I hit this problem all the time. Suppose I am making a command line interface (Java or C#, the problem is the same I think, I will show C# here).
I define an interface ICommand
I create an abstract base class CommandBase which implements ICommand, to contain common code.
I create several implementation classes, each extending the base class (and by extension the interface).
Now - suppose that the interface specifies that all commands implement the Name property and the Execute method...
For Name each of my instance classes must return a string that is the name of that command. That string ("HELP", "PRINT" etc) is static to the class concerned. What I would love to be able to do is define:
public abstract static const string Name;
However (sadly) you cannot define static members in an interface.
I have struggled with this issue for years now (pretty much any place I have a family of similar classes) and so will post my own 3 possible solutions below for your votes. However since none of them is ideal I am hoping someone will post a more elegant solution.
UPDATE:
I can't get the code formatting to work properly (Safari/Mac?). Apologies.
The example I am using is trivial. In real life there are sometimes dozens of implementing classes and several fields of this semi-static type (ie static to the implementing class).
I forgot to mention - ideally I want to be able to query this information statically:
string name = CommandHelp.Name;
2 of my 3 proposed solutions require that the class be instantiated before you can find out this static information which is ugly.
You may consider to use attributes instead of fields.
[Command("HELP")]
class HelpCommand : ICommand
{
}
As you mentioned, there is no way to enforce this from the interface level. Since you are using an abstract class, however, what you can do is declare the property as abstract in the base class which will force the inheriting class it override it. In C#, that would look like this:
public abstract class MyBaseClass
{
public abstract string Name { get; protected set; }
}
public class MyClass : MyBaseClass
{
public override string Name
{
get { return "CommandName"; }
protected set { }
}
}
(Note that the protected set prevents outside code changing the name.)
This may not be exactly what you're looking for, but it's as close as I think you can get. By definition, static fields do not vary; you simply can't have a member that is both static and overridable for a given class.
public interface ICommand {
String getName();
}
public class RealCommand implements ICommand {
public String getName() {
return "name";
}
}
Simple as that. Why bother having a static field?
Obs.: Do not use a field in an abstract class that should be initiated in a subclass (like David B suggestion). What if someone extends the abstract class and forget to initiate the field?
just add the name property to the base class and pass it ito the base class's constructor and have the constuctor from the derived class pass in it's command name
What I usually do (in pseudo):
abstract class:
private const string nameConstant = "ABSTRACT";
public string Name
{
get {return this.GetName();}
}
protected virtual string GetName()
{
return MyAbstractClass.nameConstant;
}
----
class ChildClass : MyAbstractClass
{
private const string nameConstant = "ChildClass";
protected override string GetName()
{
return ChildClass.nameConstant;
}
}
Of course, if this is a library that other developers will use, it wouldn't hurt if you add some reflection in the property to verify that the current instance in fact does implement the override or throw an exception "Not Implemented".
My answer will relate to Java, as that is what I know. Interfaces describe behavior, and not implementation. Additionally, static fields are tied to the classes, and not instances. If you declared the following:
interface A { abstract static NAME }
class B { NAME = "HELP" }
class C { NAME = "PRINT" }
Then how could this code know which NAME to link to:
void test(A a) {
a.NAME;
}
How I would suggest to implement this, is one of the following ways:
Class name convention, and the base class derives the name from the class name. If you wish to deviate from this, override the interface directly.
The base class has a constructor which takes name
Use annotations and enforce their presence through the base class.
However, a much better solution is proabably to use enums:
public enum Command {
HELP { execute() }, PRINT { execute() };
abstract void execute();
}
This is much cleaner, and allows you to use switch statements, and the NAME will be easily derived. You are however not able to extended the number of options runtime, but from your scenario description that might not be even needed.
[Suggested answer # 3 of 3]
I have not tried this yet and it would not be so nice in Java (I think?) but I could just tag my classes with Attributes:
[CammandAttribute(Name="HELP")]
Then I can use reflection to get that static information. Would need some simple helper methods to make the information easily available to the clients of the class but this could go in the base class.
