How can I set the value of auto property backing fields in a struct constructor? - c#

Given a struct like this:
public struct SomeStruct
{
public SomeStruct(String stringProperty, Int32 intProperty)
{
this.StringProperty = stringProperty;
this.IntProperty = intProperty;
}
public String StringProperty { get; set; }
public Int32 IntProperty { get; set; }
}
Of course, a compiler error is generated that reads The 'this' object cannot be used before all of its fields are assigned to.
Is there a way to assign values to the backing fields or the properties themselves, or do I have to implement properties the old-fashioned way with my own explicit backing fields?

Prior to C# 6, you need to use the "this" constructor in this scenario:
public SomeStruct(String stringProperty, Int32 intProperty) : this()
{
this.StringProperty = stringProperty;
this.IntProperty = intProperty;
}
Doing this calls the default constructor and by doing so, it initializes all the fields, thus allowing this to be referenced in the custom constructor.
Edit: until C# 6, when this started being legal; however, these days it would be much better as a readonly struct:
public readonly struct SomeStruct
{
public SomeStruct(string stringProperty, int intProperty)
{
this.StringProperty = stringProperty;
this.IntProperty = intProperty;
}
public string StringProperty { get; }
public int IntProperty { get; }
}

If a structure is going to have, and its users will expect it to have, all three of the following characteristics:
Its entire state is encapsulated in some particular fixed set of readable members
An instance may be readily created in which those members have any combination of values which are valid for their respective types.
A default instance of the type should have all of those members set to the default values of their respective types.
the type should expose its members as fields. The above requirements mean a struct won't be able to do anything an exposed-field struct can't do, and will also mean that if code doesn't hit any threading hazards the struct will be able to do anything an exposed-field struct can do, albeit perhaps more slowly and with more threading hazards.
If a struct Foo has fields f1 and f2, and a constructor which sets those fields in that order, and if fooExpr is some sort of expression of type Foo [perhaps a variable, field, array reference, property, or whatever] the statement:
myFoo.f2 = someValue;
will only be allowed in cases where one could legally say
myFoo = new Foo(myFoo.f1, someValue);
and in all circumstances where the first form is allowed and the behavior of the second form has defined semantics, they will behave identically. Thus, trying to "encapsulate" the properties of Foo doesn't really accomplish anything except make the code more cumbersome to write, less clear, and slower to execute.

Related

How to make struct immutable inside a class definition

I have a question about creating an immutable struct inside a class definition. I want to define the struct outside the class but use that same struct type in the class definition while maintaining immutability. Will the code below achieve this?
namespace space
{
class Class1
{
public Struct {get; set;}
}
public Struct
{
public Struct(string strVar)
{
StructVar = strVar;
}
public string StructVar {get;}
}
}
Also, if I have a struct within a struct like:
class Class1
{
public Struct2 {get; set;}
}
public struct Struct2
{
public Struct2(string str, InStruct inStrct)
{
StrVar = str;
InStruct = inStrct;
}
public string StrVar {get;}
public InStruct InStruct {get;}
}
public struct InStruct
{
public InStruct(Array ary)
{
StrArray = ary
}
public Array StrArray {get;}
}
Does this also maintain immutability?
Lastly, if the size of the array in the InStruct is likely to be quite long, should I not use a struct at all and just put the array itself into the class definition instead? Am I just going struct crazy?
My concern is that because I'm doing a {set;} in the class definition that I'm breaking a rule somewhere. I would put the struct in the class definition itself but I didn't like to have to continuously call class constructors over and over to create each struct, that kind of seemed to defeat the purpose of using a struct in the first place.
It's a little difficult to give a complete answer without understanding exactly what you are trying to accomplish, but I'll start with a few important distinctions.
First, in C#, the struct/class distinction isn't about mutability per se. You can have a immutable class, like this one
public class CannotBeMutated
{
private string someVal;
public CannotBeMutated(string someVal)
{
_someVal = someVal
}
public string SomeVal => _someVal;
}
and a mutable struct, like this one
// This is not at all idiomatic C#, please don't use this as an example
public struct MutableStruct
{
private string _someVal;
public MutableStruct(string someVal)
{
_someVal = someVal;
}
public void GetVal()
{
return _someVal
}
public void Mutate(string newVal)
{
_someVal = newVal;
}
}
Using the above struct I can do this
var foo = new MutableStruct("Hello");
foo.mutate("GoodBye");
var bar = foo.GetVal(); // bar == "GoodBye"!
The difference between structs and classes is in variable passing semantics. When an object of a value type (e.g. a struct) is assigned to a variable, passed as a parameter to or returned from a method (including a property getter or setter) a copy of the object is made before it is passed to the new function context. When a object of a reference type is passed as a parameter to or returned from a method, no copy is made, because we only pass a reference to the object's location in memory, rather than a copy of the object.
An additional point on struct 'copying'. Imagine you have a struct with a field that is a reference type, like this
public struct StructWithAReferenceType
{
public List<string> IAmAReferenceType {get; set;}
}
When you pass an instance of this struct into a method, a copy of the reference to the List will be copied, but the underlying data will not. So if you do
public void MessWithYourSruct(StructWithAReferenceType t)
{
t.IAmAReferenceType.Add("HAHA");
}
var s = new StructWithAReferenceType { IAmAReferenceType = new List()};
MessWithYourSruct(s);
s.IAmAReferenceType.Count; // 1!
// or even more unsettling
var s = new StructWithAReferenceType { IAmAReferenceType = new List()};
var t = s; // makes a COPY of s
s.IAmAReferenceType.Add("hi");
t.IAmAReferenceType.Count; // 1!
Even when a struct is copied, its reference type fields still refer to the same objects in memory.
The immutable/mutable and struct/class differences are somewhat similar, insofar as they are both about where and whether you can change the contents of an object in your program, but they are still very distinct.
Now on to your question. In your second example, Class1 is not immutable, as you can mutate the value of Struct2 like this
var foo = new Class1();
foo.Struct2 = new Struct2("a", 1);
foo.Struct2 // returns a copy of Struct2("a", 1);
foo.Struct2 = new Struct2("b", 2);
foo.Struct2 // returns a copy of Struct2("b", 2);
Struct2 is immutable, as there is no way for calling code to change the values of StrVar or InVar once. InStruct is similarly immutable. However, Array is not immutable. So InStruct is an immutable container for a mutable value. Similar to if you had a ImmutableList<List<string>>. While you can guarantee calling code does not change the value of InStruct.StrArray to a different array, you can do nothing about calling code changing the value of the objects in the Array.
Finally, some generic advice related to your example.
First, mutable structs, or structs with mutable fields, are bad. The examples above should point to why structs with mutable fields are bad. And Eric Lippert himself has a great example of how terrible mutable structs can be on his blog here
Second, for most developers working in C# there's almost never a reason to create a user defined value type (i.e. a struct). Objects of value types are stored on the stack, which makes memory access to them very fast. Objects of reference types are stored on the heap, and so are slower to access. But in the huge majority of C# programs, that distinction is going to be dwarfed by the time cost of disk I/O, network I/O, reflection in serialization code, or even initialization and manipulation of collections. For ordinary developers who aren't writing performance-critical standard libraries, there's almost no reason to think about the performance implications of the difference. Heck, developers in Java, Python, Ruby, Javascript and many other languages get by in languages totally without user-defined value types. Generally, the added cognitive overhead they introduce for developers is almost never worth any benefit you might see. Also, remember that large structs must be copied whenever they are passed or assigned to a variable, and can actually be a performance problem.
TL;DR you probably shouldn't use structs in your code, and they don't really have anything to do with immutability.

