Suppose you have a TransformBlock with configured parallelism and want to stream data trough the block. The input data should be created only when the pipeline can actually start processing it. (And should be released the moment it leaves the pipeline.)
Can I achieve this? And if so how?
Basically I want a data source that works as an iterator.
Like so:
public IEnumerable<Guid> GetSourceData()
{
//In reality -> this should also be an async task -> but yield return does not work in combination with async/await ...
Func<ICollection<Guid>> GetNextBatch = () => Enumerable.Repeat(100).Select(x => Guid.NewGuid()).ToArray();
while (true)
{
var batch = GetNextBatch();
if (batch == null || !batch.Any()) break;
foreach (var guid in batch)
yield return guid;
}
}
This would result in +- 100 records in memory. OK: more if the blocks you append to this data source would keep them in memory for some time, but you have a chance to get only a subset (/stream) of data.
Some background information:
I intend to use this in combination with azure cosmos db, where the source could all objects in a collection, or a change feed. Needless to say that I don't want all of those objects stored in memory. So this can't work:
using System.Threading.Tasks.Dataflow;
public async Task ExampleTask()
{
Func<Guid, object> TheActualAction = text => text.ToString();
var config = new ExecutionDataflowBlockOptions
{
BoundedCapacity = 5,
MaxDegreeOfParallelism = 15
};
var throtteler = new TransformBlock<Guid, object>(TheActualAction, config);
var output = new BufferBlock<object>();
throtteler.LinkTo(output);
throtteler.Post(Guid.NewGuid());
throtteler.Post(Guid.NewGuid());
throtteler.Post(Guid.NewGuid());
throtteler.Post(Guid.NewGuid());
//...
throtteler.Complete();
await throtteler.Completion;
}
The above example is not good because I add all the items without knowing if they are actually being 'used' by the transform block. Also, I don't really care about the output buffer. I understand that I need to send it somewhere so I can await the completion, but I have no use for the buffer after that. So it should just forget about all it gets ...
Post() will return false if the target is full without blocking. While this could be used in a busy-wait loop, it's wasteful. SendAsync() on the other hand will wait if the target is full :
public async Task ExampleTask()
{
var config = new ExecutionDataflowBlockOptions
{
BoundedCapacity = 50,
MaxDegreeOfParallelism = 15
};
var block= new ActionBlock<Guid, object>(TheActualAction, config);
while(//some condition//)
{
var data=await GetDataFromCosmosDB();
await block.SendAsync(data);
//Wait a bit if we want to use polling
await Task.Delay(...);
}
block.Complete();
await block.Completion;
}
It seems you want to process data at a defined degree of parallelism (MaxDegreeOfParallelism = 15). TPL dataflow is very clunky to use for such a simple requirement.
There's a very simple and powerful pattern that might solve your problem. It's a parallel async foreach loop as described here: https://blogs.msdn.microsoft.com/pfxteam/2012/03/05/implementing-a-simple-foreachasync-part-2/
public static Task ForEachAsync<T>(this IEnumerable<T> source, int dop, Func<T, Task> body)
{
return Task.WhenAll(
from partition in Partitioner.Create(source).GetPartitions(dop)
select Task.Run(async delegate {
using (partition)
while (partition.MoveNext())
await body(partition.Current);
}));
}
You can then write something like:
var dataSource = ...; //some sequence
dataSource.ForEachAsync(15, async item => await ProcessItem(item));
Very simple.
You can dynamically reduce the DOP by using a SemaphoreSlim. The semaphore acts as a gate that only lets N concurrent threads/tasks in. N can be changed dynamically.
So you would use ForEachAsync as the basic workhorse and then add additional restrictions and throttling on top.
Related
I am trying to execute file upload using Parallel.ForEachAsync, it works but loses the sort order. Is there any method to synchronize sort order or source and destination lists?
await Parallel.ForEachAsync(model.DestinationFiles,
new ParallelOptions { MaxDegreeOfParallelism = 20 }, async (file, CancellationToken) =>
{
var storeAsync = await _fileServerService.Init(displayUrl).StoreAsync(file.FileInfo, false, file.OutputFileName);
convertResultDto.Files.Add(new ConverterConvertResultFile(storeAsync));
});
Previously I used Linq parallel operator (PLINQ), which has the AsOrdered operator to deal with sorting. Anyway, I think the Parallel.ForEachAsync is better for using in async methods with I/O scenario?
var storeFiles = model.DestinationFiles.AsParallel().AsOrdered().WithDegreeOfParallelism(50)
.Select(file => StoreAsync(file.FileInfo, false, file.OutputFileName).GetAwaiter().GetResult())
.Select(storeFile => new StoreFile
{
FileId = storeFile.FileId,
Url = storeFile.Url,
OutputFileName = storeFile.OutputFileName,
Size = storeFile.Size
});
In this case, you're wanting to get a set of results and store them in a resulting collection. Parallel is designed for more operations without results. For operations with results, you can use PLINQ for CPU-bound operations or asynchronous concurrency for I/O-bound operations. Unfortunately, there isn't a PLINQ equivalent for Parallel.ForEachAsync, which would be the closest equivalent to your current code.