From a design perspective, I think it is wrong to require a static implementation member... The relative deference between performance and memory usage between static and not for the example string is minimal. That aside, I understand that in implementation the object in question could have a significantly larger foot print...
The essential problem is that by trying to setup a model to support static implementation members that are avaialble at a base or interface level with C# is that our options are limited... Only properties and methods are available at the interface level.
The next design challenge is whether the code will be base or implementation specific. With implementation your model will get some valdiation at compile time at the code of having to include similar logic in all implementations. With base your valdiation will occur at run time but logic would be centralized in one place. Unfortunately, the given example is the perfect show case for implemntation specific code as there is no logic associated with the data.
So for sake of the example, lets assume there is some actual logic associated with the data and that it is extensive nad/or complex enough to provide a showcase for base classing. Setting aside whether the base class logic uses any impelementation details or not, we have the problem of insuring implemtation static initialization. I would recommend using an protected abstract in the base class to force all implementations to created the needed static data that would be valdated at compile time. All IDE's I work with make this very quick any easy. For Visual Studio it only takes a few mouse clicks and then just changing the return value essentially.
Circling back to the very specific nature of the question and ignoring many of the other design problems... If you really must keep this entire to the nature of static data and still enforce it thru the nature confines of the problem... Definately go with a method over properties, as there are way to many side effects to make go use of properties. Use a static member on the base class and use a static constructor on the implementations to set the name. Now keep in mind that you have to valdiate the name at run-time and not compile time. Basically the GetName method on the base class needs to handle what happens when an implementation does not set it's name. It could throw an exception making it brutally apparent that something is worng with an implementation that was hopefulyl cause by testing/QA and not a user. Or you could use reflection to get the implementation name and try to generate a name... The problem with reflection is that it could effect sub classes and set up a code situation that would be difficult for a junior level developer to understand and maintain...
For that matter you could always generate the name from the class name thru reflection... Though in the long term this could be a nightmare to maintain... It would however reduce the amount of code needed on the implementations, which seems more important than any other concerns. Your could also use attributes here as well, but then you are adding code into the implementations that is equivalent in time/effort as a static constructor and still have the problem off what todo when the implementation does not include that information.
What about something like this:
abstract class Command {
abstract CommandInfo getInfo();
}
class CommandInfo {
string Name;
string Description;
Foo Bar;
}
class RunCommand {
static CommandInfo Info = new CommandInfo() { Name = "Run", Foo = new Foo(42) };
override commandInfo getInfo() { return Info; }
}
Now you can access the information statically:
RunCommand.Info.Name;
And from you base class:
getInfo().Name;
[Suggested solution #1 of 3]
Define an abstract property Name in the interface to force all implementing classes to implement the name property.
(in c#) Add this property as abstract in the base class.
In the implementations implement like this:
public string Name
{
get {return COMMAND_NAME;}
}
Where name is a constant defined in that class.
Advantages:
Name itself defined as a constant.
Interface mandates the property be created.
Disadvantages:
Duplication (which I hate). The exact same property accessor code pasted into every one of my implementations. Why cant that go in the base class to avoid the clutter?
[Suggested solution #2 of 3]
Make a private member variable name.
Define an abstract property Name in the interface.
Implement the property in the base class like this:
public string Name
{
get {return Name;}
}
Force all implementations to pass name as a constructor argument when calling the abstract base class constructor:
public abstract class CommandBase(string commandName) : ICommand
{
name = commandName;
}
Now all my implementations set the name in the constructor:
public class CommandHelp : CommandBase(COMMAND_NAME) {}
Advantages:
My accessor code is centralised in the base class.
The name is defined as a constant
Disadvantages
Name is now an instance variable -
every instance of my Command classes
makes a new reference rather than
sharing a static variable.
Related
my question could seem strange.
I use a class to encapsulate a method to not have to build a class of the interface (it's a bit long to explain and i don't want to go too far).