C# Public variables vs Properties, what's the difference? [duplicate]

In C#, what makes a field different from a property, and when should a field be used instead of a property?
Properties expose fields. Fields should (almost always) be kept private to a class and accessed via get and set properties. Properties provide a level of abstraction allowing you to change the fields while not affecting the external way they are accessed by the things that use your class.
public class MyClass
{
// this is a field. It is private to your class and stores the actual data.
private string _myField;
// this is a property. When accessed it uses the underlying field,
// but only exposes the contract, which will not be affected by the underlying field
public string MyProperty
{
get
{
return _myField;
}
set
{
_myField = value;
}
}
// This is an AutoProperty (C# 3.0 and higher) - which is a shorthand syntax
// used to generate a private field for you
public int AnotherProperty { get; set; }
}
#Kent points out that Properties are not required to encapsulate fields, they could do a calculation on other fields, or serve other purposes.
#GSS points out that you can also do other logic, such as validation, when a property is accessed, another useful feature.
Object orientated programming principles say that, the internal workings of a class should be hidden from the outside world. If you expose a field you're in essence exposing the internal implementation of the class. Therefore we wrap fields with Properties (or methods in Java's case) to give us the ability to change the implementation without breaking code depending on us. Seeing as we can put logic in the Property also allows us to perform validation logic etc if we need it.
C# 3 has the possibly confusing notion of autoproperties. This allows us to simply define the Property and the C#3 compiler will generate the private field for us.
public class Person
{
private string _name;
public string Name
{
get
{
return _name;
}
set
{
_name = value;
}
}
public int Age{get;set;} //AutoProperty generates private field for us
}
An important difference is that interfaces can have properties but not fields. This, to me, underlines that properties should be used to define a class's public interface while fields are meant to be used in the private, internal workings of a class. As a rule I rarely create public fields and similarly I rarely create non-public properties.
I'll give you a couple examples of using properties that might get the gears turning:
Lazy Initialization: If you have a property of an object that's expensive to load, but isn't accessed all that much in normal runs of the code, you can delay its loading via the property. That way, it's just sitting there, but the first time another module tries to call that property, it checks if the underlying field is null - if it is, it goes ahead and loads it, unknown to the calling module. This can greatly speed up object initialization.
Dirty Tracking: Which I actually learned about from my own question here on StackOverflow. When I have a lot of objects which values might have changed during a run, I can use the property to track if they need to be saved back to the database or not. If not a single property of an object has changed, the IsDirty flag won't get tripped, and therefore the saving functionality will skip over it when deciding what needs to get back to the database.
Using Properties, you can raise an event, when the value of the property is changed (aka. PropertyChangedEvent) or before the value is changed to support cancellation.
This is not possible with (direct access to) fields.
public class Person {
private string _name;
public event EventHandler NameChanging;
public event EventHandler NameChanged;
public string Name{
get
{
return _name;
}
set
{
OnNameChanging();
_name = value;
OnNameChanged();
}
}
private void OnNameChanging(){
NameChanging?.Invoke(this,EventArgs.Empty);
}
private void OnNameChanged(){
NameChanged?.Invoke(this,EventArgs.Empty);
}
}
Since many of them have explained with technical pros and cons of Properties and Field, it's time to get into real time examples.
1. Properties allows you to set the read-only access level
Consider the case of dataTable.Rows.Count and dataTable.Columns[i].Caption. They come from the class DataTable and both are public to us. The difference in the access-level to them is that we cannot set value to dataTable.Rows.Count but we can read and write to dataTable.Columns[i].Caption. Is that possible through Field? No!!! This can be done with Properties only.
public class DataTable
{
public class Rows
{
private string _count;
// This Count will be accessable to us but have used only "get" ie, readonly
public int Count
{
get
{
return _count;
}
}
}
public class Columns
{
private string _caption;
// Used both "get" and "set" ie, readable and writable
public string Caption
{
get
{
return _caption;
}
set
{
_caption = value;
}
}
}
}
2. Properties in PropertyGrid
You might have worked with Button in Visual Studio. Its properties are shown in the PropertyGrid like Text,Name etc. When we drag and drop a button, and when we click the properties, it will automatically find the class Button and filters Properties and show that in PropertyGrid (where PropertyGrid won't show Field even though they are public).
public class Button
{
private string _text;
private string _name;
private string _someProperty;
public string Text
{
get
{
return _text;
}
set
{
_text = value;
}
}
public string Name
{
get
{
return _name;
}
set
{
_name = value;
}
}
[Browsable(false)]
public string SomeProperty
{
get
{
return _someProperty;
}
set
{
_someProperty= value;
}
}
In PropertyGrid, the properties Name and Text will be shown, but not SomeProperty. Why??? Because Properties can accept Attributes. It does not show in case where [Browsable(false)] is false.
3. Can execute statements inside Properties
public class Rows
{
private string _count;
public int Count
{
get
{
return CalculateNoOfRows();
}
}
public int CalculateNoOfRows()
{
// Calculation here and finally set the value to _count
return _count;
}
}
4. Only Properties can be used in Binding Source
Binding Source helps us to decrease the number of lines of code. Fields are not accepted by BindingSource. We should use Properties for that.
5. Debugging mode
Consider we are using Field to hold a value. At some point we need to debug and check where the value is getting null for that field. It will be difficult to do where the number of lines of code are more than 1000. In such situations we can use Property and can set debug mode inside Property.
public string Name
{
// Can set debug mode inside get or set
get
{
return _name;
}
set
{
_name = value;
}
}
DIFFERENCES - USES (when and why)
A field is a variable that is declared directly in a class or struct. A class or struct may have instance fields or static fields or both. Generally, you should use fields only for variables that have private or protected accessibility. Data that your class exposes to client code should be provided through methods, properties and indexers. By using these constructs for indirect access to internal fields, you can guard against invalid input values.
A property is a member that provides a flexible mechanism to read, write, or compute the value of a private field. Properties can be used as if they are public data members, but they are actually special methods called accessors. This enables data to be accessed easily and still helps promote the safety and flexibility of methods.
Properties enable a class to expose a public way of getting and setting values, while hiding implementation or verification code. A get property accessor is used to return the property value, and a set accessor is used to assign a new value.
Though fields and properties look to be similar to each other, they are 2 completely different language elements.
Fields are the only mechanism how to store data on class level. Fields are conceptually variables at class scope. If you want to store some data to instances of your classes (objects) you need to use fields. There is no other choice. Properties can't store any data even though, it may look they are able to do so. See bellow.
Properties on the other hand never store data. They are just the pairs of methods (get and set) that can be syntactically called in a similar way as fields and in most cases they access (for read or write) fields, which is the source of some confusion. But because property methods are (with some limitations like fixed prototype) regular C# methods they can do whatever regular methods can do. It means they can have 1000 lines of code, they can throw exceptions, call another methods, can be even virtual, abstract or overridden. What makes properties special, is the fact that C# compiler stores some extra metadata into assemblies that can be used to search for specific properties - widely used feature.
Get and set property methods has the following prototypes.
PROPERTY_TYPE get();
void set(PROPERTY_TYPE value);
So it means that properties can be 'emulated' by defining a field and 2 corresponding methods.
class PropertyEmulation
{
private string MSomeValue;
public string GetSomeValue()
{
return(MSomeValue);
}
public void SetSomeValue(string value)
{
MSomeValue=value;
}
}
Such property emulation is typical for programming languages that don't support properties - like standard C++. In C# there you should always prefer properties as the way how to access to your fields.
Because only the fields can store a data, it means that more fields class contains, more memory objects of such class will consume. On the other hand, adding new properties into a class doesn't make objects of such class bigger. Here is the example.
class OneHundredFields
{
public int Field1;
public int Field2;
...
public int Field100;
}
OneHundredFields Instance=new OneHundredFields() // Variable 'Instance' consumes 100*sizeof(int) bytes of memory.
class OneHundredProperties
{
public int Property1
{
get
{
return(1000);
}
set
{
// Empty.
}
}
public int Property2
{
get
{
return(1000);
}
set
{
// Empty.
}
}
...
public int Property100
{
get
{
return(1000);
}
set
{
// Empty.
}
}
}
OneHundredProperties Instance=new OneHundredProperties() // !!!!! Variable 'Instance' consumes 0 bytes of memory. (In fact a some bytes are consumed becasue every object contais some auxiliarity data, but size doesn't depend on number of properties).
Though property methods can do anything, in most cases they serve as a way how to access objects' fields. If you want to make a field accessible to other classes you can do by 2 ways.
Making fields as public - not advisable.
Using properties.
Here is a class using public fields.
class Name
{
public string FullName;
public int YearOfBirth;
public int Age;
}
Name name=new Name();
name.FullName="Tim Anderson";
name.YearOfBirth=1979;
name.Age=40;
While the code is perfectly valid, from design point of view, it has several drawbacks. Because fields can be both read and written, you can't prevent user from writing to fields. You can apply readonly keyword, but in this way, you have to initialize readonly fields only in constructor. What's more, nothing prevents you to store invalid values into your fields.
name.FullName=null;
name.YearOfBirth=2200;
name.Age=-140;
The code is valid, all assignments will be executed though they are illogical. Age has a negative value, YearOfBirth is far in future and doesn't correspond to Age and FullName is null. With fields you can't prevent users of class Name to make such mistakes.
Here is a code with properties that fixes these issues.
class Name
{
private string MFullName="";
private int MYearOfBirth;
public string FullName
{
get
{
return(MFullName);
}
set
{
if (value==null)
{
throw(new InvalidOperationException("Error !"));
}
MFullName=value;
}
}
public int YearOfBirth
{
get
{
return(MYearOfBirth);
}
set
{
if (MYearOfBirth<1900 || MYearOfBirth>DateTime.Now.Year)
{
throw(new InvalidOperationException("Error !"));
}
MYearOfBirth=value;
}
}
public int Age
{
get
{
return(DateTime.Now.Year-MYearOfBirth);
}
}
public string FullNameInUppercase
{
get
{
return(MFullName.ToUpper());
}
}
}
The updated version of class has the following advantages.
FullName and YearOfBirth are checked for invalid values.
Age is not writtable. It's callculated from YearOfBirth and current year.
A new property FullNameInUppercase converts FullName to UPPER CASE. This is a little contrived example of property usage, where properties are commonly used to present field values in the format that is more appropriate for user - for instance using current locale on specific numeric of DateTime format.
Beside this, properties can be defined as virtual or overridden - simply because they are regular .NET methods. The same rules applies for such property methods as for regular methods.
C# also supports indexers which are the properties that have an index parameter in property methods. Here is the example.
class MyList
{
private string[] MBuffer;
public MyList()
{
MBuffer=new string[100];
}
public string this[int Index]
{
get
{
return(MBuffer[Index]);
}
set
{
MBuffer[Index]=value;
}
}
}
MyList List=new MyList();
List[10]="ABC";
Console.WriteLine(List[10]);
Since C# 3.0 allows you to define automatic properties. Here is the example.
class AutoProps
{
public int Value1
{
get;
set;
}
public int Value2
{
get;
set;
}
}
Even though class AutoProps contains only properties (or it looks like), it can store 2 values and size of objects of this class is equal to sizeof(Value1)+sizeof(Value2)=4+4=8 bytes.
The reason for this is simple. When you define an automatic property, C# compiler generates automatic code that contains hidden field and a property with property methods accessing this hidden field. Here is the code compiler produces.
Here is a code generated by the ILSpy from compiled assembly. Class contains generated hidden fields and properties.
internal class AutoProps
{
[CompilerGenerated]
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
private int <Value1>k__BackingField;
[CompilerGenerated]
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
private int <Value2>k__BackingField;
public int Value1
{
[CompilerGenerated]
get
{
return <Value1>k__BackingField;
}
[CompilerGenerated]
set
{
<Value1>k__BackingField = value;
}
}
public int Value2
{
[CompilerGenerated]
get
{
return <Value2>k__BackingField;
}
[CompilerGenerated]
set
{
<Value2>k__BackingField = value;
}
}
}
So, as you can see, the compiler still uses the fields to store the values - since fields are the only way how to store values into objects.
So as you can see, though properties and fields have similar usage syntax they are very different concepts. Even if you use automatic properties or events - hidden fields are generated by compiler where the real data are stored.
If you need to make a field value accessible to the outside world (users of your class) don't use public or protected fields. Fields always should be marked as private. Properties allow you to make value checks, formatting, conversions etc. and generally make your code safer, more readable and more extensible for future modifications.
Properties have the primary advantage of allowing you to change the way data on an object is accessed without breaking it's public interface. For example, if you need to add extra validation, or to change a stored field into a calculated you can do so easily if you initially exposed the field as a property. If you just exposed a field directly, then you would have to change the public interface of your class to add the new functionality. That change would break existing clients, requiring them to be recompiled before they could use the new version of your code.
