Any astronomers out there? I'm wondering if anyone has produced or stumbled upon a .NET (preferably C#) implementation of the US Naval Observatoru Vector Astrometry Subroutines (NOVAS).
I know nothing (of consequence) about astronomy, and absolutely nothing about NOVAS, so please take this with a grain of salt.
But, I did look at the website, and it looks like they have a C implementation. You could always take the C implementation, access it via pinvoke, and write a C# wrapper around it.
Are you only interested in a port of that library or anything usable from C# for astronomy?
I don't have anything for the first part, but for the second I would take a look at AGI's Components. Their libraries provide ways to compute all kind of astronomical data. The Dynamic Geometry Library lets you model everything including planets and such rather easily.
This download contains a very useful astronomical library in C#.
Sorry that I don't remember where I got it but perhaps it is documented in there somewhere.
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=8399&lngWId=10
Sidenote: The NOVAS library is not very complete. You would be better off to pursue the SOFA lib from the International Astronomy Union. Here's the link:
http://www.iausofa.org/
Urania is an astronomy library in C#:
http://www.smokycogs.com/blog/tutorials/astronomical-calculations-in-c-sharp/
The download is the non-obvious "here" link on the page that combines all of the sample code into a single app called Urania.
Once downloaded, you will also need to modify the Urania.sln file to fix the paths of the different libraries that he uses (MathLib, UraniaLib, etc.) and then it will compile correctly. (Open Urania.sld in notepad and delete: "..\Libs\" out of the 3 project paths)
Related
You load a foreign code example with libraries attached to it in Visual Studio. Now there is a method that you want to reuse in your code. Is there a function in VS that lets you strip the code from all unnecessary code to only have code left that is necessary for your current method to run?
It is not about the library. Loading a .sln or .csproj and having classes over classes when you just want one method out of it is a waste of performance, ram and space. It is about code you can easily omit or references(what I call libraries) you can easily omit. A part-question of this is: Which "using" statement do you need that is only necessary for your current method and the methods that pass paramaters to it? In short, showing relevant code only. Code that is tied to each other.
Let's use an example: You go to github and download source code in c#. Let's call the solution S. You open S in Visual Studio. You don't disassemble, you just load the source code of S, that is there in plain text. Then you find a method M - in plain text - that you want to use. M contains some objects whose classes were defined somewhere in the project. The goal is to recreate the surrounding only for this method to copy & paste it into my own solution without having red underlined words in almost every line within the method
after reading the question and the comments, I think I have a vague idea what you are referring to.
In case we ignore the context of the method you are referring, you can extract any code piece from a "library" by using a .NET decompiler and assembly browser.
There are many of them for free, such as:
dotPeek,
ILSpy
...
This will allow you to see the method's code. From there on, you can proceed as you like. In case your copy the method to your code base, you might still have to change it a bit in order to adapt it to work with your objects and context. If you don't, this will give you insight on how the method works and might help you to understand the logic, so you can write your own.
Disclaimer: With this post, I am pointing out that it is possible to extract code from an assembly. I am not discussing the ethics or legal perspective behind such actions.
Hope this helps,
Happy Coding!
If it`s just one method, look at the source code and copy it to your libarary. Make sure you make a comment where you obtained the code and who has the copyright! Don't forget to include the licence, which you should have done with a libary reference anyway.
That said it is currently not (official) possible to automaticly remove unused public declared code from a library (assembly). This process is called Treeshaking by the way. Exception: .NET Native.
But .NET Native is only available for Windows Store Apps. You can read more about it here.
That said, we have the JIT (Just in Time)-Compiler which is realy smart. I wouldn't worry about a few KB library code. Spend your time optimizing your SQL Queries and other bottlenecks. The classes are only loaded, when you actualy use them.
Using some unstable solutions or maintaining a fork of a library, where you use more then one method (with no documentation and no expertise, since it is your own fork) isn't worth the headache, you will have!
If you realy want to go the route of removing everything you do not want, you can open the solution, declare everything as internal (search and replace is your friend) and restore the parts to public, which are giving you are Buildtime error / Runtime error (Reflection). Then remove everything which is internal. There are several DesignTime tools like Resharper, which can remove Dead Code.
But as I said, it's not worth it!
