Ok so I have a number of methods that look like this:- which sorts a list by artist, album, year etc.
public void SortByAlbum(SortOrder sortOrder)
{
if (sortOrder == SortOrder.Ascending)
_list = _list.OrderBy(x => x.Album).ToList();
else if (sortOrder == SortOrder.Descending)
_list = _list.OrderByDescending(x => x.Album).ToList();
}
and this:
public void SortByArtist(SortOrder sortOrder)
{
if (sortOrder == SortOrder.Ascending)
_list = _list.OrderBy(x => x.Artist).ToList();
else if (sortOrder == SortOrder.Descending)
_list = _list.OrderByDescending(x => x.Artist).ToList();
}
Now obviously this isn't good code so it needs refactoring into one Sort() method but I just cant figure out how to do it in the simplest possible way. I don't care if it uses IComparer or LINQ.
I want it to look something like this:
public void Sort(SortOrder sortOrder, SortType sortType)
{
//implementation here
}
public enum SortType
{
Artist,
Album,
Year
}
So whats the cleanest way to do this with no code repetition?
Thanks, Lee
You should be able to mimick the signature of the OrderBy extension method:
Update 1 you have to be explicit in the first generic parameter to your keySelector Func. I'm going to take a guess at your type and call it "Song".
public void Sort<TKey>(SortOrder sortOrder,
Func<Song, TKey> keySelector)
{
if (sortOrder == SortOrder.Descending)
{
_list = _list.OrderByDescending(keySelector).ToList();
}
else
{
_list = _list.OrderBy(keySelector).ToList();
}
}
Now you can call "Sort" like this:
Sort(SortOrder.Descending, x => x.Album);
Update 2
Following up on Tom Lokhorst's comment: If you want to predefine some shorthand sort criteria, you could do so by defining a class like this:
public static class SortColumn
{
public static readonly Func<Song, string> Artist = x => x.Artist;
public static readonly Func<Song, string> Album = x => x.Album;
}
Now you can simply call:
Sort(SortOrder.Descending, SortColumn.Artist);
You might try using a generic comparer.
I think you should add an extension method to IList<T>:
public static class extIList {
public static IList<T> Sort<T, TKey>(this IList<T> list, SortOrder sortOrder, Func<T, TKey> keySelector) {
if (sortOrder == SortOrder.Descending) {
return list.OrderByDescending(keySelector).ToList();
} else {
return list.OrderBy(keySelector).ToList();
}
}
}
and then you can use pretty with every your objects:
IList<Person> list = new List<Person>();
list.Add(new Person("David","Beckham"));
list.Add(new Person("Gennaro","Gattuso"));
list.Add(new Person("Cristian","Carlesso"));
list = list.Sort(SortOrder.Descending, X => X.Name);
ps SortOrder already exists:
using System.Data.SqlClient;
Sounds like sorting is taking on a life of its own if you have several methods dedicated to it. Maybe they can be gathered into a class.
public enum SortOrder
{
Ascending = 0,
Descending = 1
}
public class Sorter<T>
{
public SortOrder Direction { get; set; }
public Func<T, object> Target { get; set; }
public Sorter<T> NextSort { get; set; }
public IOrderedEnumerable<T> ApplySorting(IEnumerable<T> source)
{
IOrderedEnumerable<T> result = Direction == SortOrder.Descending ?
source.OrderByDescending(Target) :
source.OrderBy(Target);
if (NextSort != null)
{
result = NextSort.ApplyNextSorting(result);
}
return result;
}
private IOrderedEnumerable<T> ApplyNextSorting
(IOrderedEnumerable<T> source)
{
IOrderedEnumerable<T> result = Direction == SortOrder.Descending ?
source.ThenByDescending(Target) :
source.ThenBy(Target);
return result;
}
}
Here's sample usage:
List<string> source = new List<string>()
{ "John", "Paul", "George", "Ringo" };
Sorter<string> mySorter = new Sorter<string>()
{
Target = s => s.Length,
NextSort = new Sorter<string>()
{
Direction = SortOrder.Descending,
Target = s => s
}
};
foreach (string s in mySorter.ApplySorting(source))
{
Console.WriteLine(s);
}
Output is Paul, John, Ringo, George.