If you write a class library designed for wide consumption (like the .NET Framework, which is used by millions of people), that can be a problem. However, if you are writing a class used internally inside a small code base (say <= 50 K lines), it's really not a big deal, because no one would be adversely affected by your changes. In that case it really just comes down to personal preference.
Properties support asymmetric access, i.e. you can have either a getter and a setter or just one of the two. Similarly properties support individual accessibility for getter/setter. Fields are always symmetric, i.e. you can always both get and set the value. Exception to this is readonly fields which obviously cannot be set after initialization.
Properties may run for a very long time, have side effects, and may even throw exceptions. Fields are fast, with no side effects, and will never throw exceptions. Due to side effects a property may return a different value for each call (as may be the case for DateTime.Now, i.e. DateTime.Now is not always equal to DateTime.Now). Fields always return the same value.
Fields may be used for out / ref parameters, properties may not.
Properties support additional logic – this could be used to implement lazy loading among other things.
Properties support a level of abstraction by encapsulating whatever it means to get/set the value.
Use properties in most / all cases, but try to avoid side effects.
In the background a property is compiled into methods. So a Name property is compiled into get_Name() and set_Name(string value). You can see this if you study the compiled code.
So there is a (very) small performance overhead when using them. Normally you will always use a Property if you expose a field to the outside, and you will often use it internally if you need to do validation of the value.
When you want your private variable(field) to be accessible to object of your class from other classes you need to create properties for those variables.
for example if I have variables named as "id" and "name" which is private
but there might be situation where this variable needed for read/write operation outside of the class. At that situation , property can help me to get that variable to read/write depending upon the get/set defined for the property. A property can be a readonly / writeonly / readwrite both.
here is the demo
class Employee
{
// Private Fields for Employee
private int id;
private string name;
//Property for id variable/field
public int EmployeeId
{
get
{
return id;
}
set
{
id = value;
}
}
//Property for name variable/field
public string EmployeeName
{
get
{
return name;
}
set
{
name = value;
}
}
}
class MyMain
{
public static void Main(string [] args)
{
Employee aEmployee = new Employee();
aEmployee.EmployeeId = 101;
aEmployee.EmployeeName = "Sundaran S";
}
}
The second question here, "when should a field be used instead of a property?", is only briefly touched on in this other answer and kinda this one too, but not really much detail.
In general, all the other answers are spot-on about good design: prefer exposing properties over exposing fields. While you probably won't regularly find yourself saying "wow, imagine how much worse things would be if I had made this a field instead of a property", it's so much more rare to think of a situation where you would say "wow, thank God I used a field here instead of a property."
But there's one advantage that fields have over properties, and that's their ability to be used as "ref" / "out" parameters. Suppose you have a method with the following signature:
public void TransformPoint(ref double x, ref double y);
and suppose that you want to use that method to transform an array created like this:
System.Windows.Point[] points = new Point[1000000];
Initialize(points);
Here's I think the fastest way to do it, since X and Y are properties:
for (int i = 0; i < points.Length; i++)
{
double x = points[i].X;
double y = points[i].Y;
TransformPoint(ref x, ref y);
points[i].X = x;
points[i].Y = y;
}
And that's going to be pretty good! Unless you have measurements that prove otherwise, there's no reason to throw a stink. But I believe it's not technically guaranteed to be as fast as this:
internal struct MyPoint
{
internal double X;
internal double Y;
}
// ...
MyPoint[] points = new MyPoint[1000000];
Initialize(points);
// ...
for (int i = 0; i < points.Length; i++)
{
TransformPoint(ref points[i].X, ref points[i].Y);
}
Doing some measurements myself, the version with fields takes about 61% of the time as the version with properties (.NET 4.6, Windows 7, x64, release mode, no debugger attached). The more expensive the TransformPoint method gets, the less pronounced that the difference becomes. To repeat this yourself, run with the first line commented-out and with it not commented-out.
Even if there were no performance benefits for the above, there are other places where being able to use ref and out parameters might be beneficial, such as when calling the Interlocked or Volatile family of methods. Note: In case this is new to you, Volatile is basically a way to get at the same behavior provided by the volatile keyword. As such, like volatile, it doesn't magically solve all thread-safety woes like its name suggests that it might.
I definitely don't want to seem like I'm advocating that you go "oh, I should start exposing fields instead of properties." The point is that if you need to regularly use these members in calls that take "ref" or "out" parameters, especially on something that might be a simple value type that's unlikely to ever need any of the value-added elements of properties, an argument can be made.
Also, properties allow you to use logic when setting values.
So you can say you only want to set a value to an integer field, if the value is greater than x, otherwise throw an exception.
Really useful feature.
(This should really be a comment, but I can't post a comment, so please excuse if it is not appropriate as a post).
I once worked at a place where the recommended practice was to use public fields instead of properties when the equivalent property def would just have been accessing a field, as in :
get { return _afield; }
set { _afield = value; }
Their reasoning was that the public field could be converted into a property later in future if required. It seemed a little strange to me at the time. Judging by these posts, it looks like not many here would agree either. What might you have said to try to change things ?
Edit : I should add that all of the code base at this place was compiled at the same time, so they might have thought that changing the public interface of classes (by changing a public field to a property) was not a problem.
Technically, i don't think that there is a difference, because properties are just wrappers around fields created by the user or automatically created by the compiler.The purpose of properties is to enforce encapsuation and to offer a lightweight method-like feature.
It's just a bad practice to declare fields as public, but it does not have any issues.
Fields are ordinary member variables or member instances of a class. Properties are an abstraction to get and set their values. Properties are also called accessors because they offer a way to change and retrieve a field if you expose a field in the class as private. Generally, you should declare your member variables private, then declare or define properties for them.
class SomeClass
{
int numbera; //Field
//Property
public static int numbera { get; set;}
}
If you are going to use thread primitives you are forced to use fields. Properties can break your threaded code. Apart from that, what cory said is correct.
My design of a field is that a field needs to be modified only by its parent, hence the class. Result the variable becomes private, then to be able to give the right to read the classes / methods outside I go through the system of property with only the Get. The field is then retrieved by the property and read-only! If you want to modify it you have to go through methods (for example the constructor) and I find that thanks to this way of making you secure, we have better control over our code because we "flange". One could very well always put everything in public so every possible case, the notion of variables / methods / classes etc ... in my opinion is just an aid to the development, maintenance of the code. For example, if a person resumes a code with public fields, he can do anything and therefore things "illogical" in relation to the objective, the logic of why the code was written. It's my point of view.
When i use a classic model private field / public readonly properties,for 10 privates fields i should write 10 publics properties! The code can be really big faster. I discover the private setter and now i only use public properties with a private setter.
The setter create in background a private field.
That why my old classic programming style was:
public class MyClass
{
private int _id;
public int ID { get { return _id; } }
public MyClass(int id)
{
_id = id;
}
}
My new programming style:
public class MyClass
{
public int ID { get; private set; }
public MyClass(int id)
{
ID = id;
}
}
Basic and general difference is:
Fields
ALWAYS give both get and set access
CAN NOT cause side effects (throwing exceptions, calling methods, changing fields except the one being got/set, etc)
Properties
NOT ALWAYS give both get and set access
CAN cause side effects
Properties encapsulate fields, thus enabling you to perform additional processing on the value to be set or retrieved. It is typically overkill to use properties if you will not be doing any pre- or postprocessing on the field value.
IMO, Properties are just the "SetXXX()" "GetXXX()" functions/methods/interfaces pairs we used before, but they are more concise and elegant.
Traditionally private fields are set via getter and setter methods. For the sake of less code you can use properties to set fields instead.
when you have a class which is "Car". The properties are color,shape..
Where as fields are variables defined within the scope of a class.
From Wikipedia -- Object-oriented programming:
Object-oriented programming (OOP) is a programming paradigm based on the concept of "objects", which are data structures that contain data, in the form of fields, often known as attributes; and code, in the form of procedures, often known as methods. (emphasis added)
Properties are actually part of an object's behavior, but are designed to give consumers of the object the illusion/abstraction of working with the object's data.
Properties are special kind of class member, In properties we use a predefined Set or Get method.They use accessors through which we can read, written or change the values of the private fields.
For example, let us take a class named Employee, with private fields for name, age and Employee_Id. We cannot access these fields from outside the class , but we can access these private fields through properties.
Why do we use properties?
Making the class field public & exposing it is risky, as you will not have control what gets assigned & returned.
To understand this clearly with an example lets take a student class who have ID, passmark, name. Now in this example some problem with public field
ID should not be -ve.
Name can not be set to null
Pass mark should be read only.
If student name is missing No Name should be return.
To remove this problem We use Get and set method.
// A simple example
public class student
{
public int ID;
public int passmark;
public string name;
}
public class Program
{
public static void Main(string[] args)
{
student s1 = new student();
s1.ID = -101; // here ID can't be -ve
s1.Name = null ; // here Name can't be null
}
}
Now we take an example of get and set method
public class student
{
private int _ID;
private int _passmark;
private string_name ;
// for id property
public void SetID(int ID)
{
if(ID<=0)
{
throw new exception("student ID should be greater then 0");
}
this._ID = ID;
}
public int getID()
{
return_ID;
}
}
public class programme
{
public static void main()
{
student s1 = new student ();
s1.SetID(101);
}
// Like this we also can use for Name property
public void SetName(string Name)
{
if(string.IsNullOrEmpty(Name))
{
throw new exeception("name can not be null");
}
this._Name = Name;
}
public string GetName()
{
if( string.IsNullOrEmpty(This.Name))
{
return "No Name";
}
else
{
return this._name;
}
}
// Like this we also can use for Passmark property
public int Getpassmark()
{
return this._passmark;
}
}
Additional info:
By default, get and set accessors are as accessible as the property itself.
You can control/restrict accessor accessibility individually (for get and set) by applying more restrictive access modifiers on them.
Example:
public string Name
{
get
{
return name;
}
protected set
{
name = value;
}
}
Here get is still publicly accessed (as the property is public), but set is protected (a more restricted access specifier).
Think about it : You have a room and a door to enter this room. If you want to check how who is coming in and secure your room, then you should use properties otherwise they won't be any door and every one easily come in w/o any regulation
class Room {
public string sectionOne;
public string sectionTwo;
}
Room r = new Room();
r.sectionOne = "enter";
People is getting in to sectionOne pretty easily, there wasn't any checking
class Room
{
private string sectionOne;
private string sectionTwo;
public string SectionOne
{
get
{
return sectionOne;
}
set
{
sectionOne = Check(value);
}
}
}
Room r = new Room();
r.SectionOne = "enter";
Now you checked the person and know about whether he has something evil with him
Fields are the variables in classes. Fields are the data which you can encapsulate through the use of access modifiers.
Properties are similar to Fields in that they define states and the data associated with an object.
Unlike a field a property has a special syntax that controls how a person reads the data and writes the data, these are known as the get and set operators. The set logic can often be used to do validation.
Properties are used to expose field. They use accessors(set, get) through which the values of the private fields can be read, written or manipulated.
Properties do not name the storage locations. Instead, they have accessors that read, write, or compute their values.
Using properties we can set validation on the type of data that is set on a field.
For example we have private integer field age on that we should allow positive values since age cannot be negative.
We can do this in two ways using getter and setters and using property.
Using Getter and Setter
// field
private int _age;
// setter
public void set(int age){
if (age <=0)
throw new Exception();
this._age = age;
}
// getter
public int get (){
return this._age;
}
Now using property we can do the same thing. In the value is a key word
private int _age;
public int Age{
get{
return this._age;
}
set{
if (value <= 0)
throw new Exception()
}
}
Auto Implemented property if we don't logic in get and set accessors we can use auto implemented property.
When use auto-implemented property compiles creates a private, anonymous field that can only be accessed through get and set accessors.
public int Age{get;set;}
Abstract Properties
An abstract class may have an abstract property, which should be implemented in the derived class
public abstract class Person
{
public abstract string Name
{
get;
set;
}
public abstract int Age
{
get;
set;
}
}
// overriden something like this
// Declare a Name property of type string:
public override string Name
{
get
{
return name;
}
set
{
name = value;
}
}
We can privately set a property
In this we can privately set the auto property(set with in the class)
public int MyProperty
{
get; private set;
}
You can achieve same with this code. In this property set feature is not available as we have to set value to field directly.
private int myProperty;
public int MyProperty
{
get { return myProperty; }
}

