an interface. Somebody will probably have to comment it saying so, or put it in a group of other interface implementations, all under a region or grouping comment saying "implementation of ITask". Of course, that only works if the group header isn't offscreen..
Whereas: 'bool ITask.Execute()' is clear and unambiguous.
Clear separation of interface implementation
I think of interfaces as being more 'public' than public methods because they are crafted to expose just a bit of the surface area of the concrete type. They reduce the type to a capability, a behavior, a set of traits, etc. And in the implementation, I think it's useful to keep this separation.
As I am looking through a class's code, when I come across explicit interface implementations, my brain shifts into "code contract" mode. Often these implementations simply forward to other methods, but sometimes they will do extra state/param checking, conversion of incoming parameters to better match internal requirements, or even translation for versioning purposes (i.e. multiple generations of interfaces all punting down to common implementations).
(I realize that publics are also code contracts, but interfaces are much stronger, especially in an interface-driven codebase where direct use of concrete types is usually a sign of internal-only code.)
Related: Reason 2 above by Jon.
And so on
Plus the advantages already mentioned in other answers here:
When required, as per disambiguation or needing an internal interface
Discourages "programming to an implementation" (Reason 1 by Jon)
Problems
It's not all fun and happiness. There are some cases where I stick with implicits:
Value types, because that will require boxing and lower perf. This isn't a strict rule, and depends on the interface and how it's intended to be used. IComparable? Implicit. IFormattable? Probably explicit.
Trivial system interfaces that have methods that are frequently called directly (like IDisposable.Dispose).
Also, it can be a pain to do the casting when you do in fact have the concrete type and want to call an explicit interface method. I deal with this in one of two ways:
Add publics and have the interface methods forward to them for the implementation. Typically happens with simpler interfaces when working internally.
(My preferred method) Add a public IMyInterface I { get { return this; } } (which should get inlined) and call foo.I.InterfaceMethod(). If multiple interfaces that need this ability, expand the name beyond I (in my experience it's rare that I have this need).
In addition to the other reasons already stated, this is the situation in which a class is implementing two different interfaces that have a property/method with the same name and signature.
/// <summary>
/// This is a Book
/// </summary>
interface IBook
{
string Title { get; }
string ISBN { get; }
}
/// <summary>
/// This is a Person
/// </summary>
interface IPerson
{
string Title { get; }
string Forename { get; }
string Surname { get; }
}
/// <summary>
/// This is some freaky book-person.
/// </summary>
class Class1 : IBook, IPerson
{
/// <summary>
/// This method is shared by both Book and Person
/// </summary>
public string Title
{
get
{
string personTitle = "Mr";
string bookTitle = "The Hitchhikers Guide to the Galaxy";
// What do we do here?
return null;
}
}
#region IPerson Members
public string Forename
{
get { return "Lee"; }
}
public string Surname
{
get { return "Oades"; }
}
#endregion
#region IBook Members
public string ISBN
{
get { return "1-904048-46-3"; }
}
#endregion
}
This code compiles and runs OK, but the Title property is shared.
Clearly, we'd want the value of Title returned to depend on whether we were treating Class1 as a Book or a Person. This is when we can use the explicit interface.
string IBook.Title
{
get
{
return "The Hitchhikers Guide to the Galaxy";
}
}
string IPerson.Title
{
get
{
return "Mr";
}
}
public string Title
{
get { return "Still shared"; }
}
Notice that the explicit interface definitions are inferred to be Public - and hence you can't declare them to be public (or otherwise) explicitly.
Note also that you can still have a "shared" version (as shown above), but whilst this is possible, the existence of such a property is questionable. Perhaps it could be used as a default implementation of Title - so that existing code would not have to be modified to cast Class1 to IBook or IPerson.
If you do not define the "shared" (implicit) Title, consumers of Class1 must explicitly cast instances of Class1 to IBook or IPerson first - otherwise the code will not compile.
If you implement explicitly, you will only be able to reference the interface members through a reference that is of the type of the interface. A reference that is the type of the implementing class will not expose those interface members.
If your implementing class is not public, except for the method used to create the class (which could be a factory or IoC container), and except for the interface methods (of course), then I don't see any advantage to explicitly implementing interfaces.
