I have a background worker running a long database task. i want to show the progress bar while the task is running. Somehow the background worker won't report the progress of the task.
This is what i have:
BackgroundWorker _bgwLoadClients;
_bgwLoadClients = new BackgroundWorker();
_bgwLoadClients.WorkerReportsProgress = true;
_bgwLoadClients.DoWork += new DoWorkEventHandler(_bgwLoadClients_DoWork);
_bgwLoadClients.RunWorkerCompleted += new RunWorkerCompletedEventHandler(_bgwLoadClients_RunWorkerCompleted);
_bgwLoadClients.ProgressChanged += new ProgressChangedEventHandler(_bgwLoadClients_ProgressChanged);
_bgwLoadClients.RunWorkerAsync(parms);
private void _bgwLoadClients_DoWork(object sender, DoWorkEventArgs e)
{
DataTable dt = getdate();
e.Result = dt;
}
void _bgwLoadClients_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
progressBar1.Value = e.ProgressPercentage;
}
I am doing this in WPF, but i guess it won't make a difference.
Thanks in advance
You need to break your DoWork method down into reportable progress and then call ReportProgress.
Take for example the following:
private void Something_DoWork(object sender, DoWorkEventArgs e)
{
// If possible, establish how much there is to do
int totalSteps = EstablishWorkload();
for ( int i=0; i<totalSteps; i++)
{
// Do something...
// Report progress, hint: sender is your worker
(sender as BackgroundWorker).ReportProgress((int)(100/totalSteps)*i, null);
}
}
If your work can't be predetermined, try adding your own percentages:
private void Something_DoWork(object sender, DoWorkEventArgs e)
{
// some work
(sender as BackgroundWorker).ReportProgress(25, null);
// some work
(sender as BackgroundWorker).ReportProgress(50, null);
// some work
(sender as BackgroundWorker).ReportProgress(60, null);
// some work
(sender as BackgroundWorker).ReportProgress(99, null);
}
Modify the WorkReportProgress property of the backgroundworker object to true either in the properties window or in code.
You have to manualy call ReportProgress() to raise the ProgressChanged event.
You need to call worker.ReportProgress(percentComplete) in your DoWork method.
percentComplete should be computed based on the total work. For example:
for(int i =0; i != 100; i++) {
// do something
worker.ReportProgress(i);
}
Sometimes it is difficult to partition a job in several chunks to be possible to report the progress. Unfortunately the BackgroundWorker does not solve this, you have to do it yourself.
just report progress on dowork event
private void _bgwLoadClients_DoWork(object sender, DoWorkEventArgs e) {
int progresValue0to100 = 75;
(sender as System.ComponentModel.BackgroundWorker).ReportProgress(progresValue0to100);
//do your jobs..
}
it works like this
Progress must be sent from within the DoWork event by calling the ReportProgress method on the BackgroundWorker. In your case, you can't report any progress because all of the work is being done outside of the DoWork function. You can only report progress before and after the call to getdate(), but not during the call since the BackgroundWorker thread is busy.
Related
I try to perform an easy task in an other backgroundthread, so the UI doesn't get blocked, but it still gets blocked. Did I forget anything?
public partial class backgroundWorkerForm : Form
{
public backgroundWorkerForm()
{
InitializeComponent();
}
private void doWorkButton_Click(object sender, EventArgs e)
{
if (backgroundWorker.IsBusy != true)
{
// Start the asynchronous operation.
backgroundWorker.RunWorkerAsync();
}
}
private void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
//BackgroundWorker worker = sender as BackgroundWorker;
if (textBoxOutput.InvokeRequired)
{
textBoxOutput.Invoke(new MethodInvoker(delegate
{
for (int i = 0; i < 10000; i++)
{
textBoxOutput.AppendText(i + Environment.NewLine);
}
}));
}
}
}
While the textBox gets filled, the UI is blocked:
Your app wants to repeatedly send updates from the background thread to the UI. There is a built-in mechanism for this: the ProgressChanged event for the background worker. A ReportProgress call is triggered in the background, but executes on the UI thread.
