How to implement a singleton in C#? - c#

How do I implement the singleton pattern in C#? I want to put my constants and some basic functions in it as I use those everywhere in my project. I want to have them 'Global' and not need to manually bind them every object I create.

If you are just storing some global values and have some methods that don't need state, you don't need singleton. Just make the class and its properties/methods static.
public static class GlobalSomething
{
public static int NumberOfSomething { get; set; }
public static string MangleString( string someValue )
{
}
}
Singleton is most useful when you have a normal class with state, but you only want one of them. The links that others have provided should be useful in exploring the Singleton pattern.

Singletons only make sense if both of these conditions are true:
The object must be global
There must only ever exist a single instance of the object
Note that #2 does not mean that you'd like the object to only have a single instance - if thats the case, simply instantiate it only once - it means that there must (as in, it's dangerous for this not to be true) only ever be a single instance.
If you want global, just make a global instance of some (non signleton) object (or make it static or whatever).
If you want only one instance, again, static is your friend. Also, simply instantiate only one object.
Thats my opinion anyway.

Singleton != Global. You seem to be looking for the keyword static.

You can really simplify a singleton implementation, this is what I use:
internal FooService() { }
static FooService() { }
private static readonly FooService _instance = new FooService();
public static FooService Instance
{
get { return _instance; }
}

Hmm, this all seems a bit complex.
Why do you need a dependency injection framework to get a singleton? Using an IOC container is fine for some enterprise app (as long as it's not overused, of course), but, ah, the fella just wants to know about implementing the pattern.
Why not always eagerly instantiate, then provide a method that returns the static, most of the code written above then goes away. Follow the old C2 adage - DoTheSimplestThingThatCouldPossiblyWork...

I would recommend you read the article Exploring the Singleton Design Pattern available on MSDN. It details the features of the framework which make the pattern simple to implement.
As an aside, I'd check out the related reading on SO regarding Singletons.

Ignoring the issue of whether or not you should be using the Singleton pattern, which has been discussed elsewhere, I would implement a singleton like this:
/// <summary>
/// Thread-safe singleton implementation
/// </summary>
public sealed class MySingleton {
private static volatile MySingleton instance = null;
private static object syncRoot = new object();
/// <summary>
/// The instance of the singleton
/// safe for multithreading
/// </summary>
public static MySingleton Instance {
get {
// only create a new instance if one doesn't already exist.
if (instance == null) {
// use this lock to ensure that only one thread can access
// this block of code at once.
lock (syncRoot) {
if (instance == null) {
instance = new MySingleton();
}
}
}
// return instance where it was just created or already existed.
return instance;
}
}
/// <summary>
/// This constructor must be kept private
/// only access the singleton through the static Instance property
/// </summary>
private MySingleton() {
}
}

Static singleton is pretty much an anti pattern if you want a loosely coupled design. Avoid if possible, and unless this is a very simple system I would recommend having a look at one of the many dependency injection frameworks available, such as http://ninject.org/ or http://code.google.com/p/autofac/.
To register / consume a type configured as a singleton in autofac you would do something like the following:
var builder = new ContainerBuilder()
builder.Register(typeof(Dependency)).SingletonScoped()
builder.Register(c => new RequiresDependency(c.Resolve<Dependency>()))
var container = builder.Build();
var configured = container.Resolve<RequiresDependency>();
The accepted answer is a terrible solution by the way, at least check the chaps who actually implemented the pattern.

public class Globals
{
private string setting1;
private string setting2;
#region Singleton Pattern Implementation
private class SingletonCreator
{
internal static readonly Globals uniqueInstance = new Globals();
static SingletonCreator()
{
}
}
/// <summary>Private Constructor for Singleton Pattern Implementaion</summary>
/// <remarks>can be used for initializing member variables</remarks>
private Globals()
{
}
/// <summary>Returns a reference to the unique instance of Globals class</summary>
/// <remarks>used for getting a reference of Globals class</remarks>
public static Globals GetInstance
{
get { return SingletonCreator.uniqueInstance; }
}
#endregion
public string Setting1
{
get { return this.setting1; }
set { this.setting1 = value; }
}
public string Setting2
{
get { return this.setting2; }
set { this.setting2 = value; }
}
public static int Constant1
{
get { reutrn 100; }
}
public static int Constat2
{
get { return 200; }
}
public static DateTime SqlMinDate
{
get { return new DateTime(1900, 1, 1, 0, 0, 0); }
}
}