For .NET Core users, in 6-8 weeks, we have the .NET IL Linker as spender has commented, it looks promising. What does this mean? The .NET framework evolves from time to time. Let it envolve and look at your productivity in the meantime.
I have been using DDeltaSolution's UIDeskAutomationSpy to enhance some of my Coded UI testing, initially based on the MS Code UI test (cuit) framework.
However there is very limited documentation and even after using dotNetPeek to inspect the internals of the UIDeskAutomationSpy exe and associated dll, I can't see how to send control keys (Shift/Control/Alt) to a component.
There are two relevant methods
SendKeys()
SimulateSendKeys()
but both just take a string as input.
I've even got as far as thinking about trying to use Cecil to try and modify the binaries (is this possible?), but this is a desperate measure. Does anyone know any better, or know of any better documentation?
This is a surprisingly powerful tool, but no-one seems to have heard about it.
I'm not positive, but if I were you I'd try using the list of control key strings found HERE since automation spy is based on .NET. Let me know if it works!
Ok, so I was wondering how one would go about creating a program, that creates a second program(Like how most compression programs can create self extracting self excutables, but that's not what I need).
Say I have 2 programs. Each one containing a class. The one program I would use to modify and fill the class with data. The second file would be a program that also had the class, but empty, and it's only purpose is to access this data in a specific way. I don't know, I'm thinking if the specific class were serialized and then "injected" into the second file. But how would one be able to do that? I've found modifying files that were already compiled fascinating, though I've never been able to make changes that didn't cause errors.
That's just a thought. I don't know what the solution would be, that's just something that crossed my mind.
I'd prefer some information in say c or c++ that's cross-platform. The only other language I'd accept is c#.
also
I'm not looking for 3-rd party library's, or things such as Boost. If anything a shove in the right direction could be all I need.
++also
I don't want to be using a compiler.
Jalf actually read what I wrote
That's exactly what I would like to know how to do. I think that's fairly obvious by what I asked above. I said nothing about compiling the files, or scripting.
QUOTE "I've found modifying files that were already compiled fascinating"
Please read and understand the question first before posting.
thanks.
Building an executable from scratch is hard. First, you'd need to generate machine code for what the program would do, and then you need to encapsulate such code in an executable file. That's overkill unless you want to write a compiler for a language.
These utilities that generate a self-extracting executable don't really make the executable from scratch. They have the executable pre-generated, and the data file is just appended to the end of it. Since the Windows executable format allows you to put data at the end of the file, caring only for the "real executable" part (the exe header tells how big it is - the rest is ignored).
For instance, try to generate two self-extracting zip, and do a binary diff on them. You'll see their first X KBytes are exactly the same, what changes is the rest, which is not an executable at all, it's just data. When the file is executed, it looks what is found at the end of the file (the data) and unzips it.
Take a look at the wikipedia entry, go to the external links section to dig deeper:
http://en.wikipedia.org/wiki/Portable_Executable
I only mentioned Windows here but the same principles apply to Linux. But don't expect to have cross-platform results, you'll have to re-implement it to each platform. I couldn't imagine something that's more platform-dependent than the executable file. Even if you use C# you'll have to generate the native stub, which is different if you're running on Windows (under .net) or Linux (under Mono).
Invoke a compiler with data generated by your program (write temp files to disk if necessary) and or stored on disk?
Or is the question about the details of writing the local executable format?
Unfortunately with compiled languages such as C, C++, Java, or C#, you won't be able to just ``run'' new code at runtime, like you can do in interpreted languages like PHP, Perl, and ECMAscript. The code has to be compiled first, and for that you will need a compiler. There's no getting around this.
If you need to duplicate the save/restore functionality between two separate EXEs, then your best bet is to create a static library shared between the two programs, or a DLL shared between the two programs. That way, you write that code once and it's able to be used by as many programs as you want.
On the other hand, if you're really running into a scenario like this, my main question is, What are you trying to accomplish with this? Even in languages that support things like eval(), self modifying code is usually some of the nastiest and bug-riddled stuff you're going to find. It's worse even than a program written completely with GOTOs. There are uses for self modifying code like this, but 99% of the time it's the wrong approach to take.
Hope that helps :)
I had the same problem and I think that this solves all problems.
You can put there whatever code and if correct it will produce at runtime second executable.