I do change one thing, however. Performance can degrade with too many cross-thread calls. So instead of sending an update every iteration, I instead will batch them into 100.
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
const int maxIterations = 10000;
var progressLimit = 100;
var staging = new List<int>();
for (int i = 0; i < maxIterations; i++)
{
staging.Add(i);
if (staging.Count % progressLimit == 0)
{
// Only send a COPY of the staging list because we
// may continue to modify staging inside this loop.
// There are many ways to do this. Below is just one way.
backgroundWorker1.ReportProgress(staging.Count, staging.ToArray());
staging.Clear();
}
}
// Flush last bit in staging.
if (staging.Count > 0)
{
// We are done with staging here so we can pass it as is.
backgroundWorker1.ReportProgress(staging.Count, staging);
}
}
// The ProgressChanged event is triggered in the background thread
// but actually executes in the UI thread.
private void backgroundWorker1_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
if (e.ProgressPercentage == 0) return;
// We don't care if an array or a list was passed.
var updatedIndices = e.UserState as IEnumerable<int>;
var sb = new StringBuilder();
foreach (var index in updatedIndices)
{
sb.Append(index.ToString() + Environment.NewLine);
}
textBoxOutput.Text += sb.ToString();
}
EDIT:
This requires you set the background worker's WorkerReportsProgress property to true.
It's not important that you pass a count with the ReportProgress call. I do so just to have something and to quickly check if I can return.
One really should keep in mind about how many events are being invoked and queued up. Your original app had 10,000 cross thread invocations and 10,000 changed text events for textBoxOutput. My example uses 100 cross thread calls since I use a page size of 100. I could still have generated 10,000 changed text events for the textbox, but instead use a StringBuilder object to hold a full page of changes and then update the textbox once for that page. That way the textbox only has 100 update events.
EDIT 2
Whether or not your app needs paging is not the main deal. The biggest take away should be that the background worker really should use ReportProgress when trying to communicate info back to the UI. See this MSDN Link. Of particular note is this:
You must be careful not to manipulate any user-interface objects in
your DoWork event handler. Instead, communicate to the user interface
through the ProgressChanged and RunWorkerCompleted events.
Your invocation code should be outside the loop. Everything in the invoked codeblock, will be executed on the UI thread, thus blocking it.
private void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
//BackgroundWorker worker = sender as BackgroundWorker;
for (int i = 0; i < 10000; i++)
{
// do long-running task
//if (textBoxOutput.InvokeRequired)
//{
textBoxOutput.Invoke(new MethodInvoker(delegate
{
textBoxOutput.AppendText(i + Environment.NewLine);
}));
//}
}
}
an easier way would be to do completely create your output text, and then paste the full output into the TextBox, then you only need one invocation
protected delegate void SetTextDelegate(TextBox tb, string Text);
protected void SetText(TextBox tb, string Text)
{
if (tb.InvokeRequired) {
tb.Invoke(new SetTextDelegate(SetText), tb, Text);
return;
}
tb.Text = Text;
}
and then inside your dowork
private void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
StringBuilder sb = new StringBuilder();
//BackgroundWorker worker = sender as BackgroundWorker;
for (int i = 0; i < 10000; i++)
{
sb.AppendLine(i.ToString());
}
SetText(textBoxOutput, sb.ToString());
}
I have made a simple gui in C# wpf, (sorry I can't show the GUI because my reputation is below 10)
It's consist of richtextbox and some other controls. Umm... this application will read a file then display the file contents to richtextbox line by line while reading the file using background worker. The function that read the file is like this :
public int parse_persoFile2(string fname, BackgroundWorker worker, DoWorkEventArgs e)
{