I would to know if it was possible to "extend" a generic class by add partial to "extend" its generic part. The purpose is to keep the same name class, but by add one (or more in the future) generic type to have the possibility to encapsulate any method, then pass the object containing the function and that include this interface.
I need to have:
new Foo<string>()
new Foo<string, int>()
...
I 'successful' made this i think, but perhaps it will generate some bug i can't imagine right now, or perhaps it's not.. how to say a good way to program.
Example:
Original
// A class to encapsulate a method "without parameter"
partial Foo<T>: Interface
{
public Func<Interface, T> FooLambda{ get; set; }
public virtual object Run()
{
return ToRun(this);
}
}
The method i need to pass (from another class)
void FooToEncapsulate(Interface patt)
{
//--- My code using an object with the interface pattern
}
Add another generic Type to Foo
The part to "extend" Foo
partial Foo<T,Y>: Foo<Y>
{
public new Func<Interface, T, Y> FooLambda{ get; set; }
public T Param {get;set;}
public override object Run()
{
return this.ToRun(this, Param);
}
}
The other method i need to pass (from another class)
void FooToEncaspulate(Interface patt, int param)
{
//--- My code using an object with the interface pattern
//--- and "param"
}
I have no problem for the while with this code, and i know it's something that could be strange, must i forget to use this technic, or could i think it was thought to work also like this ? Must i think if it compiles that means it's ok ? Is there another way to proceed like this without create a new class, and extend in same time on the generic part ?
(Sorry for my english)
Thx.
Edit:
I thought by using partial that could be a good idea, because i would to keep the same name for my class. After have read an answer and comment from Enigmativity, i tried without partial, and i have no errors relating to the name of the class when i compile.
If i well understand, the fact to add generic parameter to a class makes that create as many class than as "variants" depending on the generic type. "Partial" is useful to split code on several files on a basic class.
Is partial could be useful on code split with the same number of generic type ?
You don't need the word partial to extend a class with a single generic type to have two generic types. They are in fact two distinct classed.
This works fine:
class Foo<T>
{
}
class Foo<T, Y> : Foo<Y>
{
}
Now, as said in the comments, the rest of your code is quite flaky. If you can clean up the code I could provide you with a more answer that will be of more use to you.
I have a good complete class which is doing awesome things. I need to allow users to use this class by replacing some methods in it, but inheritance is not allowed, because this class also used in other application classes.
It is like you have a class which creating a table, but you need to allow users to redefine method which is creating table cell to let the user print something custom in this cell. The class, however, has a default way to print the cell content (in case the user do not need to customize it).
Is there any common-used or standartized way to achieve this?
Updated
Having had "the peanut gallery" point out that my approach (at bottom) wouldn't fit the bill, here's another way:
Use delegation. Define certain public properties with type Action or Func. Where these behaviors need to be invoked in your code, compare the properties to null. If null, use your default behavior. If not, invoke the values.
Your calling code MAY set the properties, but doesn't have to.
(first try) Alternative approaches:
You are describing an extension method, or the use of inheritance if that's available.
Extension methods enable you to "add" methods to existing types without creating a new derived type, recompiling, or otherwise modifying the original type. Extension methods are a special kind of static method, but they are called as if they were instance methods on the extended type. For client code written in C# and Visual Basic, there is no apparent difference between calling an extension method and the methods that are actually defined in a type.
https://msdn.microsoft.com/en-us//library/bb383977.aspx
Inheritance, together with encapsulation and polymorphism, is one of the three primary characteristics (or pillars) of object-oriented programming. Inheritance enables you to create new classes that reuse, extend, and modify the behavior that is defined in other classes. The class whose members are inherited is called the base class, and the class that inherits those members is called the derived class. A derived class can have only one direct base class. However, inheritance is transitive. If ClassC is derived from ClassB, and ClassB is derived from ClassA, ClassC inherits the members declared in ClassB and ClassA.
https://msdn.microsoft.com/en-us/library/ms173149.aspx
You can't derive from all .NET types, but you can write extension methods for them.