Related
I have the following method which determines which cars I need to delete from the DB.
private List<CarDTO> BuildCarsToDelete(IList<CarDTO> newCars, IList<CarDTO> existingCars)
{
var missingCars = new List<CarDTO>();
var cars = newCars.Select(c => c.CarId);
var newCarIds = new HashSet<int>(cars);
foreach (var car in existingCars)
{
//If there are no new cars then it had some and they have been removed
if (newCars.Count() == 0)
{
missingCars.Add(car);
}
else
{
if (!newCarIds.Contains(car.CarId))
{
missingCars.Add(car);
}
}
}
return missingCars;
}
This works as I want - but if I want to achieve the same functionality for Customers or Apartments of other DTOs I will be copying a pasting the code but only changing the variable names and the Type of DTO around - is there a nicer way possible using generics which would keep the algorithm and logic as it is but allow me to use on any DTO?
If all the ids are of type int then you can do that by passing in a Func to determine the id.
private List<T> BuildToDelete<T>(
IList<T> newItems,
IList<T> existingItems,
Func<T, int> getId)
{
var missingItems = new List<T>();
var items = newItems.Select(getId);
var newItemIds = new HashSet<int>(items);
foreach (var item in existingItems)
{
if (newItems.Count() == 0)
{
missingItems.Add(item);
}
else
{
if (!newItemIds.Contains(getId(item)))
{
missingItems.Add(item);
}
}
}
return missingItems;
}
Then call as shown below:
var results = BuildToDelete(newCars, existingCars, c => c.CarId);
Assuming you use the interface approach mentioned in comments, a generic version could look something like this:
private List<TEntity> BuildEntitiesToDelete(IList<TEntity> newEntities, IList<TEntity> existingEntities) where TEntity : IEntityWithId
{
var missingEntities = new List<TEntity>();
var entities = newEntities.Select(e => e.Id);
var newEntityIds = new HashSet<int>(entities);
foreach (var entity in existingEntities)
{
if (entities.Count() == 0)
{
missingEntities.Add(entity);
}
else
{
if (!newEntityIds.Contains(entity.Id))
{
missingEntities.Add(entity);
}
}
}
return missingEntities;
}
IEntityWithId is probably a poor name for the interface, but I'll leave picking a better name up to you.
Try something cleaner:
1) create flexible equality comparer (need to add some null checking etc.)
public class FuncEqualityComparer<T> : IEqualityComparer<T>
{
Func<T, T, bool> comparer;
Func<T, int> hash;
public FuncEqualityComparer (Func<T, T, bool> comparer, Func<T, int> hash)
{
this.comparer = comparer;
this.hash = hash;
}
public bool Equals (T x, T y) => comparer (x, y);
public int GetHashCode (T obj) => hash (obj);
}
2) and now, just simply:
var carComparerByID = new FuncEqualityComparer<CarDTO> ((a, b) => a.CarId == b.CarId, x => x.CarId.GetHashCode ());
var result = existingCars.Except (newCars, carComparerByID).ToList ();
I have an ObservableCollection which I want to sort, not in place but I want to create a new sorted copy.
There's lots of examples on how to sort lists using nifty lambda expressions or using LINQ, but I can't hardcode the fields I want to sort by into code.
I have an array of NSSortDescription which work kinda like SortDescription. There's a string with the name of the property but the direction is specified by a bool (true = ascending). The first value in the array should be the primary sorting field, when the values in that field match, the second sort descriptor should be used, etc.
Example:
Artist: Bob Marley, Title: No Woman No Cry
Artist: Bob Marley, Title: Could You Be Loved
Artist: Infected Mushroom, Title: Converting Vegetarians
Artist: Bob Marley, Title: One Love
Artist: Chemical Brothers, Title: Do It Again
Sort descriptor: Artist descending, Title ascending.