if (fname == null) return -1;
System.IO.StreamReader ifs;
ifs = new System.IO.StreamReader(fname);
int max = (int)e.Argument;
int p = 0;
while (ifs.Peek() != -1)
{
string tempData = ifs.ReadLine();
if (tempData.Contains("CMD=5107") || tempData.Contains("CMD=5106") || tempData.Contains("CMD=5102"))
{
//field.AppendText(tempData.Remove(tempData.LastIndexOf('\\')).Remove(0, 4) + "\r\n");
//field.AppendText("--------\r\n");
//System.Threading.Thread.Sleep(500);
string data = tempData.Remove(tempData.LastIndexOf('\\')).Remove(0, 4) + "\r\n";
worker.ReportProgress(p, data);
}
p++;
}
worker.ReportProgress(100);
return 0;
}
As we can see, I'm using backgroundworker in this function to get the string readed from file then send that string to reportprogress in order to be displayed in richtextbox. As a note that persoFile2 function is made from another object in my program... :-)
Then for the rest, I have made the doWork function, worker_progressChanged, and worker_RunWorkerCompleted to make backroundWorker works correctly. Those codes are like this :
private void doWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker wrk = sender as BackgroundWorker;
parser.parse_persoFile2(fileName, wrk, e);
}
private void proggChanged(object sender, ProgressChangedEventArgs e)
{
if(e.UserState != null)
mRTB.AppendText(e.UserState.ToString());
}
private void completed(object sender, RunWorkerCompletedEventArgs e)
{
MessageBox.Show("Ok....");
}
Umm.... When I run this program, it looks that my richtextbox is not prints the string line by line from the file, but it prints it just once at the end... :-3, .. Nah that's my real problem here. I have read this article http://msdn.microsoft.com/en-us/library/system.componentmodel.backgroundworker.aspx, but still have no idea.... :3
If you call the ReportProgress method too rapidly, it's possible that the UI thread will not have a chance to process the "progress" and update appropriately before the BackgroundWorker is hitting it again.
private void doWork(object sender, DoWorkEventArgs e)
{
var wrk = sender as BackgroundWorker;
// obviously you wouldn't really do this :)
while(true)
wrk.ReportProgress(0);
}
To see the effect you're looking expecting, you could set an artificial "pause" in your DoWork event, in order to give the UI time to update appropriately:
private void doWork(object sender, DoWorkEventArgs e)
{
var wrk = sender as BackgroundWorker;
var p = 0;
while(true)
{
wrk.ReportProgress(p++);
Thread.Sleep(100);
}
}
As for your situation, if the code is executing that quickly, you may not actually need to be executing it in a separate thread.
Alternatively, you could update your UI to say "Please wait. Loading...", then do everything you need to do in the BackgroundWorker, and just return the final result back to the UI at the end.
What should be straight forward is not here and I couldnt find a way yet in spite of reading a lot.
I have a button which executes a time consuming function. So on clicking the button should show time elapsed in milliseconds in a label with an interval of 500 ms. And when the desired result is achieved I want the timer to stop. I dont just need the final time (the total time consumed) in a label, but the label should dynamically show the time being elapsed. My code would be:
private void btnHistory_Click(object sender, EventArgs e)
{
Class1 c = new Class1();
c.StartClock(ref label12);
Utility.PopulateHistory(dgvRecords_history, _util); //time consuming function
c.StopClock();
}
And in Class1 I write this:
internal void StartClock(ref Label l)
{
Timer t = new Timer();
t.Interval = 500;
t.Enabled = true;
t.Tag = l;
t.Tick += new EventHandler(t_Tick);
t.Start();
}
int i;
bool stop;
void t_Tick(object sender, EventArgs e)
{
if (stop)
{
((Timer)sender).Stop();
return;
}
((Label)((Timer)sender).Tag).Text = (++i).ToString();
}
internal void StopClock()
{
i = 0;
stop = true;
}
What happens is, the t_Tick event is fired only after the complete code under button event is fired. That is the tick event is fired after it goes through the StopClock function! I got no idea why on earth it should be that!