Assuming you are able to modify the existing class, you should be marking your method as virtual.
This will allow you to provide a default implementation (which is what your existing code will use) and be able to override it with a custom one where needed.
Your base class could be something along the lines of:
public class TableMaker
{
public virtual string MakeTable()
{
//Provide default implementation used by existing code here
}
}
Your inheriting class can then override the virtual method:
public class SpecialTableMaker : TableMaker
{
public override string MakeTable()
{
//Provide specific implementation for cell text here
}
}
You existing code will work just fine and you can use this other class where you need it.
I've finally ended with this solution. It was proposed by #codenoir, however I also have a code which demonstrates a whole mechanism.
public class MyTable
{
public delegate string OnInsertHandler();
public event OnInsertHandler OnInsert;
public string Show()
{
string res = "-BEGIN-";
if (OnInsert != null) {
res += OnInsert ();
} else {
res += "#default insert#";
}
res += "-END-";
return res;
}
}
public class DelegateTester
{
public void OnTest()
{
MyTable mt = new MyTable();
Debug.Log("Default output: " + mt.Show()); // Shows "-BEGIN-#default insert#-END-"
// Changing functionality via delegate
mt.OnInsert += MyCustomInsert;
Debug.Log("Customized output: " + mt.Show()); // Shows "-BEGIN-#custom insert#-END-"
// Remove delegate
mt.OnInsert -= MyCustomInsert;
Debug.Log("Rollbacked output: " + mt.Show()); // Shows "-BEGIN-#default insert#-END-"
}
public string MyCustomInsert()
{
return "#custom insert#";
}
}
In this example I am using MyTable class which is extended using Func delegate. This way I can allow to users of my software module to extend only one method without make any mess with others classes and objects.
I have a class that upon construction, loads it's info from a database. The info is all modifiable, and then the developer can call Save() on it to make it Save that information back to the database.
I am also creating a class that will load from the database, but won't allow any updates to it. (a read only version.) My question is, should I make a separate class and inherit, or should I just update the existing object to take a readonly parameter in the constructor, or should I make a separate class entirely?
The existing class is already used in many places in the code.
Thanks.
Update:
Firstly, there's a lot of great answers here. It would be hard to accept just one. Thanks everyone.
The main problems it seems are:
Meeting expectations based on class names and inheritance structures.
Preventing unnecessary duplicate code
There seems to be a big difference between Readable and ReadOnly. A Readonly class should probably not be inherited. But a Readable class suggests that it might also gain writeability at some point.
So after much thought, here's what I'm thinking:
public class PersonTestClass
{
public static void Test()
{
ModifiablePerson mp = new ModifiablePerson();
mp.SetName("value");
ReadOnlyPerson rop = new ReadOnlyPerson();
rop.GetName();
//ReadOnlyPerson ropFmp = (ReadOnlyPerson)mp; // not allowed.
ReadOnlyPerson ropFmp = (ReadOnlyPerson)(ReadablePerson)mp;
// above is allowed at compile time (bad), not at runtime (good).
ReadablePerson rp = mp;
}
}
public class ReadablePerson
{
protected string name;
public string GetName()
{
return name;
}
}
public sealed class ReadOnlyPerson : ReadablePerson
{
}
public class ModifiablePerson : ReadablePerson
{
public void SetName(string value)
{
name = value;
}
}
Unfortunately, I don't yet know how to do this with properties (see StriplingWarrior's answer for this done with properties), but I have a feeling it will involve the protected keyword and asymmetric property access modifiers.
Also, fortunately for me, the data that is loaded from the database does not have to be turned into reference objects, rather they are simple types. This means I don't really have to worry about people modifying the members of the ReadOnlyPerson object.
Update 2:
Note, as StriplingWarrior has suggested, downcasting can lead to problems, but this is generally true as casting a Monkey to and Animal back down to a Dog can be bad. However, it seems that even though the casting is allowed at compile time, it is not actually allowed at runtime.