Result:
Artist: Infected Mushroom, Title: Converting Vegetarians
Artist: Chemical Brothers, Title: Do It Again
Artist: Bob Marley, Title: Could You Be Loved
Artist: Bob Marley, Title: No Woman No Cry
Artist: Bob Marley, Title: One Love
Any suggestions on how to accomplish this?
UPDATE: Change Sort to OrderBy as Sort is unstable sort algorithm
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Reflection;
using System.ComponentModel;
namespace PNS
{
public class SortableList<T> : List<T>
{
private string _propertyName;
private bool _ascending;
public void Sort(string propertyName, bool ascending)
{
//Flip the properties if the parameters are the same
if (_propertyName == propertyName && _ascending == ascending)
{
_ascending = !ascending;
}
//Else, new properties are set with the new values
else
{
_propertyName = propertyName;
_ascending = ascending;
}
PropertyDescriptorCollection properties = TypeDescriptor.GetProperties(typeof(T));
PropertyDescriptor propertyDesc = properties.Find(propertyName, true);
// Apply and set the sort, if items to sort
PropertyComparer<T> pc = new PropertyComparer<T>(propertyDesc, (_ascending) ? ListSortDirection.Ascending : ListSortDirection.Descending);
//this.Sort(pc); UNSTABLE SORT ALGORITHM
this.OrderBy(t=>t, pc);
}
}
public class PropertyComparer<T> : System.Collections.Generic.IComparer<T>
{
// The following code contains code implemented by Rockford Lhotka:
// http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnadvnet/html/vbnet01272004.asp
private PropertyDescriptor _property;
private ListSortDirection _direction;
public PropertyComparer(PropertyDescriptor property, ListSortDirection direction)
{
_property = property;
_direction = direction;
}
public int Compare(T xWord, T yWord)
{
// Get property values
object xValue = GetPropertyValue(xWord, _property.Name);
object yValue = GetPropertyValue(yWord, _property.Name);
// Determine sort order
if (_direction == ListSortDirection.Ascending)
{
return CompareAscending(xValue, yValue);
}
else
{
return CompareDescending(xValue, yValue);
}
}
public bool Equals(T xWord, T yWord)
{
return xWord.Equals(yWord);
}
public int GetHashCode(T obj)
{
return obj.GetHashCode();
}
// Compare two property values of any type
private int CompareAscending(object xValue, object yValue)
{
int result;
if (xValue == null && yValue != null) return -1;
if (yValue == null && xValue != null) return 1;
if (xValue == null && yValue == null) return 0;
// If values implement IComparer
if (xValue is IComparable)
{
result = ((IComparable)xValue).CompareTo(yValue);
}
// If values don't implement IComparer but are equivalent
else if (xValue.Equals(yValue))
{
result = 0;
}
// Values don't implement IComparer and are not equivalent, so compare as string values
else result = xValue.ToString().CompareTo(yValue.ToString());
// Return result
return result;
}
private int CompareDescending(object xValue, object yValue)
{
// Return result adjusted for ascending or descending sort order ie
// multiplied by 1 for ascending or -1 for descending
return CompareAscending(xValue, yValue) * -1;
}
private object GetPropertyValue(T value, string property)
{
// Get property
PropertyInfo propertyInfo = value.GetType().GetProperty(property);
// Return value
return propertyInfo.GetValue(value, null);
}
}
}
You could dynamically create the OrderBy predicate based on string properties.
Func<MyType, object> firstSortFunc = null;
Func<MyType, object> secondSortFunc = null;
//these strings would be obtained from your NSSortDescription array
string firstProp = "firstPropertyToSortBy";
string secondProp = "secondPropertyToSortBy";
bool isAscending = true;
//create the predicate once you have the details
//GetProperty gets an object's property based on the string
firstSortFunc = x => x.GetType().GetProperty(firstProp).GetValue(x);
secondSortFunc = x => x.GetType().GetProperty(secondProp).GetValue(x);
List<MyType> ordered = new List<MyType>();
if(isAscending)
ordered = unordered.OrderBy(firstSortFunc).ThenBy(secondSortFunc).ToList();
else
ordered = unordered.OrderByDescending(firstSortFunc).ThenBy(secondSortFunc).ToList();
You could ceate a class named e.g. DynamicProperty which does retrieve the requested value. I do assume that the returned values do implement IComparable which should not be a too harsh limitation since you do want to compare the values anyway.