Asynchronous concurrency uses Task.WhenAll to get the results of multiple asynchronous operations. It can also use SemaphoreSlim for throttling. Something like this:
var mutex = new SemaphoreSlim(20);
var results = await Task.WhenAll(model.DestinationFiles.Select(async file =>
{
await mutex.WaitAsync();
try
{
var storeAsync = await _fileServerService.Init(displayUrl).StoreAsync(file.FileInfo, false, file.OutputFileName);
return new ConverterConvertResultFile(storeAsync);
}
finally { mutex.Release(); }
});
convertResultDto.Files.AddRange(results);
However, if you have a mixture of CPU-bound and I/O-bound operations, then you'll probably want to continue to use ForEachAsync. In that case, you can create the entries in your destination collection first, then perform each operation with an index so it knows where to store them:
// This code assumes convertResultDto.Files is empty at this point.
var count = model.DestinationFiles.Count;
convertResultDto.Files.AddRange(Enumerable.Repeat<ConverterConvertResultFile>(null!, count));
await Parallel.ForEachAsync(
model.DestinationFiles.Select((file, i) => (file, i)),
new ParallelOptions { MaxDegreeOfParallelism = 20 },
async item =>
{
var (file, i) = item;
var storeAsync = await _fileServerService.Init(displayUrl).StoreAsync(file.FileInfo, false, file.OutputFileName);
convertResultDto.Files[i] = new ConverterConvertResultFile(storeAsync);
});
I have a list of id's and I want to get data for each of those id in parallel from database. My below ExecuteAsync method is called at very high throughput and for each request we have around 500 ids for which I need to extract data.
So I have got below code where I am looping around list of ids and making async calls for each of those id in parallel and it works fine.
private async Task<List<T>> ExecuteAsync<T>(IList<int> ids, IPollyPolicy policy,
Func<CancellationToken, int, Task<T>> mapper) where T : class
{
var tasks = new List<Task<T>>(ids.Count);
// invoking multiple id in parallel to get data for each id from database
for (int i = 0; i < ids.Count; i++)
{
tasks.Add(Execute(policy, ct => mapper(ct, ids[i])));
}
// wait for all id response to come back
var responses = await Task.WhenAll(tasks);
var excludeNull = new List<T>(ids.Count);
for (int i = 0; i < responses.Length; i++)
{
var response = responses[i];
if (response != null)
{
excludeNull.Add(response);
}
}
return excludeNull;
}
private async Task<T> Execute<T>(IPollyPolicy policy,
Func<CancellationToken, Task<T>> requestExecuter) where T : class
{
var response = await policy.Policy.ExecuteAndCaptureAsync(
ct => requestExecuter(ct), CancellationToken.None);
if (response.Outcome == OutcomeType.Failure)
{
if (response.FinalException != null)
{
// log error
throw response.FinalException;
}
}
return response?.Result;
}
Question:
Now as you can see I am looping all ids and making bunch of async calls to database in parallel for each id which can put lot of load on database (depending on how many request is coming). So I want to limit the number of async calls we are making to database. I modified ExecuteAsync to use Semaphore as shown below but it doesn't look like it does what I want it to do:
private async Task<List<T>> ExecuteAsync<T>(IList<int> ids, IPollyPolicy policy,
Func<CancellationToken, int, Task<T>> mapper) where T : class
{
var throttler = new SemaphoreSlim(250);
var tasks = new List<Task<T>>(ids.Count);
// invoking multiple id in parallel to get data for each id from database
for (int i = 0; i < ids.Count; i++)
{
await throttler.WaitAsync().ConfigureAwait(false);
try
{
tasks.Add(Execute(policy, ct => mapper(ct, ids[i])));
}
finally
{
throttler.Release();
}
}
// wait for all id response to come back
var responses = await Task.WhenAll(tasks);
// same excludeNull code check here
return excludeNull;
}
Does Semaphore works on Threads or Tasks? Reading it here looks like Semaphore is for Threads and SemaphoreSlim is for tasks.
Is this correct? If yes then what's the best way to fix this and limit the number of async IO tasks we make to database here.
Task is an abstraction on threads, and doesn’t necessarily create a new thread. Semaphore limits the number of threads that can access that for loop. Execute returns a Task which aren’t threads. If there’s only 1 request, there will be only 1 thread inside that for loop, even if it is asking for 500 ids. The 1 thread sends off all the async IO tasks itself.
Sort of. I would not say that tasks are related to threads at all. There are actually two kinds of tasks: a delegate task (which is kind of an abstraction of a thread), and a promise task (which has nothing to do with threads).
