Maximum number of threads in a .NET app? - c#

What is the maximum number of threads you can create in a C# application? And what happens when you reach this limit? Is an exception of some kind thrown?

There is no inherent limit. The maximum number of threads is determined by the amount of physical resources available. See this article by Raymond Chen for specifics.
If you need to ask what the maximum number of threads is, you are probably doing something wrong.
[Update: Just out of interest: .NET Thread Pool default numbers of threads:
1023 in Framework 4.0 (32-bit environment)
32767 in Framework 4.0 (64-bit environment)
250 per core in Framework 3.5
25 per core in Framework 2.0
(These numbers may vary depending upon the hardware and OS)]

Mitch is right. It depends on resources (memory).
Although Raymond's article is dedicated to Windows threads, not to C# threads, the logic applies the same (C# threads are mapped to Windows threads).
However, as we are in C#, if we want to be completely precise, we need to distinguish between "started" and "non started" threads. Only started threads actually reserve stack space (as we could expect). Non started threads only allocate the information required by a thread object (you can use reflector if interested in the actual members).
You can actually test it for yourself, compare:
static void DummyCall()
{
Thread.Sleep(1000000000);
}
static void Main(string[] args)
{
int count = 0;
var threadList = new List<Thread>();
try
{
while (true)
{
Thread newThread = new Thread(new ThreadStart(DummyCall), 1024);
newThread.Start();
threadList.Add(newThread);
count++;
}
}
catch (Exception ex)
{
}
}
with:
static void DummyCall()
{
Thread.Sleep(1000000000);
}
static void Main(string[] args)
{
int count = 0;
var threadList = new List<Thread>();
try
{
while (true)
{
Thread newThread = new Thread(new ThreadStart(DummyCall), 1024);
threadList.Add(newThread);
count++;
}
}
catch (Exception ex)
{
}
}
Put a breakpoint in the exception (out of memory, of course) in VS to see the value of counter. There is a very significant difference, of course.

i did a test on a 64bit system with c# console, the exception is type of out of memory, using 2949 threads.
I realize we should be using threading pool, which I do, but this answer is in response to the main question ;)

I would recommend running ThreadPool.GetMaxThreads method in debug
ThreadPool.GetMaxThreads(out int workerThreadsCount, out int ioThreadsCount);
Docs and examples:
https://learn.microsoft.com/en-us/dotnet/api/system.threading.threadpool.getmaxthreads?view=netframework-4.8

You should be using the thread pool (or async delgates, which in turn use the thread pool) so that the system can decide how many threads should run.

Jeff Richter in CLR via C#:
"With version 2.0 of the CLR, the maximum number
of worker threads default to 25 per CPU in the machine
and the maximum number of I/O
threads defaults to 1000. A limit of 1000 is effectively no limit at all."
Note this is based on .NET 2.0. This may have changed in .NET 3.5.
[Edit] As #Mitch pointed out, this is specific to the CLR ThreadPool. If you're creating threads directly see the #Mitch and others comments.

You can test it by using this snipped code:
private static void Main(string[] args)
{
int threadCount = 0;
try
{
for (int i = 0; i < int.MaxValue; i ++)
{
new Thread(() => Thread.Sleep(Timeout.Infinite)).Start();
threadCount ++;
}
}
catch
{
Console.WriteLine(threadCount);
Console.ReadKey(true);
}
}
Beware of 32-bit and 64-bit mode of application.

Related

Reliable short time span measurements on Windows

I need code that will provide "Ticks" of 10 miliseconds exactly and I am buffled in view of the many articles some contradicting others regarding how to accomplish this in Windows.
I've managed the first step - using the MultiMedia timer to provide sleeps of 1 mili.
Is there a way to ensure that the sleep code will work on all machines IsHighResolution either true or false, single or multi processor systems etc?
[edit]
A previous question ragarding the problem with using StopWatch in a multicore system:
Multicore and thread aware .Net stopwatch?
[/edit]
sorry that I can't write this in comments...
If you have the possibility to use a second thread you could
use a loop to waste the time...like this:
class yourTimer{
public void startTimer(Action a)
{
ParameterizedThreadStart fu = new ParameterizedThreadStart(waiter);
Thread t1 = new Thread(fu);
t1.Start(a);
}
public void stopTimer()
private void waiter(object o)
{
Action ac = (Action)o;
while(waitin)
{
if(DateTime.Now.Millisecond%10==0)
{
ac.Invoke();
}
continue;
}
}
}
but that's a quite ugly solution I think ...