A wrapper class may also do the trick, but I like this better because it avoids the problem of having to deep copy the passed in object / allow the passed in object to be modified thus modifying the wrapper class.
The Liskov Substitution Principle says that you shouldn't make your read-only class inherit from your read-write class, because consuming classes would have to be aware that they can't call the Save method on it without getting an exception.
Making the writable class extend the readable class would make more sense to me, as long as there is nothing on the readable class that indicates its object can never be persisted. For example, I wouldn't call the base class a ReadOnly[Whatever], because if you have a method that takes a ReadOnlyPerson as an argument, that method would be justified in assuming that it would be impossible for anything they do to that object to have any impact on the database, which is not necessarily true if the actual instance is a WriteablePerson.
Update
I was originally assuming that in your read-only class you only wanted to prevent people calling the Save method. Based on what I'm seeing in your answer-response to your question (which should actually be an update on your question, by the way), here's a pattern you might want to follow:
public abstract class ReadablePerson
{
public ReadablePerson(string name)
{
Name = name;
}
public string Name { get; protected set; }
}
public sealed class ReadOnlyPerson : ReadablePerson
{
public ReadOnlyPerson(string name) : base(name)
{
}
}
public sealed class ModifiablePerson : ReadablePerson
{
public ModifiablePerson(string name) : base(name)
{
}
public new string Name {
get {return base.Name;}
set {base.Name = value; }
}
}
This ensures that a truly ReadOnlyPerson cannot simply be cast as a ModifiablePerson and modified. If you're willing to trust that developers won't try to down-cast arguments in this way, though, I prefer the interface-based approach in Steve and Olivier's answers.
Another option would be to make your ReadOnlyPerson just be a wrapper class for a Person object. This would necessitate more boilerplate code, but it comes in handy when you can't change the base class.
One last point, since you enjoyed learning about the Liskov Substitution Principle: By having the Person class be responsible for loading itself out of the database, you are breaking the Single-Responsibility Principle. Ideally, your Person class would have properties to represent the data that comprises a "Person," and there would be a different class (maybe a PersonRepository) that's responsible for producing a Person from the database or saving a Person to the database.
Update 2
Responding to your comments:
While you can technically answer your own question, StackOverflow is largely about getting answers from other people. That's why it won't let you accept your own answer until a certain grace period has passed. You are encouraged to refine your question and respond to comments and answers until someone has come up with an adequate solution to your initial question.
I made the ReadablePerson class abstract because it seemed like you'd only ever want to create a person that is read-only or one that is writeable. Even though both of the child classes could be considered to be a ReadablePerson, what would be the point of creating a new ReadablePerson() when you could just as easily create a new ReadOnlyPerson()? Making the class abstract requires the user to choose one of the two child classes when instantiating them.
A PersonRepository would sort of be like a factory, but the word "repository" indicates that you're actually pulling the person's information from some data source, rather than creating the person out of thin air.
In my mind, the Person class would just be a POCO, with no logic in it: just properties. The repository would be responsible for building the Person object. Rather than saying:
// This is what I think you had in mind originally
var p = new Person(personId);
... and allowing the Person object to go to the database to populate its various properties, you would say:
// This is a better separation of concerns
var p = _personRepository.GetById(personId);
The PersonRepository would then get the appropriate information out of the database and construct the Person with that data.