Regarding the SemaphoreSlim, it does limit the concurrency of a block of code (not threads).
I recently started playing with C# so my understanding is not right looks like w.r.t Threads and Tasks.
I recommend reading my async intro and best practices. Follow up with There Is No Thread if you're interested more about how threads aren't really involved.
I modified ExecuteAsync to use Semaphore as shown below but it doesn't look like it does what I want it to do
The current code is only throttling the adding of the tasks to the list, which is only done one at a time anyway. What you want to do is throttle the execution itself:
private async Task<List<T>> ExecuteAsync<T>(IList<int> ids, IPollyPolicy policy, Func<CancellationToken, int, Task<T>> mapper) where T : class
{
var throttler = new SemaphoreSlim(250);
var tasks = new List<Task<T>>(ids.Count);
// invoking multiple id in parallel to get data for each id from database
for (int i = 0; i < ids.Count; i++)
tasks.Add(ThrottledExecute(ids[i]));
// wait for all id response to come back
var responses = await Task.WhenAll(tasks);
// same excludeNull code check here
return excludeNull;
async Task<T> ThrottledExecute(int id)
{
await throttler.WaitAsync().ConfigureAwait(false);
try {
return await Execute(policy, ct => mapper(ct, id)).ConfigureAwait(false);
} finally {
throttler.Release();
}
}
}
Your colleague has probably in mind the Semaphore class, which is indeed a thread-centric throttler, with no asynchronous capabilities.
Limits the number of threads that can access a resource or pool of resources concurrently.
The SemaphoreSlim class is a lightweight alternative to Semaphore, which includes the asynchronous method WaitAsync, that makes all the difference in the world. The WaitAsync doesn't block a thread, it blocks an asynchronous workflow. Asynchronous workflows are cheap (usually less than 1000 bytes each). You can have millions of them "running" concurrently at any given moment. This is not the case with threads, because of the 1 MB of memory that each thread reserves for its stack.
As for the ExecuteAsync method, here is how you could refactor it by using the LINQ methods Select, Where, ToArray and ToList:
Update: The Polly library supports capturing and continuing on the current synchronization context, so I added a bool executeOnCurrentContext
argument to the API. I also renamed the asynchronous Execute method to ExecuteAsync, to be in par with the guidelines.
private async Task<List<T>> ExecuteAsync<T>(IList<int> ids, IPollyPolicy policy,
Func<CancellationToken, int, Task<T>> mapper,
int concurrencyLevel = 1, bool executeOnCurrentContext = false) where T : class
{
var throttler = new SemaphoreSlim(concurrencyLevel);
Task<T>[] tasks = ids.Select(async id =>
{
await throttler.WaitAsync().ConfigureAwait(executeOnCurrentContext);
try
{
return await ExecuteAsync(policy, ct => mapper(ct, id),
executeOnCurrentContext).ConfigureAwait(false);
}
finally
{
throttler.Release();
}
}).ToArray();
T[] results = await Task.WhenAll(tasks).ConfigureAwait(false);
return results.Where(r => r != null).ToList();
}
private async Task<T> ExecuteAsync<T>(IPollyPolicy policy,
Func<CancellationToken, Task<T>> function,
bool executeOnCurrentContext = false) where T : class
{
var response = await policy.Policy.ExecuteAndCaptureAsync(
ct => executeOnCurrentContext ? function(ct) : Task.Run(() => function(ct)),
CancellationToken.None, continueOnCapturedContext: executeOnCurrentContext)
.ConfigureAwait(executeOnCurrentContext);
if (response.Outcome == OutcomeType.Failure)
{
if (response.FinalException != null)
{
ExceptionDispatchInfo.Throw(response.FinalException);
}
}
return response?.Result;
}
You are throttling the rate at which you add tasks to the list. You are not throttling the rate at which tasks are executed. To do that, you'd probably have to implement your semaphore calls inside the Execute method itself.
If you can't modify Execute, another way to do it is to poll for completed tasks, sort of like this:
for (int i = 0; i < ids.Count; i++)
{
var pendingCount = tasks.Count( t => !t.IsCompleted );
while (pendingCount >= 500) await Task.Yield();
tasks.Add(Execute(policy, ct => mapper(ct, ids[i])));
}
await Task.WhenAll( tasks );
Actually the TPL is capable to control the task execution and limit the concurrency. You can test how many parallel tasks is suitable for your use-case. No need to think about threads, TPL will manage everything fine for you.
To use limited concurrency see this answer, credits to #panagiotis-kanavos
.Net TPL: Limited Concurrency Level Task scheduler with task priority?