using System;
using System.Linq;
using System.Reflection;
namespace DynamicSort
{
class DynamicProperty<T>
{
PropertyInfo SortableProperty;
public DynamicProperty(string propName)
{
SortableProperty = typeof(T).GetProperty(propName);
}
public IComparable GetPropertyValue(T obj)
{
return (IComparable)SortableProperty.GetValue(obj);
}
}
class Program
{
class SomeData
{
public int X { get; set; }
public string Name { get; set; }
}
static void Main(string[] args)
{
SomeData[] data = new SomeData[]
{
new SomeData { Name = "ZZZZ", X = -1 },
new SomeData { Name = "AAAA", X = 5 },
new SomeData { Name = "BBBB", X = 5 },
new SomeData { Name = "CCCC", X = 5 }
};
var prop1 = new DynamicProperty<SomeData>("X");
var prop2 = new DynamicProperty<SomeData>("Name");
var sorted = data.OrderBy(x=> prop1.GetPropertyValue(x))
.ThenByDescending( x => prop2.GetPropertyValue(x));
foreach(var res in sorted)
{
Console.WriteLine("{0} X: {1}", res.Name, res.X);
}
}
}
}
I once wrote the following extension methods, which basically have the effect of either OrderBy or ThenBy, depending on whether the source is already ordered:
public static class Extensions {
public static IOrderedEnumerable<TSource> OrderByPreserve<TSource, TKey>(this IEnumerable<TSource> source, Func<TSource, TKey> keySelector, IComparer<TKey> comparer, bool descending) {
var orderedSource = source as IOrderedEnumerable<TSource>;
if (orderedSource != null) {
return orderedSource.CreateOrderedEnumerable(keySelector, comparer, descending);
}
if (descending) {
return source.OrderByDescending(keySelector, comparer);
}
return source.OrderBy(keySelector, comparer);
}
public static IOrderedEnumerable<TSource> OrderByPreserve<TSource, TKey>(this IEnumerable<TSource> source, Func<TSource, TKey> keySelector) {
return source.OrderByPreserve(keySelector, null, false);
}
public static IOrderedEnumerable<TSource> OrderByPreserve<TSource, TKey>(this IEnumerable<TSource> source, Func<TSource, TKey> keySelector, IComparer<TKey> comparer) {
return source.OrderByPreserve(keySelector, comparer, false);
}
public static IOrderedEnumerable<TSource> OrderByDescendingPreserve<TSource, TKey>(this IEnumerable<TSource> source, Func<TSource, TKey> keySelector) {
return source.OrderByPreserve(keySelector, null, true);
}
public static IOrderedEnumerable<TSource> OrderByDescendingPreserve<TSource, TKey>(this IEnumerable<TSource> source, Func<TSource, TKey> keySelector, IComparer<TKey> comparer) {
return source.OrderByPreserve(keySelector, comparer, true);
}
}
The interface is the same as OrderBy / OrderByDescending (alternatively you can pass descending as a boolean). You can write:
list.OrderByPreserve(x => x.A).OrderByPreserve(x => x.B)
which has the same effect as:
list.OrderBy(x => x.A).ThenBy(x => x.B)
Thus you could easily use keyboardP's solution with an arbitrary list of property names:
public static IEnumerable<TSource> OrderByProperties<TSource>(IEnumerable<TSource> source, IEnumerable<string> propertyNames) {
IEnumerable<TSource> result = source;
foreach (var propertyName in propertyNames) {
var localPropertyName = propertyName;
result = result.OrderByPreserve(x => x.GetType().GetProperty(localPropertyName).GetValue(x, null));
}
return result;
}
(the localPropertyName variable is used here because the iteration variable will have changed by the time the query is executed -- see this question for details)
A possible issue with this is that the reflection operations will be executed for each item. It may be better to build a LINQ expression for each property beforehand so they can be called efficiently (this code requires the System.Linq.Expressions namespace):
public static IEnumerable<TSource> OrderByProperties<TSource>(IEnumerable<TSource> source, IEnumerable<string> propertyNames) {
IEnumerable<TSource> result = source;
var sourceType = typeof(TSource);
foreach (var propertyName in propertyNames) {
var parameterExpression = Expression.Parameter(sourceType, "x");
var propertyExpression = Expression.Property(parameterExpression, propertyName);
var castExpression = Expression.Convert(propertyExpression, typeof(object));
var lambdaExpression = Expression.Lambda<Func<TSource, object>>(castExpression, new[] { parameterExpression });
var keySelector = lambdaExpression.Compile();
result = result.OrderByPreserve(keySelector);
}
return result;
}
Essentially what those Expression lines are doing is building the expression x => (object)x.A (where "A" is the current property name), which is then used as the ordering key selector.