If you wanted to call a method that has no reason to change the person, you could protect that person from changes by converting it to a Readonly wrapper (following the pattern that the .NET libraries follow with the ReadonlyCollection<T> class). On the other hand, methods that require a writeable object could be given the Person directly:
var person = _personRepository.GetById(personId);
// Prevent GetVoteCount from changing any of the person's information
int currentVoteCount = GetVoteCount(person.AsReadOnly());
// This is allowed to modify the person. If it does, save the changes.
if(UpdatePersonDataFromLdap(person))
{
_personRepository.Save(person);
}
The benefit of using interfaces is that you're not forcing a specific class hierarchy. This will give you better flexibility in the future. For example, let's say that for the moment you write your methods like this:
GetVoteCount(ReadablePerson p);
UpdatePersonDataFromLdap(ReadWritePerson p);
... but then in two years you decide to change to the wrapper implementation. Suddenly ReadOnlyPerson is no longer a ReadablePerson, because it's a wrapper class instead of an extension of a base class. Do you change ReadablePerson to ReadOnlyPerson in all your method signatures?
Or say you decide to simplify things and just consolidate all your classes into a single Person class: now you have to change all your methods to just take Person objects. On the other hand, if you had programmed to interfaces:
GetVoteCount(IReadablePerson p);
UpdatePersonDataFromLdap(IReadWritePerson p);
... then these methods don't care what your object hierarchy looks like, as long as the objects you give them implement the interfaces they ask for. You can change your implementation hierarchy at any time without having to change these methods at all.
Definitely do not make the read-only class inherit from the writable class. Derived classes should extend and modify the capabilities of the base class; they should never take capabilities away.
You may be able to make the writable class inherit from the read-only class, but you need to do it carefully. The key question to ask is, would any consumers of the read-only class rely on the fact that it is read-only? If a consumer is counting on the values never changing, but the writable derived type is passed in and then the values are changed, that consumer could be broken.
I know it is tempting to think that because the structure of the two types (i.e. the data that they contain) is similar or identical, that one should inherit from the other. But that is often not the case. If they are being designed for significantly different use cases, they probably need to be separate classes.
A quick option might be to create an IReadablePerson (etc) interface, which contains only get properties, and does not include Save(). Then you can have your existing class implement that interface, and where you need Read-only access, have the consuming code reference the class through that interface.
In keeping with the pattern, you probably want to have a IReadWritePerson interface, as well, which would contain the setters and Save().
Edit On further thought, IWriteablePerson should probably be IReadWritePerson, since it wouldn't make much sense to have a write-only class.
Example:
public interface IReadablePerson
{
string Name { get; }
}
public interface IReadWritePerson : IReadablePerson
{
new string Name { get; set; }
void Save();
}
public class Person : IReadWritePerson
{
public string Name { get; set; }
public void Save() {}
}
The question is, "how do you want to turn a modifiable class into a read-only class by inheriting from it?"
With inheritance you can extend a class but not restrict it. Doing so by throwing exceptions would violate the Liskov Substitution Principle (LSP).
The other way round, namely deriving a modifiable class from a read-only class would be OK from this point of view; however, how do you want to turn a read-only property into a read-write property? And, moreover, is it desirable to be able to substitute a modifiable object where a read-only object is expected?
However, you can do this with interfaces
interface IReadOnly
{
int MyProperty { get; }
}
interface IModifiable : IReadOnly
{
new int MyProperty { set; }
void Save();
}
This class is assignment compatible to the IReadOnly interface as well. In read-only contexts you can access it through the IReadOnly interface.
class ModifiableClass : IModifiable
{
public int MyProperty { get; set; }
public void Save()
{
...
}
}
UPDATE
I did some further investigations on the subject.
However, there is a caveat to this, I had to add a new keyword in IModifiable and you can only access the getter either directly through the ModifiableClass or through the IReadOnly interface, but not through the IModifiable interface.
I also tried to work with two interfaces IReadOnly and IWriteOnly having only a getter or a setter respectively. You can then declare an interface inheriting from both of them and no new keyword is required in front of the property (as in IModifiable). However when you try to access the property of such an object you get the compiler error Ambiguity between 'IReadOnly.MyProperty' and 'IWriteOnly.MyProperty'.
Obviously, it is not possible to synthesize a property from separate getters and setters, as I expected.
I had the same problem to solve when creating an object for user security permissions, that in certain cases must be mutable to allow high-level users to modify security settings, but normally is read-only to store the currently logged-in user's permissions information without allowing code to modify those permissions on the fly.