Program doesn't use all hardware resources

I'm working on one program that takes information from files and then stores them in MySQL database. This MySQL database is located in another dedicated server which is much more powerful than this server here. Data is being sent over LAN using 1gbps connection.
It is using 8 threads because my server has 8 cores, but somehow it runs so slowly.
CPU is: Intel Xeon E3-1270 v 3 # 3.50Ghz
RAM: 16 GB ECC
HDD: SATA 3 1TB
My program's CPU usage is only 0-5%
CPU affinity is all 8 cores
So, do you have any ideas what's wrong or how can I increase the speed of my program?
UPDATE:
I updated my code and it appears to be faster:
Parallel.For(0, this.data_files.Count, new ParallelOptions { MaxDegreeOfParallelism = this.MaxThreads }, i =>
{
this.ThreadCount++;
this.ParseFile(this.GetSource());
});
Here's a code snippet that deploys threads:
while (true)
{
if (this.ThreadCount < this.MaxThreads)
{
Task.Factory.StartNew(() =>
this.ParseFile(this.GetFile())
);
this.ThreadCount++;
}
else
{
Thread.Sleep(1);
}
this.UpdateConsole();
}
GetFile function:
private string GetFile()
{
string file = "";
string source = "";
while (true)
{
if (this.data_files.Count() != 0)
{
file = this.data_files[0];
this.data_files.RemoveAt(0);
if (File.Exists(file) == true)
{
source = File.ReadAllText(file);
File.Delete(file);
break;
}
}
}
return source;
}
I'm working on one program that takes information from files and then stores them in MySQL database.
Clearly your program is not CPU bound, it's IO bound. The bottlenecks are going to be based on your hard disk(s) and your network connection. Odds are even a single thread is going to be able to ensure proper utilization of these resources (in a well designed application). Adding extra threads generally won't help, it'll just create a bunch of threads that will spend their time waiting on various IO operations.
To use all the hardware resources is not the right goal for a program to have.
Instead, a better goal is to be as fast as possible. This is significantly different. While using more hardware resources can help, it is not always sufficient.
Sometimes, adding more resources to a problem doesn't help. In those cases, don't. Adding threads makes your program more complex, but not necessarily faster as you've seen.
C# already has good Asynchronous programming features with the TPL (which you are already using), so why not take advantage of that?
This will mean that the .NET framework will automatically manage the threads for you in an efficient way.
Here's what I propose:
foreach (var file in GetFilesToRead()) {
var task = PerformOperation(file);
// Keep a list of tasks, if you wish.
}
...
Task PerformOperation (string filename) {
var file = await ReadFile(file);
await ParseFile(file);
DoSomething();
}
Note that even in CPU-bound programs, threads (and tasks) may not help you if you're using locks.
Although locks help keep programs well-behaved, they come at a significant performance cost.
Within a lock, only one thread may be executing at a time.
This means that the first thread is locking your _lock instance, and then the other threads are waiting for that lock to be released.
In your program, only one thread is active at a time.
To solve this, don't use locks. Instead, write programs that do not need locks at all. Copy variables instead of sharing them. Use immutable collections instead of mutable collections and so on.
My program above uses exactly zero locks and, as such, will better utilize your threads.

Is a non-blocking, single-threaded, asynchronous web server (like Node.js) possible in .NET?

