I recently ran into a problem where it seems I need a 'static abstract' method. I know why it is impossible, but how can I work around this limitation?
For example I have an abstract class which has a description string. Since this string is common for all instances, it is marked as static, but I want to require that all classes derived from this class provide their own Description property so I marked it as abstract:
abstract class AbstractBase
{
...
public static abstract string Description{get;}
...
}
It won't compile of course. I thought of using interfaces but interfaces may not contain static method signatures.
Should I make it simply non-static, and always get an instance to get that class specific information?
Any ideas?
You can't.
The place to do this is with Attributes.
Eg
[Name("FooClass")]
class Foo
{
}
If you don't mind deferring to implementations to sensibly implement the Description property, you can simply do
public abstract string ClassDescription {get; }
// ClassDescription is more intention-revealing than Description
And implementing classes would do something like this:
static string classDescription="My Description for this class";
override string ClassDescription { get { return classDescription; } }
Then, your classes are required to follow the contract of having a description, but you leave it to them to do it sensibly. There's no way of specifying an implementation in an object-oriented fashion (except through cruel, fragile hacks).
However, in my mind this Description is class metadata, so I would prefer to use the attribute mechanism as others have described. If you are particularly worried about multiple uses of reflection, create an object which reflects over the attribute that you're concerned with, and store a dictionary between the Type and the Description. That will minimize the reflection (other than run time type inspection, which isn't all that bad). The dictionary can be stored as a member of whatever class that typically needs this information, or, if clients across the domain require it, via a singleton or context object.
If it is static, there is only one instance of the variable, I don't see how inheritance would make sense if we could do what you want to accomplish with static vars in derived classes. Personally I think you are going to far to try to avoid a instance var.
Why not just the classic way?
abstract class AbstractBase
{
protected string _Description = "I am boring abstract default value";
}
class Foo : AbstractBase {
public Foo() {
_Description = "I am foo!";
}
}
Combining static and abstract is somewhat meaningless, yes. The idea behind static is one need not present an instance of the class in order to use the member in question; however with abstract, one expects an instance to be of a derived class that provides a concrete implementation.
I can see why you'd want this sort of combination, but the fact is the only effect would be to deny the implementation use of 'this' or any non-static members. That is, the parent class would dictate a restriction in the implementation of the derived class, even though there's no underlying difference between calling an abstract or 'static abstract' member (as both would need a concrete instance to figure out what implementation to use)
A possible workaround is to define a Singleton of your derived class in your base class with the help of Generics.
import System;
public abstract class AbstractBase<T>
where T : AbstractBase<T>, new()
{
private static T _instance = new T();
public abstract string Description { get; }
public static string GetDescription()
{
return _instance.Description;
}
}
public class DerivedClass : AbstractBase<DerivedClass>
{
public override string Description => "This is the derived Class";
}
class Program
{
static void Main(string[] args)
{
Console.WriteLine(DerivedClass.GetDescription());
Console.ReadKey();
}
}
The trick is to tell your AbstractBase<T> some details about how DerivedClass is implemented:
It is newable with where T: new() so it can create a Singleton instance
It derives from itself with where T : AbstractBase<T> so it knows that there will be a implementation of Description
This way _instance contains the Description field which can be called in the static Method GetDescription().
This forces you to overwrite Descriptionin your DerivedClass and allows you to call its value with DerivedClass.GetDescription()
It's not static if it has to be called on an instance.
If you're not calling it on an instance, then there's no polymorphism at play (i.e. ChildA.Description is completely unrelated to ChildB.Description as far as the language is concerned).
You can...
In the abstract class...
protected abstract InWindow WindowInstance { get; set; }
In the derived class...
private static InWindow _instance;
protected override InWindow WindowInstance
{
get => _instance;
set => _instance = value;
}
You could make the "abstract" base method throw an Exception, so then a developer is "warned" if he tries to invoke this method on a child class without overriding.
The downside is that one might extend the class and not use this method. Then refer to other answers provided.