I like this pattern, although it doesn't prevent someone from creating a non-singleton instance. It can sometimes can be better to educate the developers in your team on using the right methodology vs. going to heroic lengths to prevent some knucklehead from using your code the wrong way...
public class GenericSingleton<T> where T : new()
{
private static T ms_StaticInstance = new T();
public T Build()
{
return ms_StaticInstance;
}
}
...
GenericSingleton<SimpleType> builder1 = new GenericSingleton<SimpleType>();
SimpleType simple = builder1.Build();
This will give you a single instance (instantiated the right way) and will effectively be lazy, because the static constructor doesn't get called until Build() is called.

What you are describing is merely static functions and constants, not a singleton. The singleton design pattern (which is very rarely needed) describes a class that is instantiated, but only once, automatically, when first used.
It combines lazy initialization with a check to prevent multiple instantiation. It's only really useful for classes that wrap some concept that is physically singular, such as a wrapper around a hardware device.
Static constants and functions are just that: code that doesn't need an instance at all.
Ask yourself this: "Will this class break if there is more than one instance of it?" If the answer is no, you don't need a singleton.

hmmm... Few constants with related functions... would that not better be achieved through enums ? I know you can create a custom enum in Java with methods and all, the same should be attainable in C#, if not directly supported then can be done with simple class singleton with private constructor.
If your constants are semantically related you should considered enums (or equivalent concept) you will gain all advantages of the const static variables + you will be able to use to your advantage the type checking of the compiler.
My 2 cent

Personally I would go for a dependency injection framework, like Unity, all of them are able to configure singleton items in the container and would improve coupling by moving from a class dependency to interface dependency.

You can make a simple manual static singleton implementation for your common (non-static) class by adding a static property Instance (name can vary) into it with initialization like this:
public class MyClass
{
private static MyClass _instance;
public static MyClass Instance => _instance ?? (_instance = new MyClass());
// add here whatever constructor and other logic you like or need.
}
Then it can be resolved anywhere from this namespace like this:
var myClass = MyClass.Instance; // without any new keyword
myClass.SomeNonStaticMethod();
// or:
MyClass.Instance.SomeNonStaticMethod();
// or:
MyClass.Instance.SomeNonStaticProperty = "new value";

By hiding public constructor, adding a private static field to hold this only instance, and adding a static factory method (with lazy initializer) to return that single instance
public class MySingleton
{
private static MySingleton sngltn;
private static object locker;
private MySingleton() {} // Hides parameterless ctor, inhibits use of new()
public static MySingleton GetMySingleton()
{
lock(locker)
return sngltn?? new MySingleton();
}
}

I have written a class for my project using Singleton pattern. It is very easy to use. Hope it will work for you. Please find the code following.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
namespace TEClaim.Models
{
public class LogedinUserDetails
{
public string UserID { get; set; }
public string UserRole { get; set; }
public string UserSupervisor { get; set; }
public LogedinUserDetails()
{
}
public static LogedinUserDetails Singleton()
{
LogedinUserDetails oSingleton;
if (null == System.Web.HttpContext.Current.Session["LogedinUserDetails"])
{
oSingleton = new LogedinUserDetails();
System.Web.HttpContext.Current.Session["LogedinUserDetails"] = oSingleton;
}
else
{
oSingleton = (LogedinUserDetails)System.Web.HttpContext.Current.Session["LogedinUserDetails"];
}
//Return the single instance of this class that was stored in the session
return oSingleton;
}
}
}
Now you can set variable value for the above code in your application like this..
[HttpPost]
public ActionResult Login(FormCollection collection)
{
LogedinUserDetails User_Details = LogedinUserDetails.Singleton();
User_Details.UserID = "12";
User_Details.UserRole = "SuperAdmin";
User_Details.UserSupervisor = "815978";
return RedirectToAction("Dashboard", "Home");
}
And you can retrieve those value like this..
public ActionResult Dashboard()
{
LogedinUserDetails User_Details = LogedinUserDetails.Singleton();
ViewData["UserID"] = User_Details.UserID;
ViewData["UserRole"] = User_Details.UserRole;
ViewData["UserSupervisor"] = User_Details.UserSupervisor;
return View();
}