I was looking at this question, looking for a way to create a single-threaded, event-based nonblocking asynchronous web server in .NET.
This answer looked promising at first, by claiming that the body of the code runs in a single thread.
However, I tested this in C#:
using System;
using System.IO;
using System.Threading;
class Program
{
static void Main()
{
Console.WriteLine(Thread.CurrentThread.ManagedThreadId);
var sc = new SynchronizationContext();
SynchronizationContext.SetSynchronizationContext(sc);
{
var path = Environment.ExpandEnvironmentVariables(
#"%SystemRoot%\Notepad.exe");
var fs = new FileStream(path, FileMode.Open,
FileAccess.Read, FileShare.ReadWrite, 1024 * 4, true);
var bytes = new byte[1024];
fs.BeginRead(bytes, 0, bytes.Length, ar =>
{
sc.Post(dummy =>
{
var res = fs.EndRead(ar);
// Are we in the same thread?
Console.WriteLine(Thread.CurrentThread.ManagedThreadId);
}, null);
}, null);
}
Thread.Sleep(100);
}
}
And the result was:
1
5
So it seems like, contrary to the answer, the thread initiating the read and the thread ending the read are not the same.
So now my question is, how do you to achieve a single-threaded, event-based nonblocking asynchronous web server in .NET?
The whole SetSynchronizationContext is a red herring, this is just a mechanism for marshalling, the work still happens in the IO Thread Pool.
What you are asking for is a way to queue and harvest Asynchronous Procedure Calls for all your IO work from the main thread. Many higher level frameworks wrap this kind functionality, the most famous one being libevent.
There is a great recap on the various options here: Whats the difference between epoll, poll, threadpool?.
.NET already takes care of scaling for you by have a special "IO Thread Pool" that handles IO access when you call the BeginXYZ methods. This IO Thread Pool must have at least 1 thread per processor on the box. see: ThreadPool.SetMaxThreads.
If single threaded app is a critical requirement (for some crazy reason) you could, of course, interop all of this stuff in using DllImport (see an example here)
However it would be a very complex and risky task:
Why don't we support APCs as a completion mechanism? APCs are really not a good general-purpose completion mechanism for user code. Managing the reentrancy introduced by APCs is nearly impossible; any time you block on a lock, for example, some arbitrary I/O completion might take over your thread. It might try to acquire locks of its own, which may introduce lock ordering problems and thus deadlock. Preventing this requires meticulous design, and the ability to make sure that someone else's code will never run during your alertable wait, and vice-versa. This greatly limits the usefulness of APCs.
So, to recap. If you want a single threaded managed process that does all its work using APC and completion ports, you are going to have to hand code it. Building it would be risky and tricky.
If you simply want high scale networking, you can keep using BeginXYZ and family and rest assured that it will perform well, since it uses APC. You pay a minor price marshalling stuff between threads and the .NET particular implementation.
From: http://msdn.microsoft.com/en-us/magazine/cc300760.aspx
The next step in scaling up the server is to use asynchronous I/O. Asynchronous I/O alleviates the need to create and manage threads. This leads to much simpler code and also is a more efficient I/O model. Asynchronous I/O utilizes callbacks to handle incoming data and connections, which means there are no lists to set up and scan and there is no need to create new worker threads to deal with the pending I/O.
An interesting, side fact, is that single threaded is not the fastest way to do async sockets on Windows using completion ports see: http://doc.sch130.nsc.ru/www.sysinternals.com/ntw2k/info/comport.shtml
The goal of a server is to incur as few context switches as possible by having its threads avoid unnecessary blocking, while at the same time maximizing parallelism by using multiple threads. The ideal is for there to be a thread actively servicing a client request on every processor and for those threads not to block if there are additional requests waiting when they complete a request. For this to work correctly however, there must be a way for the application to activate another thread when one processing a client request blocks on I/O (like when it reads from a file as part of the processing).
What you need is a "message loop" which takes the next task on a queue and executes it. Additionally, every task needs to be coded so that it completes as much work as possible without blocking, and then enqueues additional tasks to pick up a task that needs time later. There is nothing magical about this: never using a blocking call and never spawn additional threads.