Related
I'm not sure if this is a strange thing to do or not, or if it is some how code smell...but I was wondering if there was a way (some sort of oop pattern would be nice) to "cast" a base type to a form of its derived type. I know this makes little sense as the derived type will have additional functionality that the parent doesn't offer which is in its self not fundamentally sound. But is there some way to do this? Here is a code example to so I can better explain what I"m asking.
public class SomeBaseClass {
public string GetBaseClassName {get;set;}
public bool BooleanEvaluator {get;set;}
}
public class SomeDerivedClass : SomeBaseClass {
public void Insert(SqlConnection connection) {
//...random connection stuff
cmd.Parameters["IsItTrue"].Value = this.BooleanEvalutar;
//...
}
}
public static void Main(object[] args) {
SomeBaseClass baseClass = new SomeBaseClass();
SomeDerivedClass derClass = (SomeDerivedClass)baseClass;
derClass.Insert(new sqlConnection());
}
I know this seems goofy but is there any way to accomplish something of this sort?
Not soundly, in "managed" languages. This is downcasting, and there is no sane down way to handle it, for exactly the reason you described (subclasses provide more than base classes - where does this "more" come from?). If you really want a similar behaviour for a particular hierarchy, you could use constructors for derived types that will take the base type as a prototype.
One could build something with reflection that handled the simple cases (more specific types that have no addition state). In general, just redesign to avoid the problem.
Edit: Woops, can't write conversion operators between base/derived types. An oddity of Microsoft trying to "protect you" against yourself. Ah well, at least they're no where near as bad as Sun.
Try composition instead of inheritance!
It seems to me like you'd be better off passing an instance of SomeBaseClass to the SomeDerivedClass (which will no longer derive base class, and should be renamed as such)
public class BooleanHolder{
public bool BooleanEvaluator {get;set;}
}
public class DatabaseInserter{
BooleanHolder holder;
public DatabaseInserter(BooleanHolder holder){
this.holder = holder;
}
public void Insert(SqlConnection connection) {
...random connection stuff
cmd.Parameters["IsItTrue"].Value = holder.BooleanEvalutar;
...
}
}
public static void Main(object[] args) {
BooleanHolder h = new BooleanHolder();
DatabaseInserter derClass = new DatabaseInserter(h);
derClass.Insert(new sqlConnection);
}
Check out http://www.javaworld.com/javaworld/jw-11-1998/jw-11-techniques.html (page 3):
Code reuse via composition Composition
provides an alternative way for Apple
to reuse Fruit's implementation of
peel(). Instead of extending Fruit,
Apple can hold a reference to a Fruit
instance and define its own peel()
method that simply invokes peel() on
the Fruit.
Personally I don't think it's worth the hassle of using Inheritance in this case. Instead just pass the base class instance in in the constructor and access it through a member variable.
private class ExtendedClass //: BaseClass - like to inherit but can't
{
public readonly BaseClass bc = null;
public ExtendedClass(BaseClass b)
{
this.bc = b;
}
public int ExtendedProperty
{
get
{
}
}
}
Downcasting makes sense, if you have an Object of derived class but it's referenced by a reference of base class type and for some reason You want it back to be referenced by a derived class type reference. In other words You can downcast to reverse the effect of previous upcasting. But You can't have an object of base class referenced by a reference of a derived class type.
I'm not saying I recommend this. But you could turn base class into JSON string and then convert it to the derived class.
SomeDerivedClass layer = JsonConvert.DeserializeObject<SomeDerivedClass>(JsonConvert.SerializeObject(BaseClassObject));
No, this is not possible. In a managed language like C#, it just won't work. The runtime won't allow it, even if the compiler lets it through.
You said yourself that this seems goofy:
SomeBaseClass class = new SomeBaseClass();
SomeDerivedClass derClass = (SomeDerivedClass)class;
So ask yourself, is class actually an instance of SomeDerivedClass? No, so the conversion makes no sense. If you need to convert SomeBaseClass to SomeDerivedClass, then you should provide some kind of conversion, either a constructor or a conversion method.
It sounds as if your class hierarchy needs some work, though. In general, it shouldn't be possible to convert a base class instance into a derived class instance. There should generally be data and/or functionality that do not apply to the base class. If the derived class functionality applies to all instances of the base class, then it should either be rolled up into the base class or pulled into a new class that is not part of the base class hierarchy.