In c# it could be (Thread safe as well as lazy initialization):
public sealed class MySingleton
{
static volatile Lazy<MySingleton> _instance = new Lazy<MySingleton>(() => new MySingleton(), true);
public static MySingleton Instance => _instance.Value;
private MySingleton() { }
}

Related

Singleton without sealed class and thread safety issues

I was asked to write Singleton in the interview today. I wrote the below, please note, I used "property set" method to set and then I returned the instance using "get" method. But I see in internet that most places they use only get, meaning, what I did below is wrong? Sorry I dont have VS ide with me to verify it now, so posting it here.
Also, some used sealed class including with private constructor. Why sealed with private cons?
public class Singleton
{
private static readonly Singleton instance;
private Singleton() {}
public static Singleton Instance
{
set
{
if(instance == null){
instance = new Singleton();
}
}
get
{
return instance;
}
}
}
My advice is to try to compile and run the code yourself. It's by far the easiest way to understand how it works.
If you would try to build your code you would get the following error :
Error CS0198 A static readonly field cannot be assigned to (except in a static constructor or a variable initializer)
In other words, you should instantiate your instance inside the constructor.
Regarding your question, a private constructor is needed to prevent access from outside your class and also it is enough to make sure that other classes cannot inherit from your class. You don't really need the sealed.
You can find a really good summary regarding the singleton pattern # https://csharpindepth.com/articles/singleton
#Learner Since its a interview question and mostly in India they ask to write to Psuedo code to evaluate the candidate coding skills, I try to fit myself in the candidate shoes to give the answer.
Well design patterns has evolved over a period of time with advancements in the programming language and Singleton is not a exception. There are many ways that we can create a Singleton class using C#. I would like to showcase few of the flavors that I can able to recollect
1. Plain vanilla Singleton without Thread-Safety
public sealed class Singleton
{
private Singleton()
{
}
private static Singleton instance = null;
public static Singleton Instance
{
get
{
if (instance == null)
{
instance = new Singleton();
}
return instance;
}
}
}
2. Singleton with Thread Saftey
public sealed class Singleton_ThreadLock
{
Singleton_ThreadLock()
{
}
private static readonly object padlock = new object();
private static Singleton_ThreadLock instance = null;
public static Singleton_ThreadLock Instance
{
get
{
// Uses the lock to avoid another resource to create the instance in parallel
lock (padlock)
{
if (instance == null)
{
instance = new Singleton_ThreadLock();
}
return instance;
}
}
}
}
3. Singleton - Double Thread Safe
public sealed class Singleton_DoubleThreadSafe
{
Singleton_DoubleThreadSafe()
{
}
private static readonly object padlock = new object();
private static Singleton_DoubleThreadSafe instance = null;
public static Singleton_DoubleThreadSafe Instance
{
get
{
if (instance == null)
{
lock (padlock)
{
if (instance == null)
{
instance = new Singleton_DoubleThreadSafe();
}
}
}
return instance;
}
}
}
4. Singleton - Early Initialization
public sealed class Singleton_EarlyInitialization
{
private static readonly Singleton_EarlyInitialization instance = new Singleton_EarlyInitialization();
// Explicit static constructor to tell C# compiler
// not to mark type as beforefieldinit
static Singleton_EarlyInitialization()
{
}
private Singleton_EarlyInitialization()
{
}
public static Singleton_EarlyInitialization Instance
{
get
{
return instance;
}
}
}
5. Singleton - Lazy Initialization using .Net 4.0+ Framework
public sealed class Singleton
{
private Singleton()
{
}
private static readonly Lazy<Singleton> lazy = new Lazy<Singleton>(() => new Singleton());
public static Singleton Instance
{
get
{
return lazy.Value;
}
}
}
Caveats:
Well there are few people who create instance of the class using reflection (I did in one of my framework) but his can also be avoided. There are few samples in net that can show how to avoid it
Its always best practice to make the Singleton class as sealed as it will restrict developers from inheriting the class.
There are lots of IOC's in the market that can create Singleton instance of a normal class without following the above Singleton implementation.