The example code is (even using different priorities, you can strip that):
QueuedTaskScheduler qts = new QueuedTaskScheduler(TaskScheduler.Default,4);
TaskScheduler pri0 = qts.ActivateNewQueue(priority: 0);
TaskScheduler pri1 = qts.ActivateNewQueue(priority: 1);
Task.Factory.StartNew(()=>{ },
CancellationToken.None,
TaskCreationOptions.None,
pri0);
Just throw all your tasks to the queue and with Task.WhenAll you can wait till everything is done.
I have an IEnumerable<Task>, where each Task will call the same endpoint. However, the endpoint can only handle so many calls per second. How can I put, say, a half second delay between each call?
I have tried adding Task.Delay(), but of course awaiting them simply means that the app waits a half second before sending all the calls at once.
Here is a code snippet:
var resultTasks = orders
.Select(async task =>
{
var result = new VendorTaskResult();
try
{
result.Response = await result.CallVendorAsync();
}
catch(Exception ex)
{
result.Exception = ex;
}
return result;
} );
var results = Task.WhenAll(resultTasks);
I feel like I should do something like
Task.WhenAll(resultTasks.EmitOverTime(500));
... but how exactly do I do that?
What you describe in your question is in other words rate limiting. You'd like to apply rate limiting policy to your client, because the API you use enforces such a policy on the server to protect itself from abuse.
While you could implement rate limiting yourself, I'd recommend you to go with some well established solution. Rate Limiter from Davis Desmaisons was the one that I picked at random and I instantly liked it. It had solid documentation, superior coverage and was easy to use. It is also available as NuGet package.
Check out the simple snippet below that demonstrates running semi-overlapping tasks in sequence while defering the task start by half a second after the immediately preceding task started. Each task lasts at least 750 ms.
using ComposableAsync;
using RateLimiter;
using System;
using System.Threading.Tasks;
namespace RateLimiterTest
{
class Program
{
static void Main(string[] args)
{
Log("Starting tasks ...");
var constraint = TimeLimiter.GetFromMaxCountByInterval(1, TimeSpan.FromSeconds(0.5));
var tasks = new[]
{
DoWorkAsync("Task1", constraint),
DoWorkAsync("Task2", constraint),
DoWorkAsync("Task3", constraint),
DoWorkAsync("Task4", constraint)
};
Task.WaitAll(tasks);
Log("All tasks finished.");
Console.ReadLine();
}
static void Log(string message)
{
Console.WriteLine(DateTime.Now.ToString("HH:mm:ss.fff ") + message);
}
static async Task DoWorkAsync(string name, IDispatcher constraint)
{
await constraint;
Log(name + " started");
await Task.Delay(750);
Log(name + " finished");
}
}
}
Sample output:
10:03:27.121 Starting tasks ...
10:03:27.154 Task1 started
10:03:27.658 Task2 started
10:03:27.911 Task1 finished
10:03:28.160 Task3 started
10:03:28.410 Task2 finished
10:03:28.680 Task4 started
10:03:28.913 Task3 finished
10:03:29.443 Task4 finished
10:03:29.443 All tasks finished.
If you change the constraint to allow maximum two tasks per second (var constraint = TimeLimiter.GetFromMaxCountByInterval(2, TimeSpan.FromSeconds(1));), which is not the same as one per half a second, then the output could be like:
10:06:03.237 Starting tasks ...
10:06:03.264 Task1 started
10:06:03.268 Task2 started
10:06:04.026 Task2 finished
10:06:04.031 Task1 finished
10:06:04.275 Task3 started
10:06:04.276 Task4 started
10:06:05.032 Task4 finished
10:06:05.032 Task3 finished
10:06:05.033 All tasks finished.
Note that the current version of Rate Limiter targets .NETFramework 4.7.2+ or .NETStandard 2.0+.
This is just a thought, but another approach could be to create a queue and add another thread that runs polling the queue for calls that need to go out to your endpoint.
Have you considered just turning that into a foreach-loop with a Task.Delay call? You seem to want to explicitly call them sequentially, it won't hurt if that is obvious from your code.
var results = new List<YourResultType>;
foreach(var order in orders){
var result = new VendorTaskResult();
try
{
result.Response = await result.CallVendorAsync();
results.Add(result.Response);
}
catch(Exception ex)
{
result.Exception = ex;
}
}
Instead of selecting from orders you could loop over them, and inside the loop put the result into a list and then call Task.WhenAll.
Would look something like:
var resultTasks = new List<VendorTaskResult>(orders.Count);
orders.ToList().ForEach( item => {
var result = new VendorTaskResult();
try
{
result.Response = await result.CallVendorAsync();
}
catch(Exception ex)
{
result.Exception = ex;
}
resultTasks.Add(result);
Thread.Sleep(x);
});
var results = Task.WhenAll(resultTasks);
If you want to control the number of requests executed simultaneously, you have to use a semaphore.