2 questions basically:
How can my requirement be achieved in the right way to handle these? I know I should use other built in classes to evaluate performance, but this is just for display purpose. For this, what is the ideal approach?
Why is my code not working?
EDIT: I have used here System.Windows.Forms Timer here, but the result is not any different with System.Timers Timer
The problem is that your long-running task is also running on the UI thread. So the timer can't fire and update the UI, since the thread is busy handling the long-running task.
Instead, you should use a BackgroundWorker to handle the long-running task.
In code:
private void btnHistory_Click(object sender, EventArgs e)
{
Class1 c = new Class1(ref label12);
c.StartClock();
var backgroundWorker = new BackgroundWorker();
backgroundWorker.DoWork += (s, e) =>
{
// time consuming function
Utility.PopulateHistory(dgvRecords_history, _util);
};
backgroundWorker.RunWorkerCompleted += (s, e) =>
{
c.StopClock();
};
backgroundWorker.RunWorkerAsync();
}
As ChrisWue noted, since you now have the long-running task in a separate thread, it needs to invoke any access to the UI controls on the UI thread.
If your long-running task just needs some data from the UI to start, you can pass that data as parameter of RunWorkerAsync(). If you need to output some result data to the UI, you can do that in the handler of the RunWorkerCompleted event. If you occasionally need to update the UI as progress is being made, you can do that in the handler of the ProgressChanged event, calling ReportProgress() in your DoWork handler.
If none of the above are needed, you could use the ThreadPool, as in StaWho's answer.
Your time consuming function is blocking the main thread. You can use BackgroundWorker or below trick:
public Form1()
{
InitializeComponent();
t.Tick +=new EventHandler(t_Tick);
t.Interval = 500;
}
int timeElapsed = 0;
System.Windows.Forms.Timer t = new System.Windows.Forms.Timer();
private void button1_Click(object sender, EventArgs e)
{
t.Start();
ThreadPool.QueueUserWorkItem((x) =>
{
TimeConsumingFunction();
});
}
void TimeConsumingFunction()
{
Thread.Sleep(10000);
t.Stop();
}
void t_Tick(object sender, EventArgs e)
{
timeElapsed += t.Interval;
label1.Text = timeElapsed.ToString();
}
Add the timer to the Components collection of the form. Or store the timer in a field in the class.
The timer is garbage collected because it is not longer reachable when your method returns.
I don't know about your long running code, but out should new run on a separate thread, or make calls to Application.DoEvents
(And remove the ref in your code, it is not used).
#Dainel Rose's answer worked for me perfectly, but only if invalid cross thread operation is handled. I could do so like:
private void btnHistory_Click(object sender, EventArgs e)
{
Class1 c = new Class1(ref label12);
c.StartClock();
var backgroundWorker = new BackgroundWorker();
backgroundWorker.DoWork += ((s, e) =>
{
// time consuming function
Utility.PopulateHistory(dgvRecords_history, _util);
});
backgroundWorker.RunWorkerCompleted += ((s, e) =>
{
c.StopClock();
});
backgroundWorker.RunWorkerAsync();
}
And in the Utility class where the time consuming function runs,
internal static void PopulateHistory(DataGridView dgv, Utility util)
{
SetDataGridView_History(dgv, util);
}
delegate void UpdateDataGridView_History(DataGridView dgv, Utility util);
static void SetDataGridView_History(DataGridView dgv, Utility util)
{
if (dgv.InvokeRequired)
{
UpdateDataGridView_History updaterDelegate = new UpdateDataGridView_History(SetDataGridView_History);
((Form)util._w).Invoke(updaterDelegate, new object[] { dgv, util });
}
else
//code that utilizes UI thread (long running process in my case)
}
Thanks all who helped. I'm marking Daniel's answer..