Using or not get and set methods in C# classes [duplicate]

In C#, what makes a field different from a property, and when should a field be used instead of a property?
Properties expose fields. Fields should (almost always) be kept private to a class and accessed via get and set properties. Properties provide a level of abstraction allowing you to change the fields while not affecting the external way they are accessed by the things that use your class.
public class MyClass
{
// this is a field. It is private to your class and stores the actual data.
private string _myField;
// this is a property. When accessed it uses the underlying field,
// but only exposes the contract, which will not be affected by the underlying field
public string MyProperty
{
get
{
return _myField;
}
set
{
_myField = value;
}
}
// This is an AutoProperty (C# 3.0 and higher) - which is a shorthand syntax
// used to generate a private field for you
public int AnotherProperty { get; set; }
}
#Kent points out that Properties are not required to encapsulate fields, they could do a calculation on other fields, or serve other purposes.
#GSS points out that you can also do other logic, such as validation, when a property is accessed, another useful feature.
Object orientated programming principles say that, the internal workings of a class should be hidden from the outside world. If you expose a field you're in essence exposing the internal implementation of the class. Therefore we wrap fields with Properties (or methods in Java's case) to give us the ability to change the implementation without breaking code depending on us. Seeing as we can put logic in the Property also allows us to perform validation logic etc if we need it.
C# 3 has the possibly confusing notion of autoproperties. This allows us to simply define the Property and the C#3 compiler will generate the private field for us.
public class Person
{
private string _name;
public string Name
{
get
{
return _name;
}
set
{
_name = value;
}
}
public int Age{get;set;} //AutoProperty generates private field for us
}
An important difference is that interfaces can have properties but not fields. This, to me, underlines that properties should be used to define a class's public interface while fields are meant to be used in the private, internal workings of a class. As a rule I rarely create public fields and similarly I rarely create non-public properties.
I'll give you a couple examples of using properties that might get the gears turning:
Lazy Initialization: If you have a property of an object that's expensive to load, but isn't accessed all that much in normal runs of the code, you can delay its loading via the property. That way, it's just sitting there, but the first time another module tries to call that property, it checks if the underlying field is null - if it is, it goes ahead and loads it, unknown to the calling module. This can greatly speed up object initialization.
Dirty Tracking: Which I actually learned about from my own question here on StackOverflow. When I have a lot of objects which values might have changed during a run, I can use the property to track if they need to be saved back to the database or not. If not a single property of an object has changed, the IsDirty flag won't get tripped, and therefore the saving functionality will skip over it when deciding what needs to get back to the database.
Using Properties, you can raise an event, when the value of the property is changed (aka. PropertyChangedEvent) or before the value is changed to support cancellation.
This is not possible with (direct access to) fields.
public class Person {
private string _name;
public event EventHandler NameChanging;
public event EventHandler NameChanged;
public string Name{
get
{
return _name;
}
set
{
OnNameChanging();
_name = value;
OnNameChanged();
}
}
private void OnNameChanging(){
NameChanging?.Invoke(this,EventArgs.Empty);
}
private void OnNameChanged(){
NameChanged?.Invoke(this,EventArgs.Empty);
}
}
Since many of them have explained with technical pros and cons of Properties and Field, it's time to get into real time examples.
1. Properties allows you to set the read-only access level
Consider the case of dataTable.Rows.Count and dataTable.Columns[i].Caption. They come from the class DataTable and both are public to us. The difference in the access-level to them is that we cannot set value to dataTable.Rows.Count but we can read and write to dataTable.Columns[i].Caption. Is that possible through Field? No!!! This can be done with Properties only.
public class DataTable
{
public class Rows
{
private string _count;
// This Count will be accessable to us but have used only "get" ie, readonly
public int Count
{
get
{
return _count;
}
}
}
public class Columns
{
private string _caption;
// Used both "get" and "set" ie, readable and writable
public string Caption
{
get
{
return _caption;
}
set
{
_caption = value;
}
}
}
}
2. Properties in PropertyGrid
You might have worked with Button in Visual Studio. Its properties are shown in the PropertyGrid like Text,Name etc. When we drag and drop a button, and when we click the properties, it will automatically find the class Button and filters Properties and show that in PropertyGrid (where PropertyGrid won't show Field even though they are public).
public class Button
{
private string _text;
private string _name;
private string _someProperty;
public string Text
{
get
{
return _text;
}
set
{
_text = value;
}
}
public string Name
{
get
{
return _name;
}
set
{
_name = value;
}
}
[Browsable(false)]
public string SomeProperty
{
get
{
return _someProperty;
}
set
{
_someProperty= value;
}
}
In PropertyGrid, the properties Name and Text will be shown, but not SomeProperty. Why??? Because Properties can accept Attributes. It does not show in case where [Browsable(false)] is false.
3. Can execute statements inside Properties
public class Rows
{
private string _count;
public int Count
{
get
{
return CalculateNoOfRows();
}
}
public int CalculateNoOfRows()
{
// Calculation here and finally set the value to _count
return _count;
}
}
4. Only Properties can be used in Binding Source
Binding Source helps us to decrease the number of lines of code. Fields are not accepted by BindingSource. We should use Properties for that.
5. Debugging mode
Consider we are using Field to hold a value. At some point we need to debug and check where the value is getting null for that field. It will be difficult to do where the number of lines of code are more than 1000. In such situations we can use Property and can set debug mode inside Property.
public string Name
{
// Can set debug mode inside get or set
get
{
return _name;
}
set
{
_name = value;
}
}
DIFFERENCES - USES (when and why)
A field is a variable that is declared directly in a class or struct. A class or struct may have instance fields or static fields or both. Generally, you should use fields only for variables that have private or protected accessibility. Data that your class exposes to client code should be provided through methods, properties and indexers. By using these constructs for indirect access to internal fields, you can guard against invalid input values.
A property is a member that provides a flexible mechanism to read, write, or compute the value of a private field. Properties can be used as if they are public data members, but they are actually special methods called accessors. This enables data to be accessed easily and still helps promote the safety and flexibility of methods.
Properties enable a class to expose a public way of getting and setting values, while hiding implementation or verification code. A get property accessor is used to return the property value, and a set accessor is used to assign a new value.
Though fields and properties look to be similar to each other, they are 2 completely different language elements.
Fields are the only mechanism how to store data on class level. Fields are conceptually variables at class scope. If you want to store some data to instances of your classes (objects) you need to use fields. There is no other choice. Properties can't store any data even though, it may look they are able to do so. See bellow.
Properties on the other hand never store data. They are just the pairs of methods (get and set) that can be syntactically called in a similar way as fields and in most cases they access (for read or write) fields, which is the source of some confusion. But because property methods are (with some limitations like fixed prototype) regular C# methods they can do whatever regular methods can do. It means they can have 1000 lines of code, they can throw exceptions, call another methods, can be even virtual, abstract or overridden. What makes properties special, is the fact that C# compiler stores some extra metadata into assemblies that can be used to search for specific properties - widely used feature.
Get and set property methods has the following prototypes.
PROPERTY_TYPE get();
void set(PROPERTY_TYPE value);
So it means that properties can be 'emulated' by defining a field and 2 corresponding methods.
class PropertyEmulation
{
private string MSomeValue;
public string GetSomeValue()
{
return(MSomeValue);
}
public void SetSomeValue(string value)
{
MSomeValue=value;
}
}
Such property emulation is typical for programming languages that don't support properties - like standard C++. In C# there you should always prefer properties as the way how to access to your fields.
Because only the fields can store a data, it means that more fields class contains, more memory objects of such class will consume. On the other hand, adding new properties into a class doesn't make objects of such class bigger. Here is the example.
class OneHundredFields
{
public int Field1;
public int Field2;
...
public int Field100;
}
OneHundredFields Instance=new OneHundredFields() // Variable 'Instance' consumes 100*sizeof(int) bytes of memory.
class OneHundredProperties
{
public int Property1
{
get
{
return(1000);
}
set
{
// Empty.
}
}
public int Property2
{
get
{
return(1000);
}
set
{
// Empty.
}
}
...
public int Property100
{
get
{
return(1000);
}
set
{
// Empty.
}
}
}
OneHundredProperties Instance=new OneHundredProperties() // !!!!! Variable 'Instance' consumes 0 bytes of memory. (In fact a some bytes are consumed becasue every object contais some auxiliarity data, but size doesn't depend on number of properties).
Though property methods can do anything, in most cases they serve as a way how to access objects' fields. If you want to make a field accessible to other classes you can do by 2 ways.
