Override only Get accessor - c#

I got an abstract class :
abstract class ClassBase
{
public abstract string Test { get; }
}
I want to derive it and by the way add a set accesor
class ClassDerive : ClassBase
{
string _s;
public override string Test
{
get { return _s; }
set { _s = value; }
}
}
I can't do that because i may not override set
class ClassDerive2 : ClassBase
{
string _s;
public string Test
{
override get { return _s; }
set { _s = value; }
}
}
Syntax error
class ClassDerive3 : ClassBase
{
string _s;
public override string ClassBase.Test
{
get { return _s; }
}
public string Test
{
set { _s = value; }
}
}
Syntax error
Any Idea ???
thx

You cannot do exactly what you want to do but here is a workaround:
abstract class ClassBase
{
public abstract String Test { get; }
}
class ClassDerive : ClassBase
{
string _s;
public override string Test
{
get { return _s; }
}
public void SetTest(String test)
{
this._s = test;
}
}
This will make Test only settable in ClassDerived via the public SetTest method. I know this is not as clean as using the property's setter but it is about as good as it's going to get.

If at first you have defined a read-only property in a type, you can't later change it to a read/write property in a derived class. That's simply how .NET works, and can't be changed.
If, on the other hand, you define an interface with a read-only property, you can later implement that interface in a class with a writable property.
If you'd like to share what you are trying to achieve, perhaps we can come up with a design that works and can compile :)

Another way:
abstract class ClassBase
{
public abstract string Test { get; }
}
class ClassDerive : ClassBase
{
string _s;
protected void setTest(string s)
{
_s = s;
}
public override string Test
{
get { return _s; }
}
}
class ClassDerive2 : ClassDerive
{
public new string Test
{
get { return base.Test; }
set { setTest(value); }
}
}
class Program
{
static void Main(string[] args)
{
var cd2 = new ClassDerive2();
cd2.Test = "asdf";
Console.WriteLine(cd2.Test);
}
}

My first thought was also to implement it as an interface. If this fits in with your design, the following code will work:
public interface TestInterface
{
string TestProperty { get; }
}
public class TestClass : TestInterface
{
public string TestProperty
{
get { return "test"; }
set { string t = value; }
}
}

No you cant, sorry. It is by design, so it's the law.