Otherwise, explicitly implementing interfaces makes sure that references to your concrete implementing class are not used, allowing you to change that implementation at a later time. "Makes sure", I suppose, is the "advantage". A well-factored implementation can accomplish this without explicit implementation.
The disadvantage, in my opinion, is that you will find yourself casting types to/from the interface in the implementation code that does have access to non-public members.
Like many things, the advantage is the disadvantage (and vice-versa). Explicitly implementing interfaces will ensure that your concrete class implementation code is not exposed.
An implicit interface implementation is where you have a method with the same signature of the interface.
An explicit interface implementation is where you explicitly declare which interface the method belongs to.
interface I1
{
void implicitExample();
}
interface I2
{
void explicitExample();
}
class C : I1, I2
{
void implicitExample()
{
Console.WriteLine("I1.implicitExample()");
}
void I2.explicitExample()
{
Console.WriteLine("I2.explicitExample()");
}
}
MSDN: implicit and explicit interface implementations
Every class member that implements an interface exports a declaration which is semantically similar to the way VB.NET interface declarations are written, e.g.
Public Overridable Function Foo() As Integer Implements IFoo.Foo
Although the name of the class member will often match that of the interface member, and the class member will often be public, neither of those things is required. One may also declare:
Protected Overridable Function IFoo_Foo() As Integer Implements IFoo.Foo
In which case the class and its derivatives would be allowed to access a class member using the name IFoo_Foo, but the outside world would only be able to access that particular member by casting to IFoo. Such an approach is often good in cases where an interface method will have specified behavior on all implementations, but useful behavior on only some [e.g. the specified behavior for a read-only collection's IList<T>.Add method is to throw NotSupportedException]. Unfortunately, the only proper way to implement the interface in C# is:
int IFoo.Foo() { return IFoo_Foo(); }
protected virtual int IFoo_Foo() { ... real code goes here ... }
Not as nice.
The previous answers explain why implementing an interface explicitly in C# may be preferrable (for mostly formal reasons). However, there is one situation where explicit implementation is mandatory: In order to avoid leaking the encapsulation when the interface is non-public, but the implementing class is public.
// Given:
internal interface I { void M(); }
// Then explicit implementation correctly observes encapsulation of I:
// Both ((I)CExplicit).M and CExplicit.M are accessible only internally.
public class CExplicit: I { void I.M() { } }
// However, implicit implementation breaks encapsulation of I, because
// ((I)CImplicit).M is only accessible internally, while CImplicit.M is accessible publicly.
public class CImplicit: I { public void M() { } }
The above leakage is unavoidable because, according to the C# specification, "All interface members implicitly have public access." As a consequence, implicit implementations must also give public access, even if the interface itself is e.g. internal.
Implicit interface implementation in C# is a great convenience. In practice, many programmers use it all the time/everywhere without further consideration. This leads to messy type surfaces at best and leaked encapsulation at worst. Other languages, such as F#, don't even allow it.
One important use of explicit interface implementation is when in need to implement interfaces with mixed visibility.
The problem and solution are well explained in the article C# Internal Interface.
For example, if you want to protect leakage of objects between application layers, this technique allows you to specify different visibility of members that could cause the leakage.
I've found myself using explicit implementations more often recently, for the following practical reasons:
Always using explicit from the starts prevents having any naming collisions, in which explicit implementation would be required anyways
Consumers are "forced" to use the interface instead of the implementation (aka not "programming to an implementation") which they should / must do anyways when you're using DI
No "zombie" members in the implementations - removing any member from the interface declaration will result in compiler errors if not removed from the implementation too
Default values for optional parameters, as well constraints on generic arguments are automatically adopted - no need to write them twice and keep them in sync
I came across this problem when i was implementing n interface explicitly using Visual Studio. So the interface contains properties, but when I am implementing the property explicitly in an abstract class, Compiler throws error "The modifier 'public' is not valid for this item".
Refer Below given code.
interface ITest
{
bool MyProperty { get; set; }
}
internal class Test : ITest
{
public bool ITest.MyProperty
{
get
{
return false;
}
set { }
}
}
According to the programming guide, explicit interface implementations always lack an access modifier. You should remove the public keyword.
If you think about it, this makes a lot of sense. There is only one possible access modifier for an explicit interface implementation - the same modifier used for the interface. Thus, you don't need to specify the modifier.