Making fields as public - not advisable.
Using properties.
Here is a class using public fields.
class Name
{
public string FullName;
public int YearOfBirth;
public int Age;
}
Name name=new Name();
name.FullName="Tim Anderson";
name.YearOfBirth=1979;
name.Age=40;
While the code is perfectly valid, from design point of view, it has several drawbacks. Because fields can be both read and written, you can't prevent user from writing to fields. You can apply readonly keyword, but in this way, you have to initialize readonly fields only in constructor. What's more, nothing prevents you to store invalid values into your fields.
name.FullName=null;
name.YearOfBirth=2200;
name.Age=-140;
The code is valid, all assignments will be executed though they are illogical. Age has a negative value, YearOfBirth is far in future and doesn't correspond to Age and FullName is null. With fields you can't prevent users of class Name to make such mistakes.
Here is a code with properties that fixes these issues.
class Name
{
private string MFullName="";
private int MYearOfBirth;
public string FullName
{
get
{
return(MFullName);
}
set
{
if (value==null)
{
throw(new InvalidOperationException("Error !"));
}
MFullName=value;
}
}
public int YearOfBirth
{
get
{
return(MYearOfBirth);
}
set
{
if (MYearOfBirth<1900 || MYearOfBirth>DateTime.Now.Year)
{
throw(new InvalidOperationException("Error !"));
}
MYearOfBirth=value;
}
}
public int Age
{
get
{
return(DateTime.Now.Year-MYearOfBirth);
}
}
public string FullNameInUppercase
{
get
{
return(MFullName.ToUpper());
}
}
}
The updated version of class has the following advantages.
FullName and YearOfBirth are checked for invalid values.
Age is not writtable. It's callculated from YearOfBirth and current year.
A new property FullNameInUppercase converts FullName to UPPER CASE. This is a little contrived example of property usage, where properties are commonly used to present field values in the format that is more appropriate for user - for instance using current locale on specific numeric of DateTime format.
Beside this, properties can be defined as virtual or overridden - simply because they are regular .NET methods. The same rules applies for such property methods as for regular methods.
C# also supports indexers which are the properties that have an index parameter in property methods. Here is the example.
class MyList
{
private string[] MBuffer;
public MyList()
{
MBuffer=new string[100];
}
public string this[int Index]
{
get
{
return(MBuffer[Index]);
}
set
{
MBuffer[Index]=value;
}
}
}
MyList List=new MyList();
List[10]="ABC";
Console.WriteLine(List[10]);
Since C# 3.0 allows you to define automatic properties. Here is the example.
class AutoProps
{
public int Value1
{
get;
set;
}
public int Value2
{
get;
set;
}
}
Even though class AutoProps contains only properties (or it looks like), it can store 2 values and size of objects of this class is equal to sizeof(Value1)+sizeof(Value2)=4+4=8 bytes.
The reason for this is simple. When you define an automatic property, C# compiler generates automatic code that contains hidden field and a property with property methods accessing this hidden field. Here is the code compiler produces.
Here is a code generated by the ILSpy from compiled assembly. Class contains generated hidden fields and properties.
internal class AutoProps
{
[CompilerGenerated]
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
private int <Value1>k__BackingField;
[CompilerGenerated]
[DebuggerBrowsable(DebuggerBrowsableState.Never)]
private int <Value2>k__BackingField;
public int Value1
{
[CompilerGenerated]
get
{
return <Value1>k__BackingField;
}
[CompilerGenerated]
set
{
<Value1>k__BackingField = value;
}
}
public int Value2
{
[CompilerGenerated]
get
{
return <Value2>k__BackingField;
}
[CompilerGenerated]
set
{
<Value2>k__BackingField = value;
}
}
}
So, as you can see, the compiler still uses the fields to store the values - since fields are the only way how to store values into objects.
So as you can see, though properties and fields have similar usage syntax they are very different concepts. Even if you use automatic properties or events - hidden fields are generated by compiler where the real data are stored.
If you need to make a field value accessible to the outside world (users of your class) don't use public or protected fields. Fields always should be marked as private. Properties allow you to make value checks, formatting, conversions etc. and generally make your code safer, more readable and more extensible for future modifications.
Properties have the primary advantage of allowing you to change the way data on an object is accessed without breaking it's public interface. For example, if you need to add extra validation, or to change a stored field into a calculated you can do so easily if you initially exposed the field as a property. If you just exposed a field directly, then you would have to change the public interface of your class to add the new functionality. That change would break existing clients, requiring them to be recompiled before they could use the new version of your code.
If you write a class library designed for wide consumption (like the .NET Framework, which is used by millions of people), that can be a problem. However, if you are writing a class used internally inside a small code base (say <= 50 K lines), it's really not a big deal, because no one would be adversely affected by your changes. In that case it really just comes down to personal preference.
Properties support asymmetric access, i.e. you can have either a getter and a setter or just one of the two. Similarly properties support individual accessibility for getter/setter. Fields are always symmetric, i.e. you can always both get and set the value. Exception to this is readonly fields which obviously cannot be set after initialization.
Properties may run for a very long time, have side effects, and may even throw exceptions. Fields are fast, with no side effects, and will never throw exceptions. Due to side effects a property may return a different value for each call (as may be the case for DateTime.Now, i.e. DateTime.Now is not always equal to DateTime.Now). Fields always return the same value.
Fields may be used for out / ref parameters, properties may not.
Properties support additional logic – this could be used to implement lazy loading among other things.
Properties support a level of abstraction by encapsulating whatever it means to get/set the value.
Use properties in most / all cases, but try to avoid side effects.
In the background a property is compiled into methods. So a Name property is compiled into get_Name() and set_Name(string value). You can see this if you study the compiled code.
So there is a (very) small performance overhead when using them. Normally you will always use a Property if you expose a field to the outside, and you will often use it internally if you need to do validation of the value.
When you want your private variable(field) to be accessible to object of your class from other classes you need to create properties for those variables.
for example if I have variables named as "id" and "name" which is private
but there might be situation where this variable needed for read/write operation outside of the class. At that situation , property can help me to get that variable to read/write depending upon the get/set defined for the property. A property can be a readonly / writeonly / readwrite both.
here is the demo
class Employee
{
// Private Fields for Employee
private int id;
private string name;
//Property for id variable/field
public int EmployeeId
{
get
{
return id;
}
set
{
id = value;
}
}
//Property for name variable/field
public string EmployeeName
{
get
{
return name;
}
set
{
name = value;
}
}
}
class MyMain
{
public static void Main(string [] args)
{
Employee aEmployee = new Employee();
aEmployee.EmployeeId = 101;
aEmployee.EmployeeName = "Sundaran S";
}
}
The second question here, "when should a field be used instead of a property?", is only briefly touched on in this other answer and kinda this one too, but not really much detail.
In general, all the other answers are spot-on about good design: prefer exposing properties over exposing fields. While you probably won't regularly find yourself saying "wow, imagine how much worse things would be if I had made this a field instead of a property", it's so much more rare to think of a situation where you would say "wow, thank God I used a field here instead of a property."
But there's one advantage that fields have over properties, and that's their ability to be used as "ref" / "out" parameters. Suppose you have a method with the following signature:
public void TransformPoint(ref double x, ref double y);
and suppose that you want to use that method to transform an array created like this:
System.Windows.Point[] points = new Point[1000000];
Initialize(points);
Here's I think the fastest way to do it, since X and Y are properties:
for (int i = 0; i < points.Length; i++)
{
double x = points[i].X;
double y = points[i].Y;
TransformPoint(ref x, ref y);
points[i].X = x;
points[i].Y = y;
}
And that's going to be pretty good! Unless you have measurements that prove otherwise, there's no reason to throw a stink. But I believe it's not technically guaranteed to be as fast as this:
internal struct MyPoint
{
internal double X;
internal double Y;
}
// ...
MyPoint[] points = new MyPoint[1000000];
Initialize(points);
// ...
for (int i = 0; i < points.Length; i++)
{
TransformPoint(ref points[i].X, ref points[i].Y);
}
Doing some measurements myself, the version with fields takes about 61% of the time as the version with properties (.NET 4.6, Windows 7, x64, release mode, no debugger attached). The more expensive the TransformPoint method gets, the less pronounced that the difference becomes. To repeat this yourself, run with the first line commented-out and with it not commented-out.
Even if there were no performance benefits for the above, there are other places where being able to use ref and out parameters might be beneficial, such as when calling the Interlocked or Volatile family of methods. Note: In case this is new to you, Volatile is basically a way to get at the same behavior provided by the volatile keyword. As such, like volatile, it doesn't magically solve all thread-safety woes like its name suggests that it might.