When using a singleton pattern, should my public class return the private or public instance?

I have a singleton defined like this:
public partial class MoonDataManager
{
static MoonDataManager _singletonInstance;
public static MoonDataManager SingletonInstance
{
get
{
return _singletonInstance;
}
private set
{
_singletonInstance = value;
}
}
I have a function that safely creates the instance:
public static async Task<MoonDataManager> CreateSingletonAsync()
{
_singletonInstance = new MoonDataManager();
Should I:
return _singletonInstance; (field)
or
return SingletonInstance; (property)
I'm concerned with Garbage Collection, especially in iOS or Android within Xamarin.
Also if there are naming patterns for this in C# let me know if I deviated from a standard.
Update:
Now I think I really got myself stuck with threading and async methods. Here are the objects and their goals:
MoonDataManager : Run the RegisterTable<Models.IssuerKey> once per table. This is a generic method that essentially runs (new MobileServiceSQLiteStore).DefineTable<T>()
OfflineStore : This is a MobileServiceSQLiteStore.
MobileClient : This is a MobileServiceClient.
MoonDataManager Dependencies: The MoonDataManager requires OfflineStore and MobileClient to finish initialization. Specifically, it does a MobileServiceClient.SyncContext.InitializeAsync(OfflineStore)
I'm not sure how to make sense of this spaghetti of dependencies... or how to make the code look nice, and be thread safe.
Here is the new iteration of the code:
private readonly Lazy<MobileServiceClient> lazyMobileClient =
new Lazy<MobileServiceClient>(() => new MobileServiceClient(Constants.ApplicationURL), true); // true for thread safety
public MobileServiceClient MobileClient { get { return lazyMobileClient.Value; } }
private readonly Lazy< MobileServiceSQLiteStore> offlineDB =
new Lazy<MobileServiceSQLiteStore>(() => new MobileServiceSQLiteStore(Constants.OfflineDBName), true ); // true for thread safety
private MobileServiceSQLiteStore OfflineStore { get { return offlineDB.Value; } }
private static readonly Lazy<MoonDataManager> lazy = new Lazy<MoonDataManager>(() => new MoonDataManager(), true); // true for thread safety
public static MoonDataManager Instance { get { return lazy.Value; } }
private MoonDataManager()
{
MoonDataManager.Instance.RegisterTable<Models.IssuerKey>();
// Initialize file sync
// todo: investigate FileSyncTriggerFactory overload.
//Was present on Mar 30, 2016 Channel9 https://channel9.msdn.com/events/Build/2016/P408
MoonDataManager.Instance.MobileClient.InitializeFileSyncContext
(new IssuerKeyFileSyncHandler(Instance), Instance.OfflineStore);
// NOTE THE ASYNC METHOD HERE (won't compile)
await MoonDataManager.Instance.MobileClient
.SyncContext.InitializeAsync(MoonDataManager.Instance.OfflineStore,
StoreTrackingOptions.NotifyLocalAndServerOperations);
}
For .NET 4 or higher, you can use the Lazy<T> and create it like this.
public sealed class Singleton
{
private static readonly Lazy<Singleton> lazy =
new Lazy<Singleton>(() => new Singleton(), true); // true for thread safety
public static Singleton Instance { get { return lazy.Value; } }
private Singleton()
{
}
}
It will be created only if it is accessed and only the first time and it is threadsafe.
The definition
static MoonDataManager _singletonInstance;
ensures that the instance of MoonDataManager is a GC root, and it will not be collected until the application domain ends, because it is a static value.
I'd return the private singleton and forego the auto property that you have.
public partial class MoonDataManager
{
private static readonly Lazy<MoonDataManager> _manager =
new Lazy<MoonDataManager>(() => new MoonDataManager());
public static MoonDataManager SingletonInstance => _manager.Value;
}
When MoonDataManager.Value is accessed for the first time, it is initialized using the Func<MoonDataManager> that was passed to the constructor for Lazy<T>. On subsequent accesses, the same instance is returned.
A Singleton creates itself the first time it's accessed, in a way that ensures only one instance will get created, even if a second thread tries to access it while it's still being instantiated
your CreateSingletonAsync() violates this, and looks like it'd allow for multi-thread nastiness
You want something like:
public static MoonDataManager SingletonInstance
{
get
{
if (_singletonInsatnce != null)
return _singletonInstance;
lock (lockobject)
{
// check for null again, as new one may have been created while a thread was waiting on the lock
if (_singletonInsatnce != null)
return _singletonInstance;
else
// create new one here.
}
}
// no setter, because by definition no other class can instantiate the singleton
}
All this is just to ensure that two threads asking for one object don't end up creating two objects, or the second thread getting a half-created object if the first thread's one is still being created.
NB: Singletons have become unfashionable.
NB: If you can be sure that you've got time to create your object before it's ever accessed, you can just use a static member and create it on application start.
Your question "should I return the property or field" doesn't make sense -- you're already returning the field from the property getter, which is standard practise. Where else are you wanting to return something?
You should return the private instance. You can read more about the singleton pattern on MSDN. The standard singleton implementation is as follows:
public class Singleton
{
private static Singleton instance;
private Singleton() {}
public static Singleton Instance
{
get
{
if (instance == null)
{
instance = new Singleton();
}
return instance;
}
}
}
Although, normally, you don't have a setter for the property. This pattern has already previously been discussed on SO.