Example usage would be:
var propertyNames = new List<string>() { "Title", "Artist" };
var sortedList = OrderByProperties(list, propertyNames).ToList();
You just need to add the ascending / descending logic.
I need to support a variable number of Orderby terms in a Linq (to Entity) statement. That is, my function will accept a list of properties on which the data should be order. The properties can have both ascending or descending sorts. What is the best way to handle constructing the Linq query?
Thanks!
You should be able to do something along these lines:
public IEnumerable<MyType> DoSomething(params Expression<Func<MyType,object>>[] properties)
{
var query = // create LINQ query that returns IQueryable<MyType>
query = query.OrderBy(properties.First());
foreach (var property in properties.Skip(1))
{
query = query.ThenBy(property);
}
}
…
var results = DoSomething(() => x.Age, () => x.Height, () => x.LastName);
You'd need to handle the case where fewer than 2 properties are specified.
Following on from Jay's answer, this can be made into a nice extension method:
public static class EnumerableExtensions
{
public static IEnumerable<T> OrderByMany<T>(this IEnumerable<T> enumerable,
params Expression<Func<T, object>>[] expressions)
{
if (expressions.Length == 1)
return enumerable.OrderBy(expressions[0].Compile());
var query = enumerable.OrderBy(expressions[0].Compile());
for (int i = 1; i < expressions.Length;i++)
{
query = query.ThenBy(expressions[i].Compile());
}
return query;
}
}
Usage becomes quite simple, given a test object:
public class Person
{
public string Name { get; set; }
public int Age { get; set; }
}
This is then possible:
var people = new Person[]
{
new Person() {Name = "John", Age = 40},
new Person() {Name = "John", Age = 20},
new Person() {Name = "Agnes", Age = 11}
};
foreach(var per in people.OrderByMany(x => x.Name, x => x.Age))
{
Console.WriteLine("{0} Age={1}",per.Name,per.Age);
}
Output:
Agnes Age=11
John Age=20
John Age=40
UPDATE
You could add another overload of the OrderByMany method to support SortOrder as well, although it gets clunky rather quickly. Personally I'd just go for the syntax
var query = from p
in people
order by Name, Age descending;
However, for the record, in C#4 at least, I would accomplish the overload using an enum & tuple.
public enum SortOrder
{
Ascending,
Descending
}
and the extra overload:
public static IEnumerable<T> OrderByMany<T>(this IEnumerable<T> enumerable,
params Tuple<Expression<Func<T, object>>,SortOrder>[] expressions)
{
var query = (expressions[0].Item2 == SortOrder.Ascending)
? enumerable.OrderBy(expressions[0].Item1.Compile())
: enumerable.OrderByDescending(expressions[0].Item1.Compile());
for (int i = 1; i < expressions.Length; i++)
{
query = expressions[i].Item2 == SortOrder.Ascending
? query.ThenBy(expressions[i].Item1.Compile())
: query.ThenByDescending(expressions[i].Item1.Compile());
}
return query;
}
Usage becomes clumsy and hard to read:
foreach (var per in people.OrderByMany(
new Tuple<Expression<Func<Person, object>>, SortOrder>(x => x.Age, SortOrder.Descending),
new Tuple<Expression<Func<Person, object>>, SortOrder>(x => x.Name, SortOrder.Ascending)))
{
Console.WriteLine("{0} Age={1}", per.Name, per.Age);
}
To sort by an arbitrary property, you need to build an expression tree to pass to OrderBy.