For example, when processing an HTTP GET, the server can read as much data as is currently available on the socket. If this is not enough data to handle the request, then enqueue a new task to read from the socket again in the future. In the case of a FileStream, you want to set the ReadTimeout on the instance to a low value and be prepared to read fewer bytes than the entire file.
C# 5 actually makes this pattern much more trivial. Many people think that the async functionality implies multithreading, but that is not the case. Using async, you can essentially get the task queue I mentioned earlier without ever explicility managing it.
Yes, it's called Manos de mono
Seriously, the entire idea behind manos is a single threaded asynchronous event driven web server.
High performance and scalable. Modeled after tornadoweb, the technology that powers friend feed, Manos is capable of thousands of simultaneous connections, ideal for applications that create persistent connections with the server.
The project appears to be low on maintenance and probably wouldn't be production ready but it makes a good case study as a demonstration that this is possible.
Here's a great article series explaining what IO Completion Ports are and how they can be accessed via C# (i.e. you need to PInvoke into Win32 API calls from the Kernel32.dll).
Note: The libuv the cross platform IO framework behind node.js uses IOCP on Windows and libev on unix operating systems.
http://www.theukwebdesigncompany.com/articles/iocp-thread-pooling.php
i am wondering nobody mentioned kayak it's basicly C#s answer to Pythons twisted, JavaScripts node.js or Rubys eventmachine
I've been fiddling with my own simple implementation of such an architecture and I've put it up on github. I'm doing it more as a learning thing. But it's been a lot of fun and I think I'll flush it out more.
It's very alpha, so it's liable to change, but the code looks a little like this:
//Start the event loop.
EventLoop.Start(() => {
//Create a Hello World server on port 1337.
Server.Create((req, res) => {
res.Write("<h1>Hello World</h1>");
}).Listen("http://*:1337");
});
More information about it can be found here.
I developed a server based on HttpListener and an event loop, supporting MVC, WebApi and routing. For what i have seen the performances are far better than standard IIS+MVC, for the MVCMusicStore i moved from 100 requests per seconds and 100% CPU to 350 with 30% CPU.
If anybody would give it a try i am struggling for feedbacks!
Actually is present a template to create websites based on this structure.
Note that I DON'T USE ASYNC/AWAIT until absolutely necessary. The only tasks i use there are the ones for the I/O bound operations like writing on the socket or reading files.
PS any suggestion or correction is welcome!
Documentation
MvcMusicStore sample port on Node.Cs
Packages on Nuget
you can this framework SignalR
and this Blog about it
Some kind of the support from operating system is essential here. For example, Mono uses epoll on Linux with asynchronous I/O, so it should scale really well (still thread pool). If you are looking and performance and scalability, definitely try it.
On the other hand, the example of C# (with native libs) webserver which is based around idea you have mentioned can be Manos de Mono. Project has not been active lately; however, idea and code is generally available. Read this (especially the "A closer look at Manos" part).
Edit:
If you just want to have callback fired on your main thread, you can do a little abuse of existing synchronization contexts like the WPF dispatcher. Your code, translated to this approach:
using System;
using System.IO;
using System.Threading;
using System.Windows;
namespace Node
{
class Program
{
public static void Main()
{
var app = new Application();
app.Startup += ServerStart;
app.Run();
}
private static void ServerStart(object sender, StartupEventArgs e)
{
var dispatcher = ((Application) sender).Dispatcher;
Console.WriteLine(Thread.CurrentThread.ManagedThreadId);
var path = Environment.ExpandEnvironmentVariables(
#"%SystemRoot%\Notepad.exe");
var fs = new FileStream(path, FileMode.Open,
FileAccess.Read, FileShare.ReadWrite, 1024 * 4, true);
var bytes = new byte[1024];
fs.BeginRead(bytes, 0, bytes.Length, ar =>
{
dispatcher.BeginInvoke(new Action(() =>
{
var res = fs.EndRead(ar);
// Are we in the same thread?
Console.WriteLine(Thread.CurrentThread.ManagedThreadId);
}));
}, null);
}
}
}
prints what you wish. Plus you can set priorities with dispatcher. But agree, this is ugly, hacky and I do not know why I would do it that way for another reason than answer your demo request ;)