C# language doesn't permit such operators, but you can still write them and they work:
[System.Runtime.CompilerServices.SpecialName]
public static Derived op_Implicit(Base a) { ... }
[System.Runtime.CompilerServices.SpecialName]
public static Derived op_Explicit(Base a) { ... }
Yes - this is a code smell, and pretty much nails down the fact that your inheritance chain is broken.
My guess (from the limited sample) is that you'd rather have DerivedClass operate on an instance of SomeBaseClass - so that "DerivedClass has a SomeBaseClass", rather than "DerivedClass is a SomeBaseClass". This is known as "favor composition over inheritance".
As others have noted, the casting you suggest is not really possible.
Would it maybe be a case where the Decorator pattern(Head First extract) can be introduced?
Have you thought about an interface that what is currently your base class and your derived class both would implement? I don't know the specifics of why you're implementing this way but it might work.
This is called downcasting and Seldaek's suggestion to use the "safe" version is sound.
Here's a pretty decent description with code samples.
This is not possible because how are you going to get the "extra" that the derived class has. How would the compiler know that you mean derivedClass1 and not derivedClass2 when you instantiate it?
I think what you are really looking for is the factory pattern or similar so you can instantiate objects without really knowing the explicit type that's being instantiate. In your example, having the "Insert" method would be an interface that instance the factory returns implements.
I dont know why no one has said this and i may have miss something but you can use the as keyword and if you need to do an if statement use if.
SomeDerivedClass derClass = class as SomeDerivedClass; //derClass is null if it isnt SomeDerivedClass
if(class is SomeDerivedClass)
;
-edit- I asked this question long ago
I've recently been in the need of extending a simple DTO with a derived type in order to put some more properties on it. I then wanted to reuse some conversion logic I had, from internal database types to the DTOs.
The way I solved it was by enforcing an empty constructor on the DTO classes, using it like this:
class InternalDbType {
public string Name { get; set; }
public DateTime Date { get; set; }
// Many more properties here...
}
class SimpleDTO {
public string Name { get; set; }
// Many more properties here...
}
class ComplexDTO : SimpleDTO {
public string Date { get; set; }
}
static class InternalDbTypeExtensions {
public static TDto ToDto<TDto>(this InternalDbType obj) where TDto : SimpleDTO, new() {
var dto = new TDto {
Name = obj.Name
}
}
}
I can then reuse the conversion logic from the simple DTO when converting to the complex one. Of course, I will have to fill in the properties of the complex type in some other way, but with many, many properties of the simple DTO, this really simplifies things IMO.
That cannot work. Go look at the help page linked by the compile error.
The best solution is to use factory methods here.
As many answers have pointed out, you can't downcast which makes total sense.
However, in your case, SomeDerivedClass doesn't have properties that will be 'missing'. So you could create an extension method like this:
public static T ToDerived<T>(this SomeBaseClass baseClass)
where T:SomeBaseClass, new()
{
return new T()
{
BooleanEvaluator = baseClass.BooleanEvaluator,
GetBaseClassName = baseClass.GetBaseClassName
};
}
So you aren't casting, just converting:
SomeBaseClass b = new SomeBaseClass();
SomeDerivedClass c = b.ToDerived<SomeDerivedClass>();
This only really works if all of the data in the base class is in the form of readable and writable properties.
C++ handles it using a constructor. C++ Typecasting. It seems like an oversight to me. Many of you have brought up the issue of what would the process do with the extra properties. I would answer, what does the compiler do when it creates the derived class when the programmer does not set the properties? I have handled this situation similar to C++. I create a constructor that takes the base class then manually set the properties in the constructor. This is definitely preferable to setting a variable in the derived class and breaking the inheritance. I would also choose it over a factory method because I think the resulting code would be cleaner looking.
I know that in C# we cant override non virtual fields and methods but I have the following case:
Class Base
{
public static int a {get;set;}
public static void b()
{
// it uses a
}
public static void c()
{
// it uses a
}
public static string d {get {return a.ToString();}}
}
Class MyClass :Base
{
//...