I definitely don't want to seem like I'm advocating that you go "oh, I should start exposing fields instead of properties." The point is that if you need to regularly use these members in calls that take "ref" or "out" parameters, especially on something that might be a simple value type that's unlikely to ever need any of the value-added elements of properties, an argument can be made.
Also, properties allow you to use logic when setting values.
So you can say you only want to set a value to an integer field, if the value is greater than x, otherwise throw an exception.
Really useful feature.
(This should really be a comment, but I can't post a comment, so please excuse if it is not appropriate as a post).
I once worked at a place where the recommended practice was to use public fields instead of properties when the equivalent property def would just have been accessing a field, as in :
get { return _afield; }
set { _afield = value; }
Their reasoning was that the public field could be converted into a property later in future if required. It seemed a little strange to me at the time. Judging by these posts, it looks like not many here would agree either. What might you have said to try to change things ?
Edit : I should add that all of the code base at this place was compiled at the same time, so they might have thought that changing the public interface of classes (by changing a public field to a property) was not a problem.
Technically, i don't think that there is a difference, because properties are just wrappers around fields created by the user or automatically created by the compiler.The purpose of properties is to enforce encapsuation and to offer a lightweight method-like feature.
It's just a bad practice to declare fields as public, but it does not have any issues.
Fields are ordinary member variables or member instances of a class. Properties are an abstraction to get and set their values. Properties are also called accessors because they offer a way to change and retrieve a field if you expose a field in the class as private. Generally, you should declare your member variables private, then declare or define properties for them.
class SomeClass
{
int numbera; //Field
//Property
public static int numbera { get; set;}
}
If you are going to use thread primitives you are forced to use fields. Properties can break your threaded code. Apart from that, what cory said is correct.
My design of a field is that a field needs to be modified only by its parent, hence the class. Result the variable becomes private, then to be able to give the right to read the classes / methods outside I go through the system of property with only the Get. The field is then retrieved by the property and read-only! If you want to modify it you have to go through methods (for example the constructor) and I find that thanks to this way of making you secure, we have better control over our code because we "flange". One could very well always put everything in public so every possible case, the notion of variables / methods / classes etc ... in my opinion is just an aid to the development, maintenance of the code. For example, if a person resumes a code with public fields, he can do anything and therefore things "illogical" in relation to the objective, the logic of why the code was written. It's my point of view.
When i use a classic model private field / public readonly properties,for 10 privates fields i should write 10 publics properties! The code can be really big faster. I discover the private setter and now i only use public properties with a private setter.
The setter create in background a private field.
That why my old classic programming style was:
public class MyClass
{
private int _id;
public int ID { get { return _id; } }
public MyClass(int id)
{
_id = id;
}
}
My new programming style:
public class MyClass
{
public int ID { get; private set; }
public MyClass(int id)
{
ID = id;
}
}
Basic and general difference is:
Fields
ALWAYS give both get and set access
CAN NOT cause side effects (throwing exceptions, calling methods, changing fields except the one being got/set, etc)
Properties
NOT ALWAYS give both get and set access
CAN cause side effects
Properties encapsulate fields, thus enabling you to perform additional processing on the value to be set or retrieved. It is typically overkill to use properties if you will not be doing any pre- or postprocessing on the field value.
IMO, Properties are just the "SetXXX()" "GetXXX()" functions/methods/interfaces pairs we used before, but they are more concise and elegant.
Traditionally private fields are set via getter and setter methods. For the sake of less code you can use properties to set fields instead.
when you have a class which is "Car". The properties are color,shape..
Where as fields are variables defined within the scope of a class.
From Wikipedia -- Object-oriented programming:
Object-oriented programming (OOP) is a programming paradigm based on the concept of "objects", which are data structures that contain data, in the form of fields, often known as attributes; and code, in the form of procedures, often known as methods. (emphasis added)
Properties are actually part of an object's behavior, but are designed to give consumers of the object the illusion/abstraction of working with the object's data.
Properties are special kind of class member, In properties we use a predefined Set or Get method.They use accessors through which we can read, written or change the values of the private fields.
For example, let us take a class named Employee, with private fields for name, age and Employee_Id. We cannot access these fields from outside the class , but we can access these private fields through properties.
Why do we use properties?
Making the class field public & exposing it is risky, as you will not have control what gets assigned & returned.
To understand this clearly with an example lets take a student class who have ID, passmark, name. Now in this example some problem with public field
ID should not be -ve.
Name can not be set to null
Pass mark should be read only.
If student name is missing No Name should be return.
To remove this problem We use Get and set method.
// A simple example
public class student
{
public int ID;
public int passmark;
public string name;
}
public class Program
{
public static void Main(string[] args)
{
student s1 = new student();
s1.ID = -101; // here ID can't be -ve
s1.Name = null ; // here Name can't be null
}
}
Now we take an example of get and set method
public class student
{
private int _ID;
private int _passmark;
private string_name ;
// for id property
public void SetID(int ID)
{
if(ID<=0)
{
throw new exception("student ID should be greater then 0");
}
this._ID = ID;
}
public int getID()
{
return_ID;
}
}
public class programme
{
public static void main()
{
student s1 = new student ();
s1.SetID(101);
}
// Like this we also can use for Name property
public void SetName(string Name)
{
if(string.IsNullOrEmpty(Name))
{
throw new exeception("name can not be null");
}
this._Name = Name;
}
public string GetName()
{
if( string.IsNullOrEmpty(This.Name))
{
return "No Name";
}
else
{
return this._name;
}
}
// Like this we also can use for Passmark property
public int Getpassmark()
{
return this._passmark;
}
}
Additional info:
By default, get and set accessors are as accessible as the property itself.
You can control/restrict accessor accessibility individually (for get and set) by applying more restrictive access modifiers on them.
Example:
public string Name
{
get
{
return name;
}
protected set
{
name = value;
}
}
Here get is still publicly accessed (as the property is public), but set is protected (a more restricted access specifier).
Think about it : You have a room and a door to enter this room. If you want to check how who is coming in and secure your room, then you should use properties otherwise they won't be any door and every one easily come in w/o any regulation
class Room {
public string sectionOne;
public string sectionTwo;
}
Room r = new Room();
r.sectionOne = "enter";
People is getting in to sectionOne pretty easily, there wasn't any checking
class Room
{
private string sectionOne;
private string sectionTwo;
public string SectionOne
{
get
{
return sectionOne;
}
set
{
sectionOne = Check(value);
}
}
}
Room r = new Room();
r.SectionOne = "enter";
Now you checked the person and know about whether he has something evil with him
Fields are the variables in classes. Fields are the data which you can encapsulate through the use of access modifiers.
Properties are similar to Fields in that they define states and the data associated with an object.
Unlike a field a property has a special syntax that controls how a person reads the data and writes the data, these are known as the get and set operators. The set logic can often be used to do validation.
Properties are used to expose field. They use accessors(set, get) through which the values of the private fields can be read, written or manipulated.
Properties do not name the storage locations. Instead, they have accessors that read, write, or compute their values.
Using properties we can set validation on the type of data that is set on a field.
For example we have private integer field age on that we should allow positive values since age cannot be negative.
We can do this in two ways using getter and setters and using property.
Using Getter and Setter
// field
private int _age;
// setter
public void set(int age){
if (age <=0)
throw new Exception();
this._age = age;
}
// getter
public int get (){
return this._age;
}
Now using property we can do the same thing. In the value is a key word
private int _age;
public int Age{
get{
return this._age;
}
set{
if (value <= 0)
throw new Exception()
}
}
Auto Implemented property if we don't logic in get and set accessors we can use auto implemented property.
When use auto-implemented property compiles creates a private, anonymous field that can only be accessed through get and set accessors.
public int Age{get;set;}
Abstract Properties
An abstract class may have an abstract property, which should be implemented in the derived class
public abstract class Person
{
public abstract string Name
{
get;
set;
}
public abstract int Age
{
get;
set;
}
}
// overriden something like this
// Declare a Name property of type string:
public override string Name
{
get
{
return name;
}
set
{
name = value;
}
}
We can privately set a property
In this we can privately set the auto property(set with in the class)
public int MyProperty
{
get; private set;
}
You can achieve same with this code. In this property set feature is not available as we have to set value to field directly.
private int myProperty;
public int MyProperty
{
get { return myProperty; }
}