First about SynchronizationContext. It's just like Sam wrote. Base class won't give You single-thread functionality. You probably got that idea from WindowsFormsSynchronizationContext which provides functionality to execute code on UI thread.
You can read more here
I've written a piece of code that works with ThreadPool parameters. (Again something Sam already pointed out).
This code registers 3 asynchronous actions to be executed on free thread. They run in parallel until one of them changes ThreadPool parameters. Then each action is executed on the same thread.
It only proves that you can force .net app to use one thread.
Real implementation of web server that would receive and process calls on only one thread is something entirely different :).
Here's the code:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.IO;
namespace SingleThreadTest
{
class Program
{
class TestState
{
internal string ID { get; set; }
internal int Count { get; set; }
internal int ChangeCount { get; set; }
}
static ManualResetEvent s_event = new ManualResetEvent(false);
static void Main(string[] args)
{
Console.WriteLine(Thread.CurrentThread.ManagedThreadId);
int nWorkerThreads;
int nCompletionPortThreads;
ThreadPool.GetMaxThreads(out nWorkerThreads, out nCompletionPortThreads);
Console.WriteLine(String.Format("Max Workers: {0} Ports: {1}",nWorkerThreads,nCompletionPortThreads));
ThreadPool.GetMinThreads(out nWorkerThreads, out nCompletionPortThreads);
Console.WriteLine(String.Format("Min Workers: {0} Ports: {1}",nWorkerThreads,nCompletionPortThreads));
ThreadPool.QueueUserWorkItem(new WaitCallback(LetsRunLikeCrazy), new TestState() { ID = "A ", Count = 10, ChangeCount = 0 });
ThreadPool.QueueUserWorkItem(new WaitCallback(LetsRunLikeCrazy), new TestState() { ID = " B ", Count = 10, ChangeCount = 5 });
ThreadPool.QueueUserWorkItem(new WaitCallback(LetsRunLikeCrazy), new TestState() { ID = " C", Count = 10, ChangeCount = 0 });
s_event.WaitOne();
Console.WriteLine("Press enter...");
Console.In.ReadLine();
}
static void LetsRunLikeCrazy(object o)
{
if (s_event.WaitOne(0))
{
return;
}
TestState oState = o as TestState;
if (oState != null)
{
// Are we in the same thread?
Console.WriteLine(String.Format("Hello. Start id: {0} in thread: {1}",oState.ID, Thread.CurrentThread.ManagedThreadId));
Thread.Sleep(1000);
oState.Count -= 1;
if (oState.ChangeCount == oState.Count)
{
int nWorkerThreads = 1;
int nCompletionPortThreads = 1;
ThreadPool.SetMinThreads(nWorkerThreads, nCompletionPortThreads);
ThreadPool.SetMaxThreads(nWorkerThreads, nCompletionPortThreads);
ThreadPool.GetMaxThreads(out nWorkerThreads, out nCompletionPortThreads);
Console.WriteLine(String.Format("New Max Workers: {0} Ports: {1}", nWorkerThreads, nCompletionPortThreads));
ThreadPool.GetMinThreads(out nWorkerThreads, out nCompletionPortThreads);
Console.WriteLine(String.Format("New Min Workers: {0} Ports: {1}", nWorkerThreads, nCompletionPortThreads));
}
if (oState.Count > 0)
{
Console.WriteLine(String.Format("Hello. End id: {0} in thread: {1}", oState.ID, Thread.CurrentThread.ManagedThreadId));
ThreadPool.QueueUserWorkItem(new WaitCallback(LetsRunLikeCrazy), oState);
}
else
{
Console.WriteLine(String.Format("Hello. End id: {0} in thread: {1}", oState.ID, Thread.CurrentThread.ManagedThreadId));
s_event.Set();
}
}
else
{
Console.WriteLine("Error !!!");
s_event.Set();
}
}
}
}
LibuvSharp is a wrapper for libuv, which is used in the node.js project for async IO. BUt it only contains only low level TCP/UDP/Pipe/Timer functionality. And it will stay like that, writing a webserver on top of it is an entire different story. It doesn't even support dns resolving, since this is just a protocol on top of udp.
I believe it's possible, here is an open-source example written in VB.NET and C#:
https://github.com/perrybutler/dotnetsockets/
It uses Event-based Asynchronous Pattern (EAP), IAsyncResult Pattern and thread pool (IOCP). It will serialize/marshal the messages (messages can be any native object such as a class instance) into binary packets, transfer the packets over TCP, and then deserialize/unmarshal the packets at the receiving end so you get your native object to work with. This part is somewhat like Protobuf or RPC.
It was originally developed as a "netcode" for real-time multiplayer gaming, but it can serve many purposes. Unfortunately I never got around to using it. Maybe someone else will.
The source code has a lot of comments so it should be easy to follow. Enjoy!
Here is one more implementation of the event-loop web server called SingleSand. It executes all custom logic inside single-threaded event loop but the web server is hosted in asp.net.
Answering the question, it is generally not possible to run a pure single threaded app because of .NET multi-threaded nature. There are some activities that run in separate threads and developer cannot change their behavior.