}
now in my class MyClass i want to override the property a that all of Base class methods and properties start using the the overwritten property that i implemented, taking into considerations that i don't have access to change Base class
Is there any way to do this even if i had to re-implement the getter method of that property?
This is a static property, so it's used in the form Base.a. Whatever you do, the calling code will still resolve to the Base class, and then to it's static property a.
E.g
//old calling code
Base.a = 7; // does not create an instance
Console.WriteLine(Base.a);
class MyClass :Base
{
public static string a {get; set;}
}
//new calling code
MyClass.a = "some string"; // uses whatever a you defined in MyClass
Console.WriteLine(MyClass.a);
The best way is perhaps to introduce a new property by a different name, or have your class wrap the base class instead of extending it. Together with extension methods, these are the most common ways to build upon functionality of a class you don't have access to.
You can also re-introduce the property using the new keyword, but I would not recommend that. It hides the base class methods, which is dangerous because users of your code may end up calling the wrong thing. Whether new is warranted in this case very much depends on your exact use case.
Finally note, as Daniel remarked in the comments to your original post, that the methods in your base class seem to be static. So even if you had base class access, you would not be able to make them virtual. Actually having loads of static methods is generally bad design, except special cases such as object factories or extension method containers.
I have been making some hamfisted attempts to apply correct OOP principles to my project. I have an abstract class called DocumentSection, and several classes deriving from it (DocumentSectionView, DocumentSectionText, etc). Similarly I have an abstract class (DocAction) with several classes deriving from it (DocumentActionReplaceByTag, DocumentSectionAppend, etc). Each DocumentSection has a DocumentAction within it.
My understanding of all this inheritance business is that by specifying a 'DocumentAction', this would allow any of those derived classes to be put in its place, and that any properties/methods from the base class would be available, as well as any specified in the concrete class I instantiate. So in the below example, I expected to be able to see the PerformAction method (leaving the virtual/override keywords out of the mix for now). And it is available.
However, because I went v.DocAction = new DocumentActionReplaceByTag();, I would also have expected my ReplaceActionFindText property to be visible.
Obviously I've got it wrong somewhere - any comments appreciated.
class Program
{
static void Main(string[] args)
{
DocumentSectionView v = new DocumentSectionView();
v.DocAction = new DocumentActionReplaceByTag();
// would like to go:
//v.DocAction.ReplaceActionFindText...
Console.ReadLine();
}
}
public abstract class DocumentSection
{
public abstract string GetContent();
public DocumentAction DocAction { get; set; }
}
public class DocumentSectionView : DocumentSection
{
public string ViewPath { get; set; }
public dynamic ViewModel { get; set; }
public override string GetContent()
{
return "test";
}
}
public abstract class DocumentAction
{
void PerformAction(StringBuilder sb, string content);
}
public class DocumentActionReplaceByTag : DocumentAction
{
public string ReplaceActionFindText { get; set; }
public void PerformAction(StringBuilder sb, string content)
{
sb.Replace(ReplaceActionFindText, content);
}
}
EDIT:
I've marked an answer as correct, but thought I'd add the fruits of my further thought on this matter for those coming across this later:
a) As pointed out, my intentions were broadly right but my method wrong. Setting the 'Action's property from the Main method was not correct. In all cases, a a DocumentActionReplaceByTag requires the FindText so I placed it in the constructor:
public DocumentActionReplaceByTag(string replaceActionFindText)
{
this.ReplaceActionFindText = replaceActionFindText;
}
From then on, a constructor with 0 arguments will rightly fail, and prevent a case where the action is executed but no findtext is specified.
b) Polymorphism works fine now, because my extra property findtext has been populated, and running PerformAction will run correctly regardless of the action type.
Because you are assigning your derived class to a property with the type of the base class only the methods and properties of the base class will be available. And this makes sense since you could have assigned any instance of a class that derives from the base class - so any derived methods cannot be used in this context.
This is one of the OOP principles - your derived class instances may be used as an instance of a base class (but not the other way round)
Edit:
To elaborate on the solution proposed by #sll to cast to a particular derived class type: Don't do it! It is a workaround but not in the interest of the overall design.