I have something very similar, and it works fine with me. Please note that I call ToArray() after the Linq query finishes, that triggers the tasks:
using (HttpClient client = new HttpClient()) {
IEnumerable<Task<string>> _downloads = _group
.Select(job => {
await Task.Delay(300);
return client.GetStringAsync(<url with variable job>);
});
Task<string>[] _downloadTasks = _downloads.ToArray();
_pages = await Task.WhenAll(_downloadTasks);
}
Now please note that this will create n nunmber of tasks, all in parallel, and the Task.Delay literally does nothing. If you want to call the pages synchronously (as it sounds by putting a delay between the calls), then this code may be better:
using (HttpClient client = new HttpClient()) {
foreach (string job in _group) {
await Task.Delay(300);
_pages.Add(await client.GetStringAsync(<url with variable job>));
}
}
The download of the pages is still asynchronous (while downloading other tasks are done), but each call to download the page is synchronous, ensuring that you can wait for one to finish in order to call the next one.
The code can be easily changed to call the pages asynchronously in chunks, like every 10 pages, wait 300ms, like in this sample:
IEnumerable<string[]> toParse = myData
.Select((v, i) => new { v.code, group = i / 20 })
.GroupBy(x => x.group)
.Select(g => g.Select(x => x.code).ToArray());
using (HttpClient client = new HttpClient()) {
foreach (string[] _group in toParse) {
string[] _pages = null;
IEnumerable<Task<string>> _downloads = _group
.Select(job => {
return client.GetStringAsync(<url with job>);
});
Task<string>[] _downloadTasks = _downloads.ToArray();
_pages = await Task.WhenAll(_downloadTasks);
await Task.Delay(5000);
}
}
All this does is group your pages in chunks of 20, iterate through the chunks, download all pages of the chunk asynchronously, wait 5 seconds, move on to the next chunk.
I hope that is what you were waiting for :)
The proposed method EmitOverTime is doable, but only by blocking the current thread:
public static IEnumerable<Task<TResult>> EmitOverTime<TResult>(
this IEnumerable<Task<TResult>> tasks, int delay)
{
foreach (var item in tasks)
{
Thread.Sleep(delay); // Delay by blocking
yield return item;
}
}
Usage:
var results = await Task.WhenAll(resultTasks.EmitOverTime(500));
Probably better is to create a variant of Task.WhenAll that accepts a delay argument, and delays asyncronously:
public static async Task<TResult[]> WhenAllWithDelay<TResult>(
IEnumerable<Task<TResult>> tasks, int delay)
{
var tasksList = new List<Task<TResult>>();
foreach (var task in tasks)
{
await Task.Delay(delay).ConfigureAwait(false);
tasksList.Add(task);
}
return await Task.WhenAll(tasksList).ConfigureAwait(false);
}
Usage:
var results = await WhenAllWithDelay(resultTasks, 500);
This design implies that the enumerable of tasks should be enumerated only once. It is easy to forget this during development, and start enumerating it again, spawning a new set of tasks. For this reason I propose to make it an OnlyOnce enumerable, as it is shown in this question.
Update: I should mention why the above methods work, and under what premise. The premise is that the supplied IEnumerable<Task<TResult>> is deferred, in other words non-materialized. At the method's start there are no tasks created yet. The tasks are created one after the other during the enumeration of the enumerable, and the trick is that the enumeration is slow and controlled. The delay inside the loop ensures that the tasks are not created all at once. They are created hot (in other words already started), so at the time the last task has been created some of the first tasks may have already been completed. The materialized list of half-running/half-completed tasks is then passed to Task.WhenAll, that waits for all to complete asynchronously.
I'm submitting a series of select statements (queries - thousands of them) to a single database synchronously and getting back one DataTable per query (Note: This program is such that it has knowledge of the DB schema it is scanning only at run time, hence the use of DataTables). The program runs on a client machine and connects to DBs on a remote machine. It takes a long time to run so many queries. So, assuming that executing them async or in parallel will speed things up, I'm exploring TPL Dataflow (TDF). I want to use the TDF library because it seems to handle all of the concerns related to writing multi-threaded code that would otherwise need to be done by hand.
The code shown is based on http://blog.i3arnon.com/2016/05/23/tpl-dataflow/. Its minimal and is just to help me understand the basic operations of TDF. Please do know I've read many blogs and coded many iterations trying to crack this nut.
None-the-less, with this current iteration, I have one problem and a question:
Problem
The code is inside a button click method (Using a UI, a user selects a machine, a sql instance, and a database, and then kicks off the scan). The two lines with the await operator return an error at build time: The 'await' operator can only be used within an async method. Consider marking this method with the 'async' modifier and changing its return type to 'Task'. I can't change the return type of the button click method. Do I need to somehow isolate the button click method from the async-await code?