Can we create 300,000 threads in a C# application and run it on a PC?

I am trying to imitate a scenario where 300,000 consumers are accessing a server. So I am trying to create the pseudo clients, by repeatedly querying the server from the concurrent threads.
But the first hurdle to be cleared is, whether it is possible to run 300,000 threads on a PC? Here is a code which I am using to see intially how many max threads I can get, and later then replace the test function with the actual function:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
namespace CheckThread
{
class Program
{
static int count;
public static void TestThread(int i)
{
while (true)
{
Console.Write("\rThread Executing : {0}", i);
Thread.Sleep(500);
}
}
static void Main(string[] args)
{
count = 0;
int limit = 0;
if (args.Length != 1)
{
Console.WriteLine("Usage CheckThread <number of threads>");
return;
}
else
{
limit = Convert.ToInt32(args[0]);
}
Console.WriteLine();
while (count < limit)
{
ThreadStart newThread = new ThreadStart(delegate { TestThread(count); });
Thread mythread = new Thread(newThread);
mythread.Start();
Console.WriteLine("Thread # {0}", count++);
}
while (true)
{
Thread.Sleep(30*1000);
}
} // end of main
} // end of CheckThread class
} // end of namespace
Now what I am trying might be unrealistic, but still, if there is a way out to do it and you know, then please help me.
Each thread will create its own stack and local storage, you are looking at roughly 512k of stack space per thread on a 32bit OS, I think the stack space doubles on a 64 bit OS. A quick back of the spreadsheet calc gives us 146.484375 gigs of stack space for your 300k clients.
So, no, don't create 300k threads, but rather use the threadpool to simulate 300k requests, although tbh I think you would be better off with several test clients spamming your server through a network interface.
There are a lot of web load-testing tools available. Good starting point : http://www.webperformance.com/library/reports/TestingAspDotNet/
You can alter the maximum nunmber of threads by calling the ThreadPool.SetMaxThreads method. 300,000 threads will probably make your PC explode*
*This is probably an exaggeration
Language-agnostic answer:
The better way to probably go about this is using the Reactor pattern, with a maximum of 1 or 2 concurrent threads per core.
As .net commits the entire stack (1MB) for each clr thread; as Ben says, your PC may actually explode. Or possibly OoM.
Well, what was the result of your test when you tried to create 300K threads? I'm not going to try it on mine!
You could not connect up 300K clients at once anyway because there are not enough sockets available on a single server, (hence farming).
I have done some server testing and, by tweaking the registry to make more sockets available, I have had 24K sockets connected to a server, all one one box. That was somewhat what I was expecting since the server<>client connection requires one socket object at each end and there are only 64K sockets available. I did not attempt to create 24K threads for my testing, I used a client thread class that opened/closed connections on multiple client socket objects in a list.
Rgds,
Martin