If you have to cast to a derived type then you are violating the Liskov substitution principle meaning that any derived type should be usable in place of the base type - that's clearly not the case if you need a specific cast.
Rethink your design - do you really need a property with the base class type and if so are the methods currently only in one particular derived type better off being in the base type as well?
The v reference type is of the DocumentSectionView which is not aware of methods of the DocumentActionReplaceByTag class even underlying instance is of DocumentActionReplaceByTag as you've assigned it. You need to cast it to be able accesing derived class members:
((DocumentActionReplaceByTag)v.DocAction).ReplaceActionFindText
Also in some cases this is pretty fine when underlying instance could not be casted so some part of code should be skipped, then you can use exception-safe way of casting using as operator:
var typedAction = v.DocAction as DocumentActionReplaceByTag;
if (typedAction != null)
{
// accessing the typedAction.ReplaceActionFindText property
}
My suggestions are only to help you understand C# side of question, regarding overall design and approach please see BrokenGlass's answer.
No, in your example, since DocAction is only a DocumentAction, you will only be able to see the properties of a DocumentAction, no matter which derived type of DocumentAction is used.
I have need to use one of two custom file readers classes; one to read a fixed width file and one for a CSV file. Each of these readers will have certain properties, etc. I want to use factory methods and have private constructors so I can run some business logic before creating the objects.
EDIT: better examples
//simple class with it's own factory method
class Class1
{
private Class1()
{
//constructor code
}
public static Class1 CreateClass()
{
//do some business logic here
return new Class1();
}
}
What I want to be able to do is define a base class, then override the factory. I guess the problem is that a static class belongs to the base CLASS, so can never be overriden, even though they ARE inherited. This code works
public class BaseClass
{
//some common properties / fields here
public string SomeField;
//some common methods here
//empty constructor
protected BaseClass() { }
//cannot have a virtual static class!
//Would really like to make this a virtual method
public static BaseClass CreateClass()
{
throw new NotImplementedException("BaseClass is meant to be derived");
}
public static string DoCommonStaticThing(){
return "I don't know why you'd ever do this";
}
}
public class DerivedClass1 : BaseClass
{
//private constructor
private DerivedClass1() {}
//concrete factory method
//would really like to say "override" here
public static BaseClass CreateClass()
{
DerivedClass1 d1 = new DerivedClass1();
d1.SomeField = "I'm a derived class\r\n" + DoCommonStaticThing();
return d1;
}
}
EDIT: To clarify further, what I'm trying to do is put some common functionality in my base class, but define an interface for my file-format-specific methods. Some of the methods are common, but the business logic for the constructor(s) is file format specific. My code above works, but it seems to me it would be better to mark the base class factory method as virtual, and the derived class factory method as "override".
I tried to do this, but got "A static member cannot be marked as override, virtual, or abstract".
What's the right way to achieve my goals?
First, explaining your specific error message: you cannot inherit static members because they belong to the type being defined, not the instance of the type. Inheritance modifiers such as override, virtual, and abstract do not apply to static members.
Second:
Typically when you follow a factory pattern, you have a factory class whose job is to instantiate concrete classes and return those instances cast as a base class or interface. Details vary as to how the factory chooses which concrete class to instantiate, and I won't get into that, but at the fundamental level, that's what a factory does.
So in order to create a factory pattern using the example you provided, you'll need at least four types, which, following your example, could probably be named ReaderBase, ReaderFactory, CsvReader, and FixedWidthReader. Rather than ReaderBase, you might consider IReader -- the choice depends on whether your abstract class pre-implements any functionality that is shared across all Readers.
CsvReader and FixedWidthReader inherit from either IReader or ReaderBase, and ReaderFactory has at least one method called, for example, InstantiateReader, which returns an IReader or ReaderBase. InstantiateReader does the work of determining whether to instantiate a CsvReader or a FixedWidthReader, based on some external criteria.
In c# we can't create an obeject of a abstact class or interface it means abstract class do not have any constructor, is it true ?
or if it have then what is it's purpose there?