How to recreate singleton instance in c#

I have a singleton class, it is reading config file.
public sealed class SettingsHelper
{
private static readonly SettingsHelper _Instance = new SettingsHelper();
static SettingsHelper()
{
}
public static SettingsHelper Instance
{
get
{
return _Instance;
}
}
private NameValueCollection _SettingsSection = null;
public SettingsHelper()
{
_SettingsSection = new NameValueCollection(ConfigurationManager.AppSettings);
}
.....
}
}
But if config file getting changed the singleton do not picking up the change.
Is there any way to recreate the instance of singleton(call its constructor) or i should create separate method which will be reinitiating the instance of singleton?
You're trying to throw away the very first purpose of singleton pattern. A singleton is there, just to prevent any other code from instantiating a new instance of that class. To make a singleton class, you should not have public constructors at all. You already have a public constructor.
I encourage you to read the first line, just the first line of this Wikipedia article about Singleton Pattern.
What you're trying to do, is called cache dependency in C#. You're trying to cache Web.config's app settings and you are dependent on Web.config's change. You should search that.
Recreating a singleton is abad idea - references to the 'old' singleton will stay.
So it's no longer a singelton!
In your case I would create new settings. Why not make a public method LoadSettings() and call that?
public sealed class SettingsHelper
{
private static readonly SettingsHelper _Instance = new SettingsHelper();
private NameValueCollection _SettingsSection = null;
// ...
private SettingsHelper()
{
LoadSettings()
}
public void LoadSettings()
{
_SettingsSection = new NameValueCollection(ConfigurationManager.AppSettings);
}
.....
}
}
BTW: make SettingsHelper() private...
It will be better to create a separate method inside your singleton class to read the settings again. Obviously, with this approach, you will have to call this method from your code.

Singleton Alternative - is it equivalent?