How can I programmatically limit my program's CPU usage to below 70%?

Of late, I'm becoming more health oriented when constructing my program, I have observed that most of programs take 2 or 3 minutes to execute and when I check on the task scheduler, I see that they consume 100% of CPU usage, can I limit this usage programatically in code? This will certainly enable me to run multiple programs at a given time.
Thanks,
Nidhi
This thread is over four years old, and it still annoys me that the accepted answer criticizes the question rather than answering it. There are many valid reasons you would want to limit the CPU time taken by your program, I can list a few off the top of my head.
It might seem like a waste not to use all free CPU cycles available, but this mentality is flawed. Unlike older CPUs, most modern CPUs do not run at a fixed clock speed - many have power saving modes where they drop the clock speed and cpu voltage when load is low. CPUs also consume more power when performing calculations than they do running NOOPs. This is especially relevant to laptops that require fans to cool the CPU when it is under high load. Running a task at 100% for a short time can use far more energy than running a task at 25% for four times as long.
Imagine you are writing a background task that is designed to index files periodically in the background. Should the indexing task use as much of the CPU as it can at a lower priority, or throttle itself to 25% and take as long as it needs? Well, if it were to consume 100% of the CPU on a laptop, the CPU would heat up, the fans would kick in, and the battery would drain fairly quickly, and the user would get annoyed. If the indexing service throttled itself, the laptop may be able to run with completely passive cooling at a very low cpu clock speed and voltage.
Incidentally, the Windows Indexing Service now throttles itself in newer versions of Windows, which it never did in older versions. For an example of a service that still doesn't throttle itself and frequently annoys people, see Windows Installer Module.
An example of how to throttle part of your application internally in C#:
public void ThrottledLoop(Action action, int cpuPercentageLimit) {
Stopwatch stopwatch = new Stopwatch();
while(true) {
stopwatch.Reset();
stopwatch.Start();
long actionStart = stopwatch.ElapsedTicks;
action.Invoke();
long actionEnd = stopwatch.ElapsedTicks;
long actionDuration = actionEnd - actionStart;
long relativeWaitTime = (int)(
(1/(double)cpuPercentageLimit) * actionDuration);
Thread.Sleep((int)((relativeWaitTime / (double)Stopwatch.Frequency) * 1000));
}
}
First of all, I agree with Ryan that the question is perfectly valid and there are cases where thread priorities are not at all sufficient. The other answers appear highly theoretical and of no practical use in situations where the application is properly designed but still needs to be throttled. Ryan offers a simple solution for cases in which a relatively short task is performed in high frequency. There are cases, however, when the task takes a very long time (say a minute or so) and you cannot or don't want to break it into smaller chunks between which you can do the throttling. For these cases the following solution might be helpful:
Rather that implementing throttling into the business code, you can design the algorithm itself to work at full steam and simply throttle the thread which runs the operation "from the outside". The general approach is the same as in Ryan's answer: Calculate a suspension time based on the current usage and suspend the thread for this timespan before resuming it again. Given a process which you want to throttle, this is the logic:
public static class ProcessManager
{
[Flags]
public enum ThreadAccess : int
{
TERMINATE = (0x0001),
SUSPEND_RESUME = (0x0002),
GET_CONTEXT = (0x0008),
SET_CONTEXT = (0x0010),
SET_INFORMATION = (0x0020),
QUERY_INFORMATION = (0x0040),
SET_THREAD_TOKEN = (0x0080),
IMPERSONATE = (0x0100),
DIRECT_IMPERSONATION = (0x0200)
}
[DllImport("kernel32.dll")]
static extern IntPtr OpenThread(ThreadAccess dwDesiredAccess, bool bInheritHandle, uint dwThreadId);
[DllImport("kernel32.dll")]
static extern uint SuspendThread(IntPtr hThread);
[DllImport("kernel32.dll")]
static extern int ResumeThread(IntPtr hThread);
[DllImport("kernel32.dll")]
static extern int CloseHandle(IntPtr hThread);
public static void ThrottleProcess(int processId, double limit)
{
var process = Process.GetProcessById(processId);
var processName = process.ProcessName;
var p = new PerformanceCounter("Process", "% Processor Time", processName);
while (true)
{
var interval = 100;
Thread.Sleep(interval);
var currentUsage = p.NextValue() / Environment.ProcessorCount;
if (currentUsage < limit) continue;
var suspensionTime = (currentUsage-limit) / currentUsage * interval;
SuspendProcess(processId);
Thread.Sleep((int)suspensionTime);
ResumeProcess(processId);
}
}
private static void SuspendProcess(int pid)
{
var process = Process.GetProcessById(pid);
if (process.ProcessName == string.Empty)
return;
foreach (ProcessThread pT in process.Threads)
{
IntPtr pOpenThread = OpenThread(ThreadAccess.SUSPEND_RESUME, false, (uint)pT.Id);
if (pOpenThread == IntPtr.Zero)
{
continue;
}
SuspendThread(pOpenThread);
CloseHandle(pOpenThread);
}
}
private static void ResumeProcess(int pid)
{
var process = Process.GetProcessById(pid);
if (process.ProcessName == string.Empty)
return;
foreach (ProcessThread pT in process.Threads)
{
IntPtr pOpenThread = OpenThread(ThreadAccess.SUSPEND_RESUME, false, (uint)pT.Id);
if (pOpenThread == IntPtr.Zero)
{
continue;
}
var suspendCount = 0;
do
{
suspendCount = ResumeThread(pOpenThread);
} while (suspendCount > 0);
CloseHandle(pOpenThread);
}
}
}
The benefit of this solution is that the checking interval becomes independent of the duration of your "long running task". Furthermore, business logic and throttling logic are separated. The suspense/resume code is inspired by this thread. Please note that disposal and ending the throttling needs to be implemented in the solution above, it is not production code.
That's not your concern... It's the job of the operating system to distribute processor time between running processes. If you'd like to give other processes first crack at getting their stuff done, then simply reduce the priority of your own process by modifying the Process.PriorityClass value for it.
See also: Windows Equivalent of ‘nice’
You could write a Governor class that throttles the CPU usage. This class would contain a utility method that should be called on a regular basis (e.g. calling this utility function within a while loop of your function) by your CPU bound function. The governor would check if the amount of time elapsed exceeded a particular threshold, and then sleep for a period of time so as to not consume all the CPU.