As others have said, abstract classes usually have constructors (either explicitly or the default one created by the compiler) - and any derived class constructor will have to chain through the abstract class's constructor in the normal way. That's the important bit... suppose you have an abstract class which stores the name associated with an instance - because you always want a name, and you don't want to write the Name property in each concrete derived class. You might provide a constructor which takes that name and assigns it to a field... and then every subclass constructor would have to go through that constructor, so that you still knew you'd always have a name. If you want to know more about constructor chaining, read my article on it.
Here's an example of that:
public abstract class DemoBase
{
private readonly string name;
public string Name { get { return name; } }
protected DemoBase(string name)
{
this.name = name;
}
// Abstract members here, probably
}
public class FixedNameDemo : DemoBase
{
public FixedNameDemo()
: base ("Always the same name")
{
}
// Other stuff here
}
public class VariableNameDemo : DemoBase
{
public VariableNameDemo(string name)
: base(name)
{
}
// Other stuff here
}
To further answer your comment on BoltClock's answer, asbtract classes can't have private abstract methods, but they can have private constructors. Indeed, it's sometimes useful to have only private constructors in an abstract class, because it means the class can only be derived from within the program text of the same class. This allows you to create pseudo-enums:
public abstract class ArithmeticOperator
{
public static readonly ArithmeticOperator Plus = new PlusOperator();
public static readonly ArithmeticOperator Minus = new MinusOperator();
public abstract int Apply(int x, int y);
private ArithmeticOperator() {}
private class PlusOperator : ArithmeticOperator
{
public override int Apply(int x, int y)
{
return x + y;
}
}
private class MinusOperator : ArithmeticOperator
{
public override int Apply(int x, int y)
{
return x - y;
}
}
}
In this respect, an abstract private method/property could make sense - it could be accessed by the base class but provided by the derived classes within the same class's program text. However, it's prohibited by the specification. Usually, protected abstract members would solve the same problem - but not quite always.
Good question. Here's why Abstract classes need constructors even though they cannot be instantited.
In any Object oriented language like C#, object construction is an hierarchical process. Look at the code below. When you instantiate any object of type DerivedClass, it must construct the base object first before creating the object of typeof DerivedClass. Here the base class may or may not be an Abstract class. But even when you instantiate an object of a concrete type derived from an abstract class it will still need to call the constructor of the Base class before the object of DerivedClass type is created, hence you always need a constructor for Abstract class. If you have not added any constructor, C# compiler will automatically add a public parameterless constructor to the class in the generated MSIL.
public class BaseClass
{
public BaseClass()
{
Console.WriteLine("BaseClass constructor called..");
}
}
public class DerivedClass : BaseClass
{
public DerivedClass()
{
Console.WriteLine("DerivedClass constructor called..");
}
}
DerivedClass obj = new DerivedClass();
//Output
//BaseClass constructor called..
//DerivedClass constructor called..
PS: Assuming, If Abstract base classes
are not allowed to have constructors
because they need not be instantiated,
the whole fundamentals of the object
oriented programming will go on toss.
The idea behind Abstract types are to
represent objects that have some
features and behaviours but not
complete as whole to allow independant
existence.
No. it means that operator new is not allowed to create object from this type of class.
The purpose might be that are allocated/initialized some properties of class.
abstract usually leave some methods to implement.
Regarding the interface, this structure holds only the signatures of method, delegates or events. That may be implemented in class that use interface. You cant create a object.
Read about new
EDIT:
What is the purpose of constructor in abstract class ?
When one class inherit another class, the parent class of it had to be created first while object is crated. In class do not implement some special constructor always is used default one [className()]. When you override some method then the implementation of functionality is taken form class which override the method. This is why method used in constructor should never be virtual. Same logic for abstract class, such class can have a lot of functionality, and only one method that should be implemented by child class.
Abstract classes have constructors but you can't call them directly as you can't directly instantiate abstract classes.
To answer your comment, the concept of a private abstract method or property makes no sense, because private prevents anybody else from accessing it, and abstract prevents itself from accessing it. So there would essentially be no possible way to call it.
EDIT: see Jon Skeet's answer on private constructors. Private members of other kinds cannot exist in abstract classes, though.
Abstract classes do have constructors. When you create an instance of a derived class, its parent class' constructors are called. This applies to classes derived from abstract classes as well.