I know that the standard singleton pattern is as follows:
Original
public class Singleton1
{
public static Singleton1 _Instance;
public static Singleton1 Instance
{
get
{
if (_Instance == null)
{
_Instance = new Singleton1();
}
return _Instance;
}
}
private Singleton1()
{
}
}
But it seems like this code is unnecessary. To me, you could accomplish the same thing with either of the following simple design patterns:
Version 2
public class Singleton2
{
public static readonly Singleton2 Instance = new Singleton2();
private Singleton2()
{
}
}
Version 3
public class Singleton3
{
static Singleton3()
{
}
}
To me, it seems like version 2 is the superior method of doing this because it allows you to pass in parameters (or not) yet still have a finite number of instance. My application is fairly latency/performance sensitive - do any of these patterns have a performance gain?
It would seem that while it will longer to access each one the first time because the object is being created. Also, it would seem that the original one is ever so slightly slower because it must check to see whether its backing field is null every time something else accesses it.
public sealed class Singleton
{
private static readonly Lazy<Singleton> lazy = new Lazy<Singleton>(() => new Singleton());
public static Singleton Instance { get { return lazy.Value; } }
private Singleton()
{
}
}
Fast, clean, thread-safe.
One problem with singletons implemented as static instances is that they make testing and mocking more difficult.
See this scenario:
public void BusinessLogicMethod()
{
var initialValue = MySingleton.Instance.GetInitialValue();
var processedValue = initialValue + specialSomething + businessLogic;
MySingleton.Instance.SaveProcessedValue(processedValue);
}
Now, let's say I want to write a unit-test for this method. Ideally, I want to write a test that specifies input and output and tests only the business logic. But with a static singleton, the method's implementation is tied to the singleton's implementation. Can I set the InitialValue easily at the beginning of the test, or is it dependent on other factors/DB access/whatever?
However, if I use a non-static singleton, coupled with some dependency injection or service locator pattern, I can build my function like this:
public void BusinessLogicMethod()
{
var singleton = ServiceLocator.Resolve<MySingleton>();
var processedValue = singleton.InitialValue + specialSomething + businessLogic;
singleton.SaveProcessedValue(processedValue);
}
and my test can go like this, using vaguely Moq-like mock syntax:
public void TestBusinessLogic()
{
MySingleton fakeSingleton = new Mock<MySingleton>();
fakeSingleton.Setup(s => s.InitialValue).Returns(5);
// Register the fake in the ServiceLocator
ServiceLocator.Register<MySingleton>(fakeSingleton.Object);
// Run
MyBusinessMethod();
// Assert
fakeSingleton.Verify (s => s.SaveProcessedValue()).Called(Exactly.Once);
}
without worrying about the REAL singleton implementation.
Singleton2 is not the same as Singleton1 as the Instance is not "lazy" evaluated. In Singleton1, Instance is created only when it is accessed and from then on the same one is used. In SingleTon2, the Instance is initialized with the class and before being actually accessed.
My favourite singleton implementation is this one:
http://www.codeproject.com/Articles/14026/Generic-Singleton-Pattern-using-Reflection-in-C
Make sure your .ctor is not public, which is the most common mistake, then, it is safely/fully reusable.
(I need to have a close look at Peter Kiss' one which looks nice too)
To answer your performance question, the time it takes to check whether the private field is null is negligible. Therefore I wouldn't be worrying about how it is implemented with regards to performance here.