I have a WPF application that executes external programs to process media files, and so that the GUI doesn't freeze when the media files are being processed, I execute the process on a separate thread through backgroundworker.
private void BackgroundWorkerExecProcess(Process process)
{
BackgroundWorker worker = new BackgroundWorker();
worker.WorkerReportsProgress = false;
worker.DoWork += DoWork;
worker.RunWorkerCompleted += WorkerCompleted;
worker.RunWorkerAsync(process);
}
void DoWork(object sender, DoWorkEventArgs e)
{
BackgroundWorker worker = sender as BackgroundWorker;
Process process = e.Argument as Process;
process.Start();
string stderr = process.StandardError.ReadToEnd();
//I want to display stderr on main thread
process.WaitForExit();
}
void WorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
//some code to update gui telling user that process has finished
}
so, if there is something printed to stderr, I can see it in the debugger, but if I try to do anything with the string stderr, such as if I have a textbox called "_tbLog" and did
_tbLog.Text+=stderr;
I get an error from the compiler about them being on separate threads. is there a way to pass the object from the worker thread to the main thread?
In DoWork, set e.Result to your object. In the WorkerCompleted you can get that object back out... it will once again be e.Result of type object. Just cast it to the object it was. The WorkerCompleted should be on the correct thread.
Here is one of mine:
private void workerUpdateBuildHistory_DoWork(object sender, System.ComponentModel.DoWorkEventArgs e)
{
UpdateStatusModel model = (UpdateStatusModel)e.Argument;
BuildService buildService = new BuildService(model.TFSUrl);
e.Result = buildService.UpdateBuildHistoryList(model);
}
private void workerUpdateBuildHistory_RunWorkerCompleted(object sender, System.ComponentModel.RunWorkerCompletedEventArgs e)
{
BuildHistoryListModel model = (BuildHistoryListModel)e.Result;
if (model != null)
{
listViewPastBuilds.Items.Clear();
foreach (var item in model.Builds)
{
listViewPastBuilds.Items.Add(item);
}
}
}
Use your WorkerCompleted event handler to make changes the UI, it runs on the right thread. All you have to do is pass the string to the event handler. Which is what DoWorkEventArgs.Result was designed to do. You'll retrieve it in the event handler from e.Result. Thus:
void DoWork(object sender, DoWorkEventArgs e)
{
//...
e.Result = stderr;
}
void WorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
if (e.Error != null) DisplayError(e.Error);
else _tbLog.Text += (string)e.Result;
}
First you need to place whatever result object (in this example, a list of strings) in the DoWorkEventArgs.Result property, then retrieve this object via the RunWorkerCompletedArgs.Result property
Then, hook up an event handler RunWorkedCompleted event of the Background worker and have it pass back whatever object you want in the RunWorkerCompletedEventArgs.Result property.
Example:
void DoWork(object sender, DoWorkEventArgs arg)
{
List<string> results = new List<string>();
results.Add("one");
results.Add("two");
results.Add("three");
arg.Results = results;
}
void WorkComplete(object sender, runWorkerCompelteEventArgs arg)
{
//Get our result back as a list of strings
List<string> results = (List<string>)arg.Result;
PrintResults(results);
}
Note: I have not tested this code, but I believe it should compile.
http://msdn.microsoft.com/en-us/library/system.componentmodel.runworkercompletedeventargs.result.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.doworkeventargs.aspx
you can also use the dispatcher as #Zembi mentiones:
this.Dispatcher.Invoke( new Action( () => {
_tbLog.Text+=stderr;
} ) );
you can also use TPL to make sure things get run on the right thread
-edit-
Here is a good article on diffrent ways to do ui updates, including using TPL
I have spent the whole day trying to make my application use threads but with no luck. I have read much documentation about it and I still get lots of errors, so I hope you can help me.