--ADD--
So in short you have some code which you can hard-code and store in the code of your 1st exe file or let outside it. Then you run it and you compile the aforementioned code. If eveything is ok you will get a second executable runtime- compiled. All this without any external lib!!
Ok, so I was wondering how one would
go about creating a program, that
creates a second program
You can look at CodeDom. Here is a tutorial
Have you considered embedding a scripting language such as Lua or Python into your app? This will give you the ability to dynamically generate and execute code at runtime.
From wikipedia:
Dynamic programming language is a term used broadly in computer science to describe a class of high-level programming languages that execute at runtime many common behaviors that other languages might perform during compilation, if at all. These behaviors could include extension of the program, by adding new code, by extending objects and definitions, or by modifying the type system, all during program execution. These behaviors can be emulated in nearly any language of sufficient complexity, but dynamic languages provide direct tools to make use of them.
Depending on what you call a program, Self-modifying code may do the trick.
Basically, you write code somewhere in memory as if it were plain data, and you call it.
Usually it's a bad idea, but it's quite fun.
Creating a call stack diagram
We have just recently been thrown into a big project that requires us to get into the code (duh).
We are using different methods to get acquainted with it, breakpoints etc. However we found that one method is to make a call tree of the application, what is the easiest /fastest way to do this?
By code? Plugins? Manually?
The project is a C# Windows application.
With the static analyzer NDepend, you can obtain a static method call graph, like the one below. Disclaimer: I am one of the developers of the tool
For that you just need to export to the graph the result of a CQLinq code query:
Such a code query, can be generated actually for any method, thanks to the right-click menu illustrated below.
Whenever I start a new job (which is frequently as I am a contractor) I spend two to three days reading through every single source file in the repository, and keep notes against each class in a simple text file. It is quite laborious but it means that you get a really good idea how the project fits together and you have a trusty map when you need to find the class that does somethnig.
Altought I love UML/diagramming when starting a project I, personally, do not find them at all useful when examining existing code.
Not a direct answer to your question, but NDepend is a good tool to get a 100ft view of a codebase, and it enables you to drill down into the relationships between classes (and many other features)
Edit: I believe the Microsoft's CLR Profiler is capable of displaying a call tree for a running application. If that is not sufficient I have left the link I posted below in case you would like to start on a custom solution.
Here is a CodeProject article that might point you in the right direction:
The download offered here is a Visual
Studio 2008 C# project for a simple
utility to list user function call
trees in C# code.
This call tree lister seems to work OK
for my style of coding, but will
likely be unreliable for some other
styles of coding. It is offered here
with two thoughts: first, some
programmers may find it useful as is;
second, I would be appreciative if
someone who is up-to-speed on C#
parsing would upgrade it by
incorporating an accurate C# parser
and turn out an improved utility that
is reliable regardless of coding style
The source code is available for download - perhaps you can use this as a starting point for a custom solution.
You mean something like this: http://erik.doernenburg.com/2008/09/call-graph-visualisation-with-aspectj-and-dot/
Not to be a stuck record, but if I get it running and pause it a few times, and each time capture the call stack, that gives me a real good picture of the call structure that accounts for the most time. It doesn't give me the call structure for things that happen real fast, however.
How do you extract an RT_RCDATA section from a Win32 executable (preferably in C#)?
The only way I know how to do this currently is opening up the EXE in Visual Studio. I'd love to be able to do this entirely in C# if possible.
Thanks!
P/Invoke LoadResource will be your safest bet.
Otherwise you'll have to write your own P/E processor eg. PE Processor example. The processor isn't the end of the world, but as you can see much more involved than a P/Invoke.
Almost forgot,as far as tools go, most P/E browsers will do this for you. Eg. P/E Explorer, which is available but not really being developed. I've also used IDA Pro for stuff like this. A quick IDA plugin would do this easily.
I assume that you are trying to read a resource of type RCDATA from an executable (be aware that "executable section" means a different thing - it refers to the .text, .data, .rdata, etc parts of the PE file). If you want to read it from the current assembly, here is a tutorial showing how: Accessing Embedded Resources using GetManifestResourceStream, using the GetManifestResourceNames and GetManifestResourceStream methods.
If you don't want to read it from the current executable, you can use a method similar to the one shown here.
These methods have the advantage over PInvoke that they are 100% .NET and you don't have to fiddle with marshaling the arguments to/from platform data types and making sure that you validated all the return values.