If the interface is marked public, and the explicit implementation is private, that will not make sense. The only reason to write an explicit implementation is to expose that member to only that interface. It would be weird if the member is less accessible than the interface, right?
On the other hand, if the interface is internal and the member is marked public, it will not make sense either. If the member is more accessible than the interface, then it will not be exposed only to the interface.
Why can't I do this?
internal class InsuranceClientFactory : IInsuranceClientFactory
{
internal Iws2SoapClient InsuranceClient()
{
}
}
internal interface IInsuranceClientFactory
{
Iws2SoapClient InsuranceClient();
}
I get the error:
Cannot implement an interface member because it is not public
There are a few questions where the class is public but the interface is not, but both of mine are internal. I don't want to expose this class or interface outside of my assembly. Seems an odd limitation.
This question C# internal interface with internal implementation, does state "If you are implicitly implementing an interface I believe that the member must be declared public." but this doesn't make sense to me, why can't you? seems justified?
"I don't want to expose this class or interface . . ." and that fine.
But the method needs to be public, even if it is public it won't be visible outside the assembly because the class is internal.
If you really REALLY don't want it to be public, you can explicitly implement that method.
internal class InsuranceClientFactory : IInsuranceClientFactory
{
Iws2SoapClient IInsuranceClientFactory.InsuranceClient()
{
}
}
You have to change the method modifier to public
internal class InsuranceClientFactory : IInsuranceClientFactory
{
public Iws2SoapClient InsuranceClient()
{
}
}
Making the method public doesn't mean it can be accessed publicly since the DeclaringType itself internal method will have internal access only.
I can tell you why it doesn't work. C# Language specification 5.0 section 13.4.4, Interface Mapping.
... Neither non-public nor static members participate in interface mapping ...
but because what you are attempting to do should technically work, the explicit implementation is given precedence and your implementation can remain internal
And not to split hairs, but even if you Explicitly Implement the internal interface, the implementation will not be internal it is actually private/public as stated earlier in the specification (Section 13.4.1 Explicit Interface Member Implementation):
Explicit interface member implementations have different accessibility characteristics than other members. Because explicit interface member implementations are never accessible through their fully qualified name in a method invocation or a property access, they are in a sense private. However, since they can be accessed through an interface instance, they are in a sense also public.
Change it to:
internal class InsuranceClientFactory : IInsuranceClientFactory
{
public Iws2SoapClient InsuranceClient()
{
}
}
The class is still internal and isn't exposing the interface.
I am developing an internal class that implements an internal interface.
Can anyone explain why I cannot declare my method as internal, why I am getting the following error: "cannot implement an interface member because it is not public".
I know that I have to declare the method as public, but it makes absolutely no sense to me.
What is the point of declaring a method public if both the interface and the class are internal?
Is it not misleading?
I have read a related question on this site. It is not an exact duplicate, because my class is internal.
Simply put: because that's the way the language designers designed it. Even in internal interfaces, the methods are implicitly public. It does make things simple, but it's a pain in other ways.
If you want a public class where you want to "hide" the use of an internal interface, you could use explicit interface implementation - although that has other drawbacks.
Of course, if your class is internal then it doesn't matter that the methods are public anyway - other assemblies aren't going to be able to call the methods because they can't see the type.
I definitely agree that C# (or .NET in general) hasn't been designed as carefully as it might be around internal interfaces.
In terms of exactly why you're getting an error message - section 13.4.4 of the C# 4 spec (interface mapping) is the reason. Implementations are only found for nonstatic public members and explicit interface member implementations - and if there are any unimplemented members in the interface, an error occurs.
I know this is old but maybe someone find it useful. You can accomplish a kind of internal interface methods like this:
internal interface IFoo
{
void MyMethod();
}
public abstract class Foo : IFoo
{
void IFoo.MyMethod()
{
MyMethod();
}
internal abstract void MyMethod();
}
So all your internal classes should derive from Foo and are forced to implement the abstract MyMethod. But you can treat them all as IFoo of course. But those classes outside the assembly won't provide the MyMethod class.
So you have the advantage to treat your classes internally as IFoo and rely on MyMethod. The drawback is that all your classes will need to derive from Foo which can be a problem if you need another base class.
But I found it helpful if the abstract base class is a generic one and the interface is not. Maybe it is useful in some cases.
Are you able to define class-implementations in an interface?