I have one big time consuming method which calls the database and updates the GUI. This has to happen all the time(or about every 30 seconds).
public class UpdateController
{
private UserController _userController;
public UpdateController(LoginController loginController, UserController userController)
{
_userController = userController;
loginController.LoginEvent += Update;
}
public void Update()
{
BackgroundWorker backgroundWorker = new BackgroundWorker();
while(true)
{
backgroundWorker.DoWork += new DoWorkEventHandler(backgroundWorker_DoWork);
backgroundWorker.RunWorkerAsync();
}
}
public void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
_userController.UpdateUsersOnMap();
}
}
With this approach I get an exception because the backgroundworker is not and STA thread(but from what I can understand this is what I should use). I have tried with a STA thread and that gave other errors.
I think the problem is because I try to update the GUI while doing the database call(in the background thread). I should only be doing the database call and then somehow it should switch back to the main thread. After the main thread has executed it should go back to the background thread and so on. But I can't see how to do that.
The application should update the GUI right after the database call. Firering events don't seem to work. The backgroundthread just enters them.
EDIT:
Some really great answers :) This is the new code:
public class UpdateController{
private UserController _userController;
private BackgroundWorker _backgroundWorker;
public UpdateController(LoginController loginController, UserController userController)
{
_userController = userController;
loginController.LoginEvent += Update;
_backgroundWorker = new BackgroundWorker();
_backgroundWorker.DoWork += backgroundWorker_DoWork;
_backgroundWorker.RunWorkerCompleted += backgroundWorker_RunWorkerCompleted;
}
public void _backgroundWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
_userController.UpdateUsersOnMap();
}
public void Update()
{
_backgroundWorker.RunWorkerAsync();
}
void backgroundWorker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
//UI update
System.Threading.Thread.Sleep(10000);
Update();
}
public void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
// Big database task
}
}
But how can I make this run every 10 second? System.Threading.Thread.Sleep(10000) will just make my GUI freeze and while(true) loop in Update() as suggested gives an exception(Thread too busy).
You need to declare and configure the BackgroundWorker once - then Invoke the RunWorkerAsync method within your loop...
public class UpdateController
{
private UserController _userController;
private BackgroundWorker _backgroundWorker;
public UpdateController(LoginController loginController, UserController userController)
{
_userController = userController;
loginController.LoginEvent += Update;
_backgroundWorker = new BackgroundWorker();
_backgroundWorker.DoWork += new DoWorkEventHandler(backgroundWorker_DoWork);
_backgroundWorker.ProgressChanged += new ProgressChangedEventHandler(backgroundWorker_ProgressChanged);
_backgroundWorker.WorkerReportsProgress= true;
}
public void Update()
{
_backgroundWorker.RunWorkerAsync();
}
public void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
while (true)
{
// Do the long-duration work here, and optionally
// send the update back to the UI thread...
int p = 0;// set your progress if appropriate
object param = "something"; // use this to pass any additional parameter back to the UI
_backgroundWorker.ReportProgress(p, param);
}
}
// This event handler updates the UI
private void backgroundWorker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
// Update the UI here
// _userController.UpdateUsersOnMap();
}
}
You have to use the Control.InvokeRequired property to determine if you are on a background thread. Then you need to invoke your logic that modified your UI via the Control.Invoke method to force your UI operations to occur on the main thread. You do this by creating a delegate and passing it to the Control.Invoke method. The catch here is you need some object derived from Control to call these methods.
Edit: As another user posted, if yo you can wait to the BackgroundWorker.Completed event to update your UI then you can subscribe to that event and call your UI code directly. BackgroundWorker_Completed is called on the main app thread. my code assumes you want to do updates during the operation. One alternative to my method is to subscribe to the BwackgroundWorker.ProgressChanged event, but I believe you'll need to still call Invoke to update your UI in that case.
for example
public class UpdateController
{
private UserController _userController;
BackgroundWorker backgroundWorker = new BackgroundWorker();
public UpdateController(LoginController loginController, UserController userController)
{
_userController = userController;
loginController.LoginEvent += Update;
}
public void Update()
{
// The while loop was unecessary here
backgroundWorker.DoWork += new DoWorkEventHandler(backgroundWorker_DoWork);
backgroundWorker.RunWorkerAsync();
}
public delegate void DoUIWorkHandler();
public void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
// You must check here if your are executing on a background thread.