ReadonlyCollection, are the objects immutable?

I'm trying using ReadOnlyCollection to make object immutable, I want the property of object are immutable.
public ReadOnlyCollection<FooObject> MyReadOnlyList
{
get
{
return new ReadOnlyCollection<FooObject>(_myDataList);
}
}
But I little confused.
I tried to change the property of the object in to MyReadOnlyList using a foreach and ... I can change value property, is it correct? I understood ReadOnlyCollection set an add level to make the object immutable.
The fact that ReadOnlyCollection is immutable means that the collection cannot be modified, i.e. no objects can be added or removed from the collection. This does not mean that the objects it contains immutable.
This article by Eric Lippert, explains how different kinds of immutability work. Basically, a ReadOnlyCollection is an immutable facade which can read the underlying collection (_myDataList), but cannot modify it. However, you can still change the underlying collection since you have a reference to _myDataList by doing something like _myDataList[0] = null.
Furthermore, the objects returned by ReadOnlyCollection are the same ones returned by _myDataList, i.e. this._myDataList.First() == this.MyReadOnlyList.First() (with LINQ). This means that if an object in _myDataList is mutable, then so is the object in MyReadOnlyList.
If you want the objects to be immutable, you should design them accordingly. For instance, you might use:
public struct Point
{
public Point(int x, int y)
{
this.X = x;
this.Y = y;
}
// In C#6, the "private set;" can be removed
public int X { get; private set; }
public int Y { get; private set; }
}
instead of:
public struct Point
{
public int X { get; set; }
public int Y { get; set; }
}
Edit: in this case, as noted by Ian Goldby, neither struct allows you to modify properties of the elements in the collection. This happens because structs are value types and when you access an element the collection returns a copy of the value. You can only modify the properties of a Point type if it is a class, which would mean that references to the actual objects are returned, instead of copies of their values.
I tried to change the property of the object in to MyReadOnlyList
using a foreach and ... I can change value property, is it correct? I
understood ReadOnlyCollection set an add level to make the object
immutable.
Using a ReadOnlyCollection does not make any guarantees as for the object that is stored in the collection. All it guarantees is that the collection cannot be modified once it has been created. If an element is retrieved from it, and it has mutable properties, it can very well be modified.
If you want to make your FooObject an immutable one, then simply do so:
public class FooObject
{
public FooObject(string someString, int someInt)
{
SomeString = someString;
SomeInt = someInt;
}
public string SomeString { get; };
public int SomeInt { get; };
}
What is immutable is the collection itself, not the objects. For now, C# doesn't support immutable objects without wrapping them as ReadOnlyCollection<T> does in your case.
Well, you can still create immutable objects if their properties have no accessible setter. BTW, they're not immutable at all because they can mutate from a class member that may have equal or more accessibility than the setter.
// Case 1
public class A
{
public string Name { get; private set; }
public void DoStuff()
{
Name = "Whatever";
}
}
// Case 2
public class A
{
// This property will be settable unless the code accessing it
// lives outside the assembly where A is contained...
public string Name { get; internal set; }
}
// Case 3
public class A
{
// This property will be settable in derived classes...
public string Name { get; protected set; }
}
// Case 4: readonly fields is the nearest way to design an immutable object
public class A
{
public readonly string Text = "Hello world";
}
As I said before, reference types are always mutable by definition and they can behave as immutable under certain conditions playing with member accessibility.
Finally, structs are immutable but they're value types and they shouldn't be used just because they can represent immutable data. See this Q&A to learn more about why structs are immutable: Why are C# structs immutable?