how to destroy a Static Class in C#

I am using .net 1.1. I have a session class in which I have stored many static variables that hold some data to be used by many classes.
I want to find a simple way of destroying this class instead of resetting every variable one by one. For example if there is a static class MyStatic, I would have liked to destroy/remove this class from the memory by writing MyStatic = null, which is not currently possible,
Additional question.
The idea of singleton is good, but I have the following questions:
If singleton is implemented, the 'single' object will still remain in the memory. In singleton, we are only checking if an instance is already existing. how can i make sure that this instance variable also gets destroyed.
I have a main class which initializes the variable in the static class. Even if I plan to implement a Rest() method, I need to call it from a method, for eg, the destructor in the main class. But this destructor gets called only when GC collects this main class object in the memory, which means the Reset() gets called very late
thanks
pradeep
Don't use a static class to store your variables. Use an instance (and make it a singleton if you only want one instance at any given time.) You can then implement IDisposible, and just call Dispose() when you want to destroy it.
For more information check out this site: http://csharpindepth.com/Articles/General/Singleton.aspx
EDIT
The object is still subject to garbage collection, so unless you are using lots of unmanaged resources, you should be fine. You can implement IDisposible to clean up any resources that need to be cleaned up as well.
Instead of a static class, have a static instance of a class:
class Foo
{
public int Something;
public static Foo Instance = new Foo();
public void Reset()
{
Instance = new Foo();
}
}
void test
{
int i = Foo.Instance.Something;
}
You can also delegate to an instance of the class:
class Foo
{
public int Something
{
get { return instance.something; }
}
private int something;
private static Foo instance = new Foo();
public void Reset()
{
instance = new Foo();
}
}
void test
{
int i = Foo.Something;
}
There's no way to destroy a static unless it resides in a separate AppDomain in which case you can get rid of it by unloading the AppDomain. However it is usually better to avoid statics.
EDIT: Additional question
When the singleton is no longer referenced it will be collected just as everything else. In other words, if you want it collected you must make sure that there are no references to it. It goes without saying that if you store a static reference to your singleton, you will have the same problem as before.
Use a Singleton like ktrauberman said, and have an initialization method or a reset method. You only have to write the code once and call the method.
You destroy objects, not classes. There's nothing wrong with static classes--C# provides them for a reason. Singletons are just extra overhead, unless you actually need an object, e.g. when you have to pass the object as a parameter.
Static classes contain only static variables. These variables tend to last for the lifetime of the app, in which case you don't have to worry about disposing referenced objects, unless you have a mild case of OCD. That just leaves the case where your static class allocates and releases resources throughout its lifetime. Dispose of these objects in due course as you usually would (e.g., "using...").
The best way in your condition is to have an Reset() method built-in as well, which can reset the values of the class.
class myclass
{
private static myclass singleobj = null;
private myclass(){}
public static myclass CreateInstance()
{
if(singleobj == null)
singleobj = new myclass();
return singleobj
}
}
Building on Ahemd Said's answer: (and props to him!)
class Singleton
{
private static Singleton instance = null;
private Singleton(){} // private constructor: stops others from using
public static Singleton Instance
{
get { return instance ?? (instance = new Singleton()); }
set {
if (null != value)
{ throw new InvalidValueException(); }
else
{ instance = null; }
}
}
}
void SampleUsage()
{
Singleton myObj = Singleton.Instance;
// use myObj for your work...
myObj.Instance = null; // The set-operator makes it ready for GC
}
(untested... but mostly right, I think)
You could also add in usage of the IDispose interface for more cleanup.
You can create a method in the static class which resets the values of all properties.
Consider you have a static class
public static class ClassA
{
public static int id=0;
public static string name="";
public static void ResetValues()
{
// Here you want to reset to the old initialized value
id=0;
name="";
}
}
Now you can use any of the below approaches from any other class to reset value of a static class
Approach 1 - Calling directly
ClassA.ResetValues();
Approach 2 - Invoking method dynamically from a known namespace and known class
Type t1 = Type.GetType("Namespace1.ClassA");
MethodInfo methodInfo1 = t1.GetMethod("ResetValues");
if (methodInfo1 != null)
{
object result = null;
result = methodInfo1.Invoke(null, null);
}
Approach 3 - Invoking method dynamically from an assembly/set of assemblies
foreach (var Ass in AppDomain.CurrentDomain.GetAssemblies())
{
// Use the above "If" condition if you want to filter from only one Dll
if (Ass.ManifestModule.FullyQualifiedName.EndsWith("YourDll.dll"))
{
List<Type> lstClasses = Ass.GetTypes().Where(t => t.IsClass && t.IsSealed && t.IsAbstract).ToList();
foreach (Type type in lstClasses)
{
MethodInfo methodInfo = type.GetMethod("ResetValues");
if (methodInfo != null)
{
object result = null;
result = methodInfo.Invoke(null, null);
}
}
break;
}
}
Inject the objects into the static class at startup from a non static class that implements IDisposable, then when your non static class is destroyed so are the objects the static class uses.
Make sure to implement something like "Disable()" so the static class is made aware it's objects have just been set to null.
Eg I have a logger class as follows:
public static class Logger
{
private static Action<string, Exception, bool> _logError;
public static void InitLogger(Action<string, Exception, bool> logError)
{
if(logError != null) _logError = logError;
}
public static void LogError(string msg, Exception e = null, bool sendEmailReport = false)
{
_logError?.Invoke(msg, e, sendEmailReport);
}
In my constructor of my Form I call the following to setup the logger.
Logger.InitLogger(LogError);
Then from any class in my project I can do the following:
Logger.LogError("error",new Exception("error), true);

Categories