Question
Although I've found beau-coup write-ups describing the basics of TDF, I can't find an example of how to get my hands on the output that each invocation of the TransformBlock produces (i.e., a DataTable). Although I want to submit the queries async, I do need to block until all queries submitted to the TransformBlock are completed. How do I get my hands on the series of DataTables produced by the TransformBlock and block until all queries are complete?
Note: I acknowledge that I have only one block now. At a minimum, I'll be adding a cancellation block and so do need/want to use TPL.
private async Task ToolStripButtonStart_Click(object sender, EventArgs e)
{
UserInput userInput = new UserInput
{
MachineName = "gat-admin",
InstanceName = "",
DbName = "AdventureWorks2014",
};
DataAccessLayer dataAccessLayer = new DataAccessLayer(userInput.MachineName, userInput.InstanceName);
//CreateTableQueryList gets a list of all tables from the DB and returns a list of
// select statements, one per table, e.g., SELECT * from [schemaname].[tablename]
IList<String> tableQueryList = CreateTableQueryList(userInput);
// Define a block that accepts a select statement and returns a DataTable of results
// where each returned record is: schemaname + tablename + columnname + column datatype + field data
// e.g., if the select query returns one record with 5 columns, then a datatable with 5
// records (one per field) will come back
var transformBlock_SubmitTableQuery = new TransformBlock<String, Task<DataTable>>(
async tableQuery => await dataAccessLayer._SubmitSelectStatement(tableQuery),
new ExecutionDataflowBlockOptions
{
MaxDegreeOfParallelism = 2,
});
// Add items to the block and start processing
foreach (String tableQuery in tableQueryList)
{
await transformBlock_SubmitTableQuery.SendAsync(tableQuery);
}
// Enable the Cancel button and disable the Start button.
toolStripButtonStart.Enabled = false;
toolStripButtonStop.Enabled = true;
//shut down the block (no more inputs or outputs)
transformBlock_SubmitTableQuery.Complete();
//await the completion of the task that procduces the output DataTable
await transformBlock_SubmitTableQuery.Completion;
}
public async Task<DataTable> _SubmitSelectStatement(string queryString )
{
try
{
.
.
await Task.Run(() => sqlDataAdapter.Fill(dt));
// process dt into the output DataTable I need
return outputDt;
}
catch
{
throw;
}
}
The cleanest way to retrieve the output of a TransformBlock is to perform a nested loop using the methods OutputAvailableAsync and TryReceive. It is a bit verbose, so you could consider encapsulating this functionality in an extension method ToListAsync:
public static async Task<List<T>> ToListAsync<T>(this IReceivableSourceBlock<T> source,
CancellationToken cancellationToken = default)
{
ArgumentNullException.ThrowIfNull(source);
List<T> list = new();
while (await source.OutputAvailableAsync(cancellationToken).ConfigureAwait(false))
{
while (source.TryReceive(out T item))
{
list.Add(item);
}
}
Debug.Assert(source.Completion.IsCompleted);
await source.Completion.ConfigureAwait(false); // Propagate possible exception
return list;
}
Then you could use the ToListAsync method like this:
private async Task ToolStripButtonStart_Click(object sender, EventArgs e)
{
TransformBlock<string, DataTable> transformBlock = new(async query => //...
//...
transformBlock.Complete();
foreach (DataTable dataTable in await transformBlock.ToListAsync())
{
// Do something with each dataTable
}
}
Note: this ToListAsync implementation is destructive, meaning that in case of an error the consumed messages are discarded. To make it non-destructive, just remove the await source.Completion line. In this case you'll have to remember to await the Completion of the block after processing the list with the consumed messages, otherwise you won't be aware if the TransformBlock failed to process all of its input.
Alternative ways to retrieve the output of a dataflow block do exist, for example this one by dcastro uses a BufferBlock as a buffer and is slightly more performant, but personally I find the approach above to be safer and more straightforward.
Instead of waiting for the completion of the block before retrieving the output, you could also retrieve it in a streaming manner, as an IAsyncEnumerable<T> sequence:
public static async IAsyncEnumerable<T> ToAsyncEnumerable<T>(
this IReceivableSourceBlock<T> source,
[EnumeratorCancellation] CancellationToken cancellationToken = default)
{
ArgumentNullException.ThrowIfNull(source);
while (await source.OutputAvailableAsync(cancellationToken).ConfigureAwait(false))
{
while (source.TryReceive(out T item))
{
yield return item;
cancellationToken.ThrowIfCancellationRequested();
}
}
Debug.Assert(source.Completion.IsCompleted);
await source.Completion.ConfigureAwait(false); // Propagate possible exception
}
This way you will be able to get your hands to each DataTable immediately after it has been cooked, without having to wait for the processing of all queries. To consume an IAsyncEnumerable<T> you simply move the await before the foreach:
await foreach (DataTable dataTable in transformBlock.ToAsyncEnumerable())
{
// Do something with each dataTable
}
Advanced: Below is a more sophisticated version of the ToListAsync method, that propagates all the errors of the underlying block, in the same direct way that are propagated by methods like the Task.WhenAll and Parallel.ForEachAsync. The original simple ToListAsync method wraps the errors in a nested AggregateException, using the Wait technique that is shown in this answer.