When creating an immutable type in .net is it valid to have public fields?

So when designing an immutable class should it use get properties as such
public sealed class Person
{
readonly string name;
readonly int age;
public Person(string name, int age)
{
this.name = name;
this.age = age;
}
public string Name
{
get { return name; }
}
public int Age
{
get { return age; }
}
}
Or is it valid to expose public readonly fields
public sealed class Person
{
public readonly string Name;
public readonly int Age;
public Person(string name, int age)
{
Name = name;
Age = age;
}
}
While both options will leave you with objects whose fields cannot be changed from the outside, the same guidelines apply for immutable objects as otherwise:
Using properties instead of publicly exposing your fields is still an advantage; you are not checking any input values, but still, future versions of your type might compute some of the values rather than read them directly from an internal field. By using properties, you hide that implementation detail and hence increase your flexibility for future changes.
One major problem with public readonly class fields in .net is that the from the perspective of outside code, the only thing the readonly declaration does is mark the field with a readonly attribute (I forget the spelling and casing). Although some languages will honor such attributes in outside code, a language can ignore such attributes if it so chooses. If an object with public readonly fields is exposed to code written in a language that ignores the readonly attribute, that code could write to such fields just as easily as if the attribute didn't exist.
Structures are a different matter. If a struct stored in field foo has a field of its own named boz, then code which can write to foo can write to foo.boz, and code which cannot write to foo cannot write to foo.boz, regardless of whether boz is public or private, or whether it is intended to be mutable or immutable. This is because if foo1 is a struct of the same type, the statement foo = foo1 does not make foo refer to the same instance as foo1, but rather works by mutating all of the public and private fields in foo to match the values of corresponding fields in foo1.
Boxed value types are even worse; if one has an Object which holds a boxed instance of any value type, the value may be replaced with another of that type. Even supposedly-immutable types like Int32, when boxed, behave as mutable reference types.
Consequently, when using structure types, one should enforce immutability by storing the structures in private fields of the precise structure type. Attempting to make struct fields immutable can make instances of the type more of a nuisance to work with, but will have no real effect on the mutability or immutability of struct instances.

Categories