// UI operations are only allowed on the main application thread
if (someControlOnMyForm.InvokeRequired)
{
// This is how you force your logic to be called on the main
// application thread
someControlOnMyForm.Invoke(new
DoUIWorkHandler(_userController.UpdateUsersOnMap);
}
else
{
_userController.UpdateUsersOnMap()
}
}
}
You should remove the while(true), you are adding infinite event handlers and invoking them infinite times.
You can use the RunWorkerCompleted event on the backgroundWorker class to define what should be done when the background task has completed. So you should do the database call in the DoWork handler, and then update the interface in the RunWorkerCompleted handler, something like this:
BackgroundWorker bgw = new BackgroundWorker();
bgw.DoWork += (o, e) => { longRunningTask(); }
bgw.RunWorkerCompleted += (o, e) => {
if(e.Error == null && !e.Cancelled)
{
_userController.UpdateUsersOnMap();
}
}
bgw.RunWorkerAsync();
In addition to previous comments, take a look at www.albahari.com/threading - best doc on threading you will ever find. It will teach you how to use the BackgroundWorker properly.
You should update the GUI when the BackgroundWorker fires Completed event (which is invoked on UI thread to make it easy for you, so that you don't have to do Control.Invoke yourself).
Here's a source code pattern you can use based on some WinForms example code, but you can apply it for WPF as well very easily. In this example, I am redirecting output to a Console which I then use to let the background worker write some messages to a textbox while it is processing.
It consists of:
A helper class TextBoxStreamWriter used to redirect console output to a textbox
A background worker writing to the redirected console
A progress bar which needs to be reset after completion of background worker
Some text boxes (txtPath and txtResult), and a "Start" button
In other words, there is some background task which needs to interact with the UI. Now I am going to show how that is done.
From the context of the background task, you need to use Invoke to access any UI element. I believe the simplest way to do that is to use lambda expression syntax, like
progressBar1.Invoke((Action) (() =>
{ // inside this context, you can safely access the control
progressBar1.Style = ProgressBarStyle.Continuous;
}));
To update the ProgressBar, a local method like
private void UpdateProgress(int value)
{
progressBar1.Invoke((Action)(() => { progressBar1.Value = value; }));
}
helps. It is passing the value parameter to the progress bar as a closure.
This is the helper class TextBoxStreamWriter, which is used to redirect console output:
public class TextBoxStreamWriter : TextWriter
{
TextBox _output = null;
public TextBoxStreamWriter(TextBox output)
{
_output = output;
}
public override void WriteLine(string value)
{
// When character data is written, append it to the text box.
// using Invoke so it works in a different thread as well
_output.Invoke((Action)(() => _output.AppendText(value+"\r\n")));
}
}
You need to use it in the form load event as follows (where txtResult is a textbox, to which the output will be redirected):
private void Form1_Load(object sender, EventArgs e)
{
// Instantiate the writer and redirect the console out
var _writer = new TextBoxStreamWriter(txtResult);
Console.SetOut(_writer);
}
There is also a button on the form which starts the background worker, it passes a path to it:
private void btnStart_Click(object sender, EventArgs e)
{
backgroundWorker1.RunWorkerAsync(txtPath.Text);
}
This is the workload of the background worker, note how it uses the console to output messages to the textbox (because of the redirection that was set up earlier):
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
var selectedPath = e.Argument as string;
Console.Out.WriteLine("Processing Path:"+selectedPath);
// ...
}
The variable selectedPath consists of the path that was passed to the backgroundWorker1 earlier via the parameter txtPath.Text, it is being accessed via e.Argument.
If you need to reset some controls afterwards, do it in the following way (as already mentioned above):
private void backgroundWorker1_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
progressBar1.Invoke((Action) (() =>
{
progressBar1.MarqueeAnimationSpeed = 0;
progressBar1.Style = ProgressBarStyle.Continuous;
}));
}
In this example, after completion, a progress bar is being reset.