/// <summary>
/// Asynchronously waits for the successful completion of the specified source, and
/// returns all the received messages. In case the source completes with error,
/// the error is propagated and the received messages are discarded.
/// </summary>
public static Task<List<T>> ToListAsync<T>(this IReceivableSourceBlock<T> source,
CancellationToken cancellationToken = default)
{
ArgumentNullException.ThrowIfNull(source);
async Task<List<T>> Implementation()
{
List<T> list = new();
while (await source.OutputAvailableAsync(cancellationToken)
.ConfigureAwait(false))
while (source.TryReceive(out T item))
list.Add(item);
await source.Completion.ConfigureAwait(false);
return list;
}
return Implementation().ContinueWith(t =>
{
if (t.IsCanceled) return t;
Debug.Assert(source.Completion.IsCompleted);
if (source.Completion.IsFaulted)
{
TaskCompletionSource<List<T>> tcs = new();
tcs.SetException(source.Completion.Exception.InnerExceptions);
return tcs.Task;
}
return t;
}, default, TaskContinuationOptions.DenyChildAttach |
TaskContinuationOptions.ExecuteSynchronously, TaskScheduler.Default).Unwrap();
}
.NET 6 update: A new API DataflowBlock.ReceiveAllAsync was introduced in .NET 6, with this signature:
public static IAsyncEnumerable<TOutput> ReceiveAllAsync<TOutput> (
this IReceivableSourceBlock<TOutput> source,
CancellationToken cancellationToken = default);
It is similar with the aforementioned ToAsyncEnumerable method. The important difference is that the new API does not propagate the possible exception of the consumed source block, after propagating all of its messages. This behavior is not consistent with the analogous API ReadAllAsync from the Channels library. I have reported this consistency on GitHub, and the issue is currently labeled by Microsoft as a bug.
As it turns out, to meet my requirements, TPL Dataflow is a bit overkill. I was able to meet my requirements using async/await and Task.WhenAll. I used the Microsoft How-To How to: Extend the async Walkthrough by Using Task.WhenAll (C#) as a model.
Regarding my "Problem"
My "problem" is not a problem. An event method signature (in my case, a "Start" button click method that initiates my search) can be modified to be async. In the Microsoft How-To GetURLContentsAsync solution, see the startButton_Click method signature:
private async void startButton_Click(object sender, RoutedEventArgs e)
{
.
.
}
Regarding my question
Using Task.WhenAll, I can wait for all my queries to finish then process all the outputs for use on my UI. In the Microsoft How-To GetURLContentsAsync solution, see the SumPageSizesAsync method, i.e,, the array of int named lengths is the sum of all outputs.
private async Task SumPageSizesAsync()
{
.
.
// Create a query.
IEnumerable<Task<int>> downloadTasksQuery = from url in urlList select ProcessURLAsync(url);
// Use ToArray to execute the query and start the download tasks.
Task<int>[] downloadTasks = downloadTasksQuery.ToArray();
// Await the completion of all the running tasks.
Task<int[]> whenAllTask = Task.WhenAll(downloadTasks);
int[] lengths = await whenAllTask;
.
.
}
Using Dataflow blocks properly results in both cleaner and faster code. Dataflow blocks aren't agents or tasks. They're meant to work in a pipeline of blocks, connected with LinkTo calls, not manual coding.
It seems the scenario is to download some data, eg some CSVs, parse them and insert them to a database. Each of those steps can go into its own block:
a Downloader with a DOP>1, to allow multiple downloads run concurrently without flooding the network.
a Parser that converts the files into arrays of objects
an Importer that uses SqlBulkCopy to bulk insert the rows into the database in the fastest way possible, using minimal logging.
var downloadDOP=8;
var parseDOP=2;
var tableName="SomeTable";
var linkOptions=new DataflowLinkOptions { PropagateCompletion = true};
var downloadOptions =new ExecutionDataflowBlockOptions {
MaxDegreeOfParallelism = downloadDOP,
};
var parseOptions =new ExecutionDataflowBlockOptions {
MaxDegreeOfParallelism = parseDOP,
};
With these options, we can construct a pipeline of blocks
//HttpClient is thread-safe and reusable
HttpClient http=new HttpClient(...);
var downloader=new TransformBlock<(Uri,string),FileInfo>(async (uri,path)=>{
var file=new FileInfo(path);
using var stream =await httpClient.GetStreamAsync(uri);
using var fileStream=file.Create();
await stream.CopyToAsync(stream);
return file;
},downloadOptions);
var parser=new TransformBlock<FileInfo,Foo[]>(async file=>{
using var reader = file.OpenText();
using var csv = new CsvReader(reader, CultureInfo.InvariantCulture);
var records = csv.GetRecords<Foo>().ToList();
return records;
},parseOptions);
var importer=new ActionBlock<Foo[]>(async recs=>{
using var bcp=new SqlBulkCopy(connectionString, SqlBulkCopyOptions.TableLock);
bcp.DestinationTableName=tableName;
//Map columns if needed
...