To sort by an arbitrary number of properties, you need to call ThenBy in a loop.
I like Jamiec's idea but I hate using Tuples because the syntax is ugly. Therefore I built a small class that encapsulates the Tuple and exposes getters for the Item1 and Item2 properties with better variable names.
Also notice that I used a default sort order of ascending so you only need to specify a SortOrder if you want to sort in descending order.
public class SortExpression<T>
{
private Tuple<Expression<Func<T, object>>, SortOrder> tuple;
public SortExpression( Expression<Func<T, object>> expression, SortOrder order =SortOrder.Ascending )
{
tuple = new Tuple<Expression<Func<T,object>>, SortOrder>(expression, order);
}
public Expression<Func<T, object>> Expression {
get { return tuple.Item1; }
}
public SortOrder Order {
get { return tuple.Item2; }
}
}
In my specific application, I have a repository base class which takes an IQueryable and converts it to a ObservableCollection. In that method I use the SortExpression class:
public ObservableCollection<T> GetCollection(params SortExpression<T>[] sortExpressions) {
var list = new ObservableCollection<T>();
var query = FindAll();
if (!sortExpressions.Any()) {
query.ToList().ForEach(list.Add);
return list;
}
var ordered = (sortExpressions[0].Order == SortOrder.Ascending)
? query.OrderBy(sortExpressions[0].Expression.Compile())
: query.OrderByDescending(sortExpressions[0].Expression.Compile());
for (var i = 1; i < sortExpressions.Length; i++) {
ordered = sortExpressions[i].Order == SortOrder.Ascending
? ordered.ThenBy(sortExpressions[i].Expression.Compile())
: ordered.ThenByDescending(sortExpressions[i].Expression.Compile());
}
ordered.ToList().ForEach(list.Add);
return list;
}
Here is the method in use:
var repository = new ContactRepository(UnitOfWork);
return repository.GetCollection(
new SortExpression<Contact>(x => x.FirstName),
new SortExpression<Contact>(x => x.LastName));
I wrote this:
public static class EnumerableExtensions
{
public static int IndexOf<T>(this IEnumerable<T> obj, T value)
{
return obj
.Select((a, i) => (a.Equals(value)) ? i : -1)
.Max();
}
public static int IndexOf<T>(this IEnumerable<T> obj, T value
, IEqualityComparer<T> comparer)
{
return obj
.Select((a, i) => (comparer.Equals(a, value)) ? i : -1)
.Max();
}
}
But I don't know if it already exists, does it?
I'd question the wisdom, but perhaps:
source.TakeWhile(x => x != value).Count();
(using EqualityComparer<T>.Default to emulate != if needed) - but you need to watch to return -1 if not found... so perhaps just do it the long way
public static int IndexOf<T>(this IEnumerable<T> source, T value)
{
int index = 0;
var comparer = EqualityComparer<T>.Default; // or pass in as a parameter
foreach (T item in source)
{
if (comparer.Equals(item, value)) return index;
index++;
}
return -1;
}
The whole point of getting things out as IEnumerable is so you can lazily iterate over the contents. As such, there isn't really a concept of an index. What you are doing really doesn't make a lot of sense for an IEnumerable. If you need something that supports access by index, put it in an actual list or collection.
I would implement it like this:
public static class EnumerableExtensions
{
public static int IndexOf<T>(this IEnumerable<T> obj, T value)
{
return obj.IndexOf(value, null);
}
public static int IndexOf<T>(this IEnumerable<T> obj, T value, IEqualityComparer<T> comparer)
{
comparer = comparer ?? EqualityComparer<T>.Default;
var found = obj
.Select((a, i) => new { a, i })
.FirstOrDefault(x => comparer.Equals(x.a, value));
return found == null ? -1 : found.i;
}
}
The way I'm currently doing this is a bit shorter than those already suggested and as far as I can tell gives the desired result:
var index = haystack.ToList().IndexOf(needle);
It's a bit clunky, but it does the job and is fairly concise.