Important: Whenever you access a GUI control, use Invoke as I did in the examples above.
Using Lambda's makes it easy, as you could see in the code.
And here's the complete example, which runs in LinqPad 6 (just copy and paste it into an empty C# Program query) - I decided to use LinqPad this time so you can learn something new, because you all know how to create a new Windows Forms project in Visual Studio (and if you still want to do so, just copy the events below and drag and drop the controls to the form):
// see: https://stackoverflow.com/a/27566468/1016343
using System.ComponentModel;
using System.Windows.Forms;
BackgroundWorker backgroundWorker1 = new System.ComponentModel.BackgroundWorker();
ProgressBar progressBar1 = new ProgressBar() { Text = "Progress", Width = 250, Height=20, Top=10, Left=0 };
TextBox txtPath = new TextBox() { Text =#"C:\temp\", Width = 100, Height=20, Top=30, Left=0 };
TextBox txtResult = new TextBox() { Text = "", Width = 200, Height=250, Top=70, Left=0, Multiline=true, Enabled=false };
Button btnStart = new Button() { Text = "Start", Width = 100, Height=30, Top=320, Left=0 };
void Main()
{
// see: https://www.linqpad.net/CustomVisualizers.aspx
// Instantiate the writer and redirect the console out
var _writer = new TextBoxStreamWriter(txtResult);
Console.SetOut(_writer);
// wire up events
btnStart.Click += (object sender, EventArgs e) => btnStart_Click(sender, e);
backgroundWorker1.DoWork += (object sender, DoWorkEventArgs e) => backgroundWorker1_DoWork(sender, e);
backgroundWorker1.RunWorkerCompleted += (object sender, RunWorkerCompletedEventArgs e)
=> backgroundWorker1_RunWorkerCompleted(sender, e);
using var frm = new Form() {Text="Form", Width = 300, Height=400, Top=0, Left=0};
frm.Controls.Add(progressBar1);
frm.Controls.Add(txtPath);
frm.Controls.Add(txtResult);
frm.Controls.Add(btnStart);
// display controls
frm.ShowDialog();
}
private void btnStart_Click(object sender, EventArgs e)
{
backgroundWorker1.RunWorkerAsync(txtPath.Text);
}
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
InitProgress();
var selectedPath = e.Argument as string;
Console.Out.WriteLine("Processing Path: " + selectedPath);
UpdateProgress(0); Thread.Sleep(300); UpdateProgress(30); Thread.Sleep(300);
UpdateProgress(50); Thread.Sleep(300);
Console.Out.WriteLine("Done.");
// ...
}
private void UpdateProgress(int value)
{
progressBar1.Invoke((Action)(() =>
{
progressBar1.Value = value;
}));
}
private void InitProgress()
{
progressBar1.Invoke((Action)(() =>
{
progressBar1.MarqueeAnimationSpeed = 0;
progressBar1.Style = ProgressBarStyle.Continuous;
}));
}
private void backgroundWorker1_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
UpdateProgress(100); // always show 100% when done
}
// You can define other methods, fields, classes and namespaces here
public class TextBoxStreamWriter : TextWriter
{
TextBox _output = null;
public TextBoxStreamWriter(TextBox output)
{
_output = output;
}
public override Encoding Encoding => throw new NotImplementedException();
public override void WriteLine(string value)
{
// When character data is written, append it to the text box.
// using Invoke so it works in a different thread as well
_output.Invoke((Action)(() => _output.AppendText(value + "\r\n")));
}
}
The if-statement in #Lee's answer should look like:
bgw.RunWorkerCompleted += (o, e) => {
if(e.Error == null && !e.Cancelled)
{
_userController.UpdateUsersOnMap();
}
}
...if you want to invoke UpdateUsersOnMap(); when there are no errors and BgWorker hasn't been cancelled.