using var reader=ObjectReader.Create(recs);
await bcp.WriteToServerAsync(reader);
});
downloader.LinkTo(parser,linkOptions);
parser.LinkTo(importer,linkOptions);
Once the pipeline is complete, you can start posting Uris to the head block and await until the tail block completes :
IEnumerable<(Uri,string)> filesToDownload = ...
foreach(var pair in filesToDownload)
{
await downloader.SendAsync(pair);
}
downloader.Complete();
await importer.Completion;
The code uses CsvHelper to parse the CSV file and FastMember's ObjectReader to create an IDataReader wrapper over the CSV records.
In each block you can use a Progress instance to update the UI based on the pipeline's progress
I would like to use .NET iterator with parallel Tasks/await?. Something like this:
IEnumerable<TDst> Foo<TSrc, TDest>(IEnumerable<TSrc> source)
{
Parallel.ForEach(
source,
s=>
{
// Ordering is NOT important
// items can be yielded as soon as they are done
yield return ExecuteOrDownloadSomething(s);
}
}
Unfortunately .NET cannot natively handle this. Best answer so far by #svick - use AsParallel().
BONUS: Any simple async/await code that implements multiple publishers and a single subscriber? The subscriber would yield, and the pubs would process. (core libraries only)
This seems like a job for PLINQ:
return source.AsParallel().Select(s => ExecuteOrDownloadSomething(s));
This will execute the delegate in parallel using a limited number of threads, returning each result as soon as it completes.
If the ExecuteOrDownloadSomething() method is IO-bound (e.g. it actually downloads something) and you don't want to waste threads, then using async-await might make sense, but it would be more complicated.
If you want to fully take advantage of async, you shouldn't return IEnumerable, because it's synchronous (i.e. it blocks if no items are available). What you need is some sort of asynchronous collection, and you can use ISourceBlock (specifically, TransformBlock) from TPL Dataflow for that:
ISourceBlock<TDst> Foo<TSrc, TDest>(IEnumerable<TSrc> source)
{
var block = new TransformBlock<TSrc, TDest>(
async s => await ExecuteOrDownloadSomethingAsync(s),
new ExecutionDataflowBlockOptions
{
MaxDegreeOfParallelism = DataflowBlockOptions.Unbounded
});
foreach (var item in source)
block.Post(item);
block.Complete();
return block;
}
If the source is “slow” (i.e. you want to start processing the results from Foo() before iterating source is completed), you might want to move the foreach and Complete() call to a separate Task. Even better solution would be to make source into a ISourceBlock<TSrc> too.
So it appears what you really want to do is to order a sequence of tasks based on when they complete. This is not terribly complex:
public static IEnumerable<Task<T>> Order<T>(this IEnumerable<Task<T>> tasks)
{
var input = tasks.ToList();
var output = input.Select(task => new TaskCompletionSource<T>());
var collection = new BlockingCollection<TaskCompletionSource<T>>();
foreach (var tcs in output)
collection.Add(tcs);
foreach (var task in input)
{
task.ContinueWith(t =>
{
var tcs = collection.Take();
switch (task.Status)
{
case TaskStatus.Canceled:
tcs.TrySetCanceled();
break;
case TaskStatus.Faulted:
tcs.TrySetException(task.Exception.InnerExceptions);
break;
case TaskStatus.RanToCompletion:
tcs.TrySetResult(task.Result);
break;
}
}
, CancellationToken.None
, TaskContinuationOptions.ExecuteSynchronously
, TaskScheduler.Default);
}
return output.Select(tcs => tcs.Task);
}
So here we create a TaskCompletionSource for each input task, then go through each of the tasks and set a continuation which grabs the next completion source from a BlockingCollection and sets it's result. The first task completed grabs the first tcs that was returned, the second task completed gets the second tcs that was returned, and so on.
Now your code becomes quite simple:
var tasks = collection.Select(item => LongRunningOperationThatReturnsTask(item))
.Order();
foreach(var task in tasks)
{
var result = task.Result;//or you could `await` each result
//....
}
In the asynchronous library made by the MS robotics team, they had concurrency primitives which allowed for using an iterator to yield asynchronous code.
The library (CCR) is free (It didn't use to be free). A nice introductory article can be found here: Concurrent affairs
Perhaps you can use this library alongside .Net task library, or it'll inspire you to 'roll your own'