The pattern I came up with was to define an interface which the mutable object implements, that has read-only property getters. The mutable implementation of that interface can then be private, allowing code that directly deals with instantiating and hydrating the object to do so, but once the object is returned out of that code (as an instance of the interface) the setters are no longer accessible.
Example:
//this is what "ordinary" code uses for read-only access to user info.
public interface IUser
{
string UserName {get;}
IEnumerable<string> PermissionStrongNames {get;}
...
}
//This class is used for editing user information.
//It does not implement the interface, and so while editable it cannot be
//easily used to "fake" an IUser for authorization
public sealed class EditableUser
{
public string UserName{get;set;}
List<SecurityGroup> Groups {get;set;}
...
}
...
//this class is nested within the class responsible for login authentication,
//which returns instances as IUsers once successfully authenticated
private sealed class AuthUser:IUser
{
private readonly EditableUser user;
public AuthUser(EditableUser mutableUser) { user = mutableUser; }
public string UserName {get{return user.UserName;}}
public IEnumerable<string> PermissionNames
{
//GetPermissions is an extension method that traverses the list of nestable Groups.
get {return user.Groups.GetPermissions().Select(p=>p.StrongName);
}
...
}
A pattern like this allows you to use code you've already created in a read-write fashion, while not allowing Joe Programmer to turn a read-only instance into a mutable one. There are a few more tricks in my actual implementation, mainly dealing with persistence of the editable object (since editing user records is a secured action, an EditableUser cannot be saved with the Repository's "normal" persistence method; it instead requires calling an overload that also takes an IUser which must have sufficient permissions).
One thing you simply must understand; if it is possible for your program to edit the records in any scope, it is possible for that ability to be abused, whether intentionally or otherwise. Regular code reviews of any usage of the mutable or immutable forms of your object will be necessary to make sure other coders aren't doing anything "clever". This pattern also isn't enough to ensure that an application used by the general public is secure; if you can write an IUser implementation, so can an attacker, so you'll need some additional way to verify that your code and not an attacker's produced a particular IUser instance, and that the instance hasn't been tampered with in the interim.
I have a class:
public class MyClass {
private List<string> folderList;
// .... a lot of useful public methods here.....
}
Everything is fine. The list of folders is encapsulated, the class is accessible through public methods. OK. Now I need an "options" form that allows a user to choose folders for MyClass. There is a catch: new Setup class must have access to private folderList field (or I have to provide public methods to get and set the folder list - it's essentially the same). In old good C++ I would use 'friend' feature because nobody but Setup class may access folderList. But there is no 'friend' feature in C# (I'm a newbie in the C# world).
P.S. Actually I just made folderList public, but I feel there is a better solution.
Thanks.
You can use "internal" keyword to make your method available only within your assembly/project and if you want to access your internal methods in other project or assembly then you can use "InternalsVisibleTo" attribute, where you can access your internals only in that assembly for which you define this attribute.
MSDN Internal Keyword
I believe the keyword you're looking for is internal. It is loosely equivilent to C++'s friend.
Internal provides assembly-level visibility.
Paired with Femaref's suggestion of using a Property, and you should have your full solution.
I am not sure if this is what he/she wanted. He/she did not put the requirement that the potential client will be in current assembly... Accordingly, when using friend in c++ (which was never considered a good style) you must know the exact type of the class which will be entitled to access the member. If this class is not part of the program you are writing, you cannot grant access this way.
If you want conditional access to some property or method of an instance of a class, you will need to implement some kind of entitlement mechanism, for example:
public IList<Folder> GetFolderList(Object pClient, IEntitlementService pService) {
if (pService.IsEntitledToAccess(this, pClient) {
return folderList;
} else {
throw new AccessNotGrantedException("...");
}
}
I believe there are built-in utilities in the .Net framwork for that purpose, just go and google (or bing)...