I think the best option is to implement like this:
public static int IndexOf<T>(this IEnumerable<T> enumerable, T element, IEqualityComparer<T> comparer = null)
{
int i = 0;
comparer = comparer ?? EqualityComparer<T>.Default;
foreach (var currentElement in enumerable)
{
if (comparer.Equals(currentElement, element))
{
return i;
}
i++;
}
return -1;
}
It will also not create the anonymous object
The best way to catch the position is by FindIndex This function is available only for List<>
Example
int id = listMyObject.FindIndex(x => x.Id == 15);
If you have enumerator or array use this way
int id = myEnumerator.ToList().FindIndex(x => x.Id == 15);
or
int id = myArray.ToList().FindIndex(x => x.Id == 15);
A bit late in the game, i know... but this is what i recently did. It is slightly different than yours, but allows the programmer to dictate what the equality operation needs to be (predicate). Which i find very useful when dealing with different types, since i then have a generic way of doing it regardless of object type and <T> built in equality operator.
It also has a very very small memory footprint, and is very, very fast/efficient... if you care about that.
At worse, you'll just add this to your list of extensions.
Anyway... here it is.
public static int IndexOf<T>(this IEnumerable<T> source, Func<T, bool> predicate)
{
int retval = -1;
var enumerator = source.GetEnumerator();
while (enumerator.MoveNext())
{
retval += 1;
if (predicate(enumerator.Current))
{
IDisposable disposable = enumerator as System.IDisposable;
if (disposable != null) disposable.Dispose();
return retval;
}
}
IDisposable disposable = enumerator as System.IDisposable;
if (disposable != null) disposable.Dispose();
return -1;
}
Hopefully this helps someone.
A few years later, but this uses Linq, returns -1 if not found, doesn't create extra objects, and should short-circuit when found [as opposed to iterating over the entire IEnumerable]:
public static int IndexOf<T>(this IEnumerable<T> list, T item)
{
return list.Select((x, index) => EqualityComparer<T>.Default.Equals(item, x)
? index
: -1)
.FirstOr(x => x != -1, -1);
}
Where 'FirstOr' is:
public static T FirstOr<T>(this IEnumerable<T> source, T alternate)
{
return source.DefaultIfEmpty(alternate)
.First();
}
public static T FirstOr<T>(this IEnumerable<T> source, Func<T, bool> predicate, T alternate)
{
return source.Where(predicate)
.FirstOr(alternate);
}
Stumbled across this today in a search for answers and I thought I'd add my version to the list (No pun intended). It utlises the null conditional operator of c#6.0
IEnumerable<Item> collection = GetTheCollection();
var index = collection
.Select((item,idx) => new { Item = item, Index = idx })
//or .FirstOrDefault(_ => _.Item.Prop == something)
.FirstOrDefault(_ => _.Item == itemToFind)?.Index ?? -1;
I've done some 'racing of the old horses' (testing) and for large collections (~100,000), worst case scenario that item you want is at the end, this is 2x faster than doing ToList().FindIndex(). If the Item you want is in the middle its ~4x faster.
For smaller collections (~10,000) it seems to be only marginally faster
Heres how I tested it https://gist.github.com/insulind/16310945247fcf13ba186a45734f254e
An alternative to finding the index after the fact is to wrap the Enumerable, somewhat similar to using the Linq GroupBy() method.