For instance (pseudo-code alert!)...
interface IClass1
{
String s { get; set; }
// classes implementing this interface has to implement Class2 as "SubClass"
Class2 SubClass;
}
interface IClass2
{
Int32 i { get; set; }
}
class Class1 : IClass1
{
String IClass1.s { get; set; }
class IClass1.Class2 SubClass
{
Int32 IClass2.i { get; set; }
}
}
The purpose of an interface is to define a contract which is separate from any implementation.
What you can do with an interface is defining a property like so:
interface IClass1
{
String S { get; set; }
Class2 SubClass { get; set; }
}
There is no syntax for forcing a class to implement another nested class. What you have effectively defined here is that any IClass1 implementation must have a field of type Class2.
Unfortunately there are two things wrong with this:
Class2 does not resolve to a known accessible type, therefore a compiler error will be generated.
The SubClass member of IClass1 is declared as a field, and interfaces cannot declare fields.
No. Also, Class2 isn't a subclass, it's a nested class or inner class. "Sub-class" is (in this context, there are other contexts that are completely different) another name for a derived class, in which context the base class is called a "super-class" (which is why Java has a keyword super that is analogous to base in C# though with some differences). "Derived" and "base" are the more popular terms in C#, perhaps because they are more popular terms in C++, perhaps because Bjarne Stroustrup says he finds them confusing and even he gets mixed up about which is which (after all, the subclass has a superset of behaviour and vice-versa).
Inner classes are essentially using their containing class as a namespace and nothing else, while interfaces only detail member methods and properties.
First of all, your question was:
"Are you able to define class-implementations in an interface?"
The answer to this is "in a way / no".
You can't include class definitions "inside" the interface definition if that's what you mean.
As mentioned earlier, the implementation of such a thing could happen via interface properties.
You should probably not try to implement your described interface structure unless classes exist that the implementing code's functionality is totally dependent on and if the interface is already deeply integrated into several existing modules. That in it self is a design flaw, and could be swapped with an abstract class implementation.
The CLR does not support multiple inheritance, but it does allow types to implement one or more interfaces in addition to inheriting from a base class. Therefore, interfaces are often used to achieve the effect of multiple inheritance.
Requiring classes to inherit from a single base class would in most cases make the class hierarchy too inflexible. To use a base class internally to simplify library development, public members should delegate work to the base class instead of inheriting from it.
Choose carefully between an abstract class and an interface when designing an abstraction as it can behave like an interface in that it can define members, and it can provide implementation details but are not required to do so, and can add members as needed to support additional functionality...
So, if used in the way you want, it departs from the concept of C# interfaces, but maybe seem to closer mimic the multiple inheritance model of languages such as C++ in practice, as it it implicitly "forces all implementors of your interface to create an instance of each class that the interface has specified properties for.
You need to think a bit about the reason for wanting to create such a structure (the need to force all implementors of an interface to also create instances of classes that the interface defines as properties).This is more likely a design-flaw in your code than it is a missing language feature.
So even though it is a possible workaround, I wouldn't call it a good way of design things...
Apologies if I've misunderstood but, yes, I do this now (VB 2013 for .NET 4.0 & 4.5). Interfaces can define properties, properties can be complex, the class definition for which can be nested within the interface definition. In your class that implements the interface, you'll can only have a the getter/setter for the complex object as a whole, not for its individual properties. (The getters/setters for those are within the class definition of course). Working example from VB attached, along with untested conversion to C#.
VB:
Interface IPrintable
Property Body As DocBody
Class DocBody
Property Text As String
Property FontSize As Single
End Class
End Interface
Class WordDoc
Implements IPrintable
Public Property WordBody As IPrintable.DocBody Implements IPrintable.Body
End Class
and C#:
interface IPrintable
{
DocBody Body { get; set; }
public class DocBody
{
public string Text { get; set; }
public float FontSize { get; set; }
}
}
class WordDoc : IPrintable
{
public IPrintable.DocBody WordBody { get; set; }
IPrintable.DocBody IPrintable.Body {
get { return WordBody; }
set { WordBody = value; }
}
}
I'm unable to comment, but the accepted answer to this question is no longer accurate.
As of C#8 it is possible to define default implementations for interface methods.
As interfaces have no private member's, this is limited to calling other public members, and so is useful for defining method overrides that call into one another.