Here's a simple Java implementation off the top of my head (just so you get the idea) that will throttle the CPU usage to 50% if you have a single threaded CPU bound function.
public class Governor
{
long start_time;
public Governor()
{
this.start_time = System.currentTimeMillis();
}
public void throttle()
{
long time_elapsed = System.currentTimeMillis() - this.start_time;
if (time_elapsed > 100) //throttle whenever at least a 100 millis of work has been done
{
try { Thread.sleep(time_elapsed); } catch (InterruptedExceptione ie) {} //sleep the same amount of time
this.start_time = System.currentTimeMillis(); //reset after sleeping.
}
}
}
Your CPU bound function would instantiate a Governor, and then just call throttle on a regular basis within the function.
Thank all of you for answering. I've been working on this and the exe it runs for a few hours and want to share to help others. I wrote a class I'm going to set and forget in a WPF app that'll encrypt and push data to the cloud, but I couldn't ever have it ever interfere with the timing of the WPF app and what the WPF app needs in the way of resources, which I am also going to add a flag to disable when the WPF app is in it's highest resource consumption state. I've already highly threaded this WPF with the TPL. This solution has both the priority set of the process
myProcess.PriorityClass = ProcessPriorityClass.Idle;
and the CPU percentage limited.
then in my mainDisplay.xaml.cs I'll use
ProcessManagement.StartProcess(5);
in MainWindow()
And there is no window popping up when that exe is run
RedirectStandardOutput = true,
UseShellExecute = false,
CreateNoWindow = true
in the object initalizer
internal class ProcessManagement
{
private static int CpuPercentageLimit { get; set; }
public static void StartProcess(int cpuPercent)
{
CpuPercentageLimit = cpuPercent;
var stopwatch = new Stopwatch();
while (true)
{
stopwatch.Reset();
stopwatch.Start();
var actionStart = stopwatch.ElapsedTicks;
try
{
var myProcess = new Process
{
StartInfo =
{
FileName = #"D:\\Source\\ExeProgram\\ExeProgram\\bin\\Debug\\ExeProgram.exe",
RedirectStandardOutput = true,
UseShellExecute = false,
CreateNoWindow = true
}
};
myProcess.Start();
myProcess.PriorityClass = ProcessPriorityClass.Idle;
myProcess.Refresh();
myProcess.WaitForExit();
var actionEnd = stopwatch.ElapsedTicks;
var actionDuration = actionEnd - actionStart;
long relativeWaitTime = (int)((1 / (double)CpuPercentageLimit) * actionDuration);
var sleepTime = (int)((relativeWaitTime / (double)Stopwatch.Frequency) * 1000);
Thread.Sleep(sleepTime);
myProcess.Close();
}
catch (Exception e)
{
// ignored
}
}
}
}
In my application, there is ample time, like 24/7/365, to upload lots of data, including thousands of images, but the UI also needs to stay active when used and when the system runs, nothing else can be running.
If you have a multi core processor, you can set the Affinity on each process to only use which cores you want it to use. This is the closest method I know of. But it will only allow you to assign percentages that are a factor of 50% on a dual core, and 25% on a quad core.
You can run your program in a thread with a lower threadpriority, the rest is up to your operating system. Having a process eat up 100% of your CPU is not bad. My SETI is usually taking up all my remaining CPU time without bothering my other programs. It only gets a problem when your thread gets priority over more important programs.
According to MSDN, you can only set a thread priority, i.e.
var t1 = new Thread(() => doSomething());
t1.Priority = ThreadPriority.BelowNormal;
t1.Start();
where doSomething is the function you want to create a thead for. The priority can be one of the ThreadPriority enumeration members Lowest, BelowNormal, Normal, AboveNormal, Highest - for a description see the MSDN link above. Priority Normal is the default.
Note that CPU usage also depends on how many cores and logical processors your physical CPU has *) - and how the threads and processes are assigned to those cores (the assignment to a dedicated processor is called "processor affinity" - if you want to know more about that, see this StackOverflow question).
*) To find that out, open the task manager (via Ctrl+Alt+Delete - select "task manager"), go to Performance and select CPU there: Below the utilization graph you can see "Cores" and "Logical processors". A core is a physical unit built into the CPU, while a logical processor is just an abstraction, which means the more cores your CPU consists of, the faster it can process parallel tasks.
I honestly think rather than worry about trying to limit CPU utilization by your app, you should focus more of your energies on profiling the application to uncover and correct bottlenecks and inefficiencies that may exist.
If you code is running at all, it is at 100%
I suppose slipping in some sleeps might have an effect.
I have to wonder about that 2-3 minute figure. I've seen it too, and I suppose it's loading and initializing lots of stuff I probably don't really need.
This is something I have come across a lot of times with complex integrations (for example a daily update of products, stock and pricing on an ecomm system).
Writing the integrations as efficiently as possible is always good, using DB server power where you can instead for iterating objects in the code but at the end of the day these things WILL take up processor time and you may want to run them on a server that is doing other things too.
Sharing is caring ;-)
A good approach to avoid coding a Governor or Throttling mechanism is to use the power of a web server. Expose the integration as a "local API call" and run it in IIS (for instance). There you have multiple throttling options and affinity masks you can apply to the application pool. This can then be easily adjusted "on the fly" to give a good balance and monitor closely.
If there is no other task running, is it wrong for your app to use all the cpu capacity that is available? It is available, as in it's there and it is free to use. So use it!
If you somehow limit the cpu usage of your task, it will take longer to complete. But it will still take the same number of cpu cycles, so you gain nothing. You just slow down your application.
Don't do it. Don't even try it. There's no reason why you should.
I think what you need to do is to understand the performance problem in your application instead of trying to put a cap on the CPU usage.
You Can use Visual Studio Profiler to see why you application is taking 100% CPU for 2-3 minutes in the first place. This should reveal the hot spot in your app, and then you can be able to address this issue.
If you are asking in general regarding how to do resource throttling in windows, then you can look at the "Task" objects, Job objects allows you to set limits such as Working set, process priority...etc.
You can check out the Job objects documentation here
http://msdn.microsoft.com/en-ca/library/ms684161(VS.85).aspx
Hope this helps.
Thanks

Categories