public static class IndexedEnumerable
{
public static IndexedEnumerable<T> ToIndexed<T>(this IEnumerable<T> items)
{
return IndexedEnumerable<T>.Create(items);
}
}
public class IndexedEnumerable<T> : IEnumerable<IndexedEnumerable<T>.IndexedItem>
{
private readonly IEnumerable<IndexedItem> _items;
public IndexedEnumerable(IEnumerable<IndexedItem> items)
{
_items = items;
}
public class IndexedItem
{
public IndexedItem(int index, T value)
{
Index = index;
Value = value;
}
public T Value { get; private set; }
public int Index { get; private set; }
}
public static IndexedEnumerable<T> Create(IEnumerable<T> items)
{
return new IndexedEnumerable<T>(items.Select((item, index) => new IndexedItem(index, item)));
}
public IEnumerator<IndexedItem> GetEnumerator()
{
return _items.GetEnumerator();
}
IEnumerator IEnumerable.GetEnumerator()
{
return GetEnumerator();
}
}
Which gives a use case of:
var items = new[] {1, 2, 3};
var indexedItems = items.ToIndexed();
foreach (var item in indexedItems)
{
Console.WriteLine("items[{0}] = {1}", item.Index, item.Value);
}
This can get really cool with an extension (functioning as a proxy), for example:
collection.SelectWithIndex();
// vs.
collection.Select((item, index) => item);
Which will automagically assign indexes to the collection accessible via this Index property.
Interface:
public interface IIndexable
{
int Index { get; set; }
}
Custom extension (probably most useful for working with EF and DbContext):
public static class EnumerableXtensions
{
public static IEnumerable<TModel> SelectWithIndex<TModel>(
this IEnumerable<TModel> collection) where TModel : class, IIndexable
{
return collection.Select((item, index) =>
{
item.Index = index;
return item;
});
}
}
public class SomeModelDTO : IIndexable
{
public Guid Id { get; set; }
public string Name { get; set; }
public decimal Price { get; set; }
public int Index { get; set; }
}
// In a method
var items = from a in db.SomeTable
where a.Id == someValue
select new SomeModelDTO
{
Id = a.Id,
Name = a.Name,
Price = a.Price
};
return items.SelectWithIndex()
.OrderBy(m => m.Name)
.Skip(pageStart)
.Take(pageSize)
.ToList();
Try this:
static int FindIndex<T>(this IEnumerable<T> a, Predicate<T> f) =>
a.TakeWhile(x => !f(x)).Count();
static int IndexOf<T>(this IEnumerable<T> a, T value) =>
a.FindIndex(x => EqualityComparer<T>.Default.Equals(x, value));
var i = new[] { 1, 2, 3 }.IndexOf(2); // 1
My Code looks like this :
Collection<NameValueCollection> optionInfoCollection = ....
List<NameValueCollection> optionInfoList = new List<NameValueCollection>();
optionInfoList = optionInfoCollection.ToList();
if(_isAlphabeticalSoting)
Sort optionInfoList
I tried optionInfoList.Sort() but it is not working.
Using the sort method and lambda expressions, it is really easy.
myList.Sort((a, b) => String.Compare(a.Name, b.Name))
The above example shows how to sort by the Name property of your object type, assuming Name is of type string.
If you just want Sort() to work, then you'll need to implement IComparable or IComparable<T> in the class.
If you don't mind creating a new list, you can use the OrderBy/ToList LINQ extension methods. If you want to sort the existing list with simpler syntax, you can add a few extension methods, enabling:
list.Sort(item => item.Name);
For example:
public static void Sort<TSource, TValue>(
this List<TSource> source,
Func<TSource, TValue> selector)
{
var comparer = Comparer<TValue>.Default;
source.Sort((x, y) => comparer.Compare(selector(x), selector(y)));
}
public static void SortDescending<TSource, TValue>(
this List<TSource> source,
Func<TSource, TValue> selector)
{
var comparer = Comparer<TValue>.Default;
source.Sort((x, y) => comparer.Compare(selector(y), selector(x)));
}
public class Person {
public string FirstName { get; set; }
public string LastName { get; set; }
}
List<Person> people = new List<Person>();
people.Sort(
delegate(Person x, Person y) {
if (x == null) {
if (y == null) { return 0; }
return -1;
}
if (y == null) { return 0; }
return x.FirstName.CompareTo(y.FirstName);
}
);
You need to set up a comparer that tells Sort() how to arrange the items.
Check out List.Sort Method (IComparer) for an example of how to do this...