As an exact answer to the question I would suggest the following - create a separate interface IFolderList:
interface IFolderList
{
IList<string> FolderList { get; }
...
}
Well, you can add other required members to interface
In the class MyClass implement this interface explicitly.
As a result, the class Setup can gain access to data through an explicit cast to an interface IFolderList or work only with these interface.
An alternative to making an internal method to be used by your Setup class would be to use the Visitor pattern and add a method that takes a Setup class instance as a parameter, then uses the private folderList to initialize/change Setup state as required. Of course that would require the appropriate public methods on the Setup class, so might not fit your needs.
Making folderList field public is the worst case. Exposing implementation details through public fields or through poorly designed public property (there are no differences for collections between public fields and public property with getter and setter).
With public fields you can't promote a field to be a property when you want to add validation, change notification, put it into an interface or change your collection type from one type to another.
BTW, Jeffrey Richter in annotation to Framework Design Guideline mentioned that "Personally, I always make my fields private. I don't even expose fields as internal, because doing so would give me no protection from code in my own assembly"
I think the best way to add explicit interface that expose strict abstraction to MyClass clients.
For example, you may add two separate methods to retrieving folders and to adding new folder to this storage:
class MyClass {
//You should return IList<string>
public IList<string> MyList {get {return myList;} }
//Or even IEnumerable<string>, because you should return
//as minimal interface as your clients needs
public IEnumerable<string> MyList {get {return myList;} }
//You may expose this functionality through internal
//method, or through protected internal method,
//but you should avoid direct access to your implementation
//even for descendants or another classes in your assembly
public void AddElement(string s) {myList.Add(s);}
private List<string> myList;
}
That's what properties are for in C#:
public class MyClass
{
private List folderList;
public List FolderList
{
get {return folderList;}
set {folderList = value;}
}
}
Properties encapsulate the private fields, provide possibilites for validation while setting. Also, you should read up on Generics (abit like templates in c++) and use List<T> instead of List to have a strongly typed collection.
However, you probably wont be able to achieve what you plan unless Setup derives from MyClass. In that case, you can use a protected field.
I have just one method that I need several different classes to access and it just seems lame to make a utility class for just one method. The classes that need to use this method are already inheriting an abstract class so I can't use inheritance. What would you guys do in this situation?
[I]t just seems lame to make a utility
class for just one method
Just do it, it will grow. It always does. Common.Utilities or something of that nature is always necessary in any non-trivial solution.
Keep in mind that a class is just a small, focused machine. If the class only has one method then it's just a very small, focused machine. There's nothing wrong with it, and centralizing the code is valuable.
There is a cheat that you can use :-)
Create an Interface that your classes can "implement" but, create an extension method on that interface, your classes then magically get that method without having to call the utility class...
public Interface IDoThisThing {}
public static void DoThisThingImpl(this IDoThisThing dtt)
{
//The Impl of Do this thing....
}
Now on your classes you can just add the IDoThisThing
public class MyClass, MyBaseClass, IDoThisThing
{
//...
}
and they Get that thing :-)
Note, this is only syntatic sugar around effectively a utility class, but it does make the client code very clean (as just appears as a method on your class).
What do you mean you can't use inheritance?
If you write the method in the abstract class, you can also write the implementation (not everything in an abstract class needs to be abstract).
But generally, it's advisable to have some sort of 'GeneralUtils' class; cause you end up with a few of these functions.
I'd need more info to give a definite answer.
However a well-named class with a single well-named method could work wonders for readability (as compared to an inheritance based solution for instance)
Since you use the term utility method, I'd say create a static class with the static method and be done with it.
can use extension methods...
namespace ExtendMe
{
public interface IDecorate { }
public static class Extensions
{
public static void CommonMethod(this IDecorate o) { /* do stuff */ }
}
public class Blah :IDecorate {}
public class Widget : IDecorate {}
class Program
{
static void Main(string[] args)
{
new Blah().CommonMethod();
new Widget().CommonMethod();
}
}
}