Related

Downcasting a List<AbstractClass> object to what the object actually is

I have a ParentClass. Two classes are inherit from it, FirstChildClass and SecondChildClass. A class MultipleValueTypes contains a Dictionary and a method that adds values to it. My intention is to be able to pass values of different classes, which inherit from the same abstract class to the value parameter of the Dictionary. Therefore, I initialize the dictionary with the value List<ParentClass> so that I would be able to add objects made with the child classes to the Dictionary. I can do this, but I cannot access them, therefore in the abstract class I create a way to tell them apart, a virtual method that both the children classes override to return their own class type.
I test the values they return against the enum itself and based on whether the condition is fulfilled, the object would be casted as what it is instead of a List<ParentClass>. Is this the wrong approach? Is this impossible?
I think it should work, because in my thinking the FirstObject and SecondObject are still objects of their respective classes, so casting should work and I should be able to access the overridden method.
What doesn't work: I cannot access the method that returns what type of class it is, because it only gets methods from the List<ParentClass>.
What I've tried so far: searching for a way to access the method, but I did not find any.
What I still need help with: everything mentioned above.
public abstract class ParentClass
{
public string Name { get; set; }
public ParentClass(string Name)
{
this.Name = Name;
}
public enum ChildClasses
{
NoChildClass = 0,
FirstChildClass = 1,
SecondChildClass = 2
}
public virtual ChildClasses TypeOfClass()
{
return ChildClasses.NoChildClass;
}
}
public class FirstChildClass : ParentClass
{
private string _randomvalue;
public string RandomValue { get => _randomvalue; set => _randomvalue = value; }
public FirstChildClass(string Name) : base(Name)
{
}
public void ReturnMessage()
{
Console.WriteLine("This is the FirstChildClass");
}
public override ChildClasses TypeOfClass()
{
return ChildClasses.FirstChildClass;
}
}
public class SecondChildClass : ParentClass
{
private string _randomvalue;
public string RandomValue { get => _randomvalue; set => _randomvalue = value; }
public SecondChildClass(string Name) : base(Name)
{
}
public void ReturnMessage()
{
Console.WriteLine("This is the SecondChildClass");
}
public override ChildClasses TypeOfClass()
{
return ChildClasses.SecondChildClass;
}
}
class MultipleValueTypes
{
public Dictionary<string, List<ParentClass>> ADictionary = new Dictionary<string, List<ParentClass>>();
public void AddObject(string Name, ParentClass variable)
{
if (!ADictionary.ContainsKey(Name))
{
ADictionary.Add(Name, new List<ParentClass>());
}
ADictionary[Name].Add(variable);
}
}
class Program
{
static void Main(string[] args)
{
FirstChildClass FirstObject = new FirstChildClass("FirstObject");
SecondChildClass SecondObject = new SecondChildClass("SecondObject");
MultipleValueTypes TestDictionary = new MultipleValueTypes();
TestDictionary.AddObject("FirstObject", FirstObject);
TestDictionary.AddObject("SecondObject", SecondObject);
if(TestDictionary.ADictionary["FirstObject"].TypeOfClass() == ParentClass.ChildClasses.FirstChildClass) ///List<ParentClass>' does not contain a definition for 'TypeOfClass' and no accessible extension method 'TypeOfClass' accepting a first argument of type 'List<ParentClass>' could be found (are you missing a using directive or an assembly reference?)
{
TestDictionary.ADictionary["FirstObject"] = (FirstChildClass)TestDictionary.ADictionary["FirstObject"]; ///Cannot convert type 'System.Collections.Generic.List<Dictionary.ParentClass>' to 'Dictionary.FirstChildClass
}
}
}
You forgot to use indexer of the list value of the key of the dictionary here:
==> TestDictionary.ADictionary["FirstObject"][0]
Here is your code now refactored too:
class Program
{
static void Main(string[] args)
{
var FirstObject = new FirstChildClass("FirstObject");
var SecondObject = new SecondChildClass("SecondObject");
FirstObject.ReturnMessage();
SecondObject.ReturnMessage();
MultipleValueTypes TestDictionary = new MultipleValueTypes();
TestDictionary.AddObject("FirstObject", FirstObject);
TestDictionary.AddObject("SecondObject", SecondObject);
if ( TestDictionary.ADictionary["FirstObject"][0].TypeOfClass()
== ParentClass.ChildClasses.FirstChildClass )
{
TestDictionary.ADictionary["FirstObject"][0]
= (FirstChildClass)TestDictionary.ADictionary["FirstObject"][0];
}
Console.ReadKey();
}
}
public abstract class ParentClass
{
public string Name { get; set; }
public string RandomValue { get; set; }
public ParentClass(string Name)
{
this.Name = Name;
}
public virtual void ReturnMessage()
{
Console.WriteLine($"This is the {this.GetType().Name} instance");
}
public virtual ChildClasses TypeOfClass()
{
return ChildClasses.NoChildClass;
}
public enum ChildClasses
{
NoChildClass = 0,
FirstChildClass = 1,
SecondChildClass = 2
}
}
public class FirstChildClass : ParentClass
{
public FirstChildClass(string Name)
: base(Name)
{
}
public override ChildClasses TypeOfClass()
{
return ChildClasses.FirstChildClass;
}
}
public class SecondChildClass : ParentClass
{
public SecondChildClass(string Name)
: base(Name)
{
}
public override ChildClasses TypeOfClass()
{
return ChildClasses.SecondChildClass;
}
}
class MultipleValueTypes
{
public readonly Dictionary<string, List<ParentClass>> ADictionary
= new Dictionary<string, List<ParentClass>>();
public void AddObject(string Name, ParentClass variable)
{
if ( !ADictionary.ContainsKey(Name) )
{
ADictionary.Add(Name, new List<ParentClass>());
}
ADictionary[Name].Add(variable);
}
}
If the intention is to cast the whole list from List<ParentClass> to List<FirstChildClass> and List<SecondChildClass>, then Linq is your friend, just use the Cast function:
List<FirstChildClass> firstChildClasses = TestDictionary.ADictionary["FirstObject"]
.Cast<FirstChildClass>().ToList();
List<SecondChildClass> secondChildClasses = TestDictionary.ADictionary["SecondObject"]
.Cast<SecondChildClass>().ToList();

Override static class member and acces through generics

the easiest way to describe my problem is with example code. I know that this won't compile, but i need a similar option
abstract class Foo
{
protected abstract static ElementName {get;}
}
class Bar : Foo
{
protected static override ElementName
{
get
{
return "bar";
}
}
}
class Baz<T> where T : Foo
{
public string ElementName
{
get
{
return T.ElementName;
}
}
}
Grettings
This cannot be done in the way you want, but you can achieve something similar using reflection. Here is an example offering two possible solutions to your problem (updated):
abstract class Foo
{
protected abstract string _ElementName { get; }
public static string GetElementName<T>() where T : Foo, new()
{
return typeof(T).GetProperty("_ElementName", BindingFlags.Instance | BindingFlags.NonPublic)?
.GetValue(new T()) as string;
}
public static string GetStaticElementName<T>() where T : Foo, new()
{
return typeof(T).GetProperty("ElementName", BindingFlags.Static | BindingFlags.NonPublic)?
.GetValue(null) as string;
}
}
class Bar : Foo
{
protected static string ElementName
{
get
{
return "StaticBar";
}
}
protected override string _ElementName
{
get
{
return "Bar";
}
}
}
class FooBar : Bar
{
protected static string ElementName
{
get
{
return "StaticFooBar";
}
}
protected override string _ElementName
{
get
{
return "FooBar";
}
}
}
class Baz<T> where T : Foo, new()
{
public string ElementName
{
get
{
return Foo.GetElementName<T>();
}
}
public string StaticElementName
{
get
{
return Foo.GetStaticElementName<T>();
}
}
}
...
Console.WriteLine(new Baz<Bar>().ElementName); // Bar
Console.WriteLine(new Baz<FooBar>().ElementName); // FooBar
Console.WriteLine(new Baz<Bar>().StaticElementName); // StaticBar
Console.WriteLine(new Baz<FooBar>().StaticElementName); // StaticFooBar

Interfaces and inheritance with derived class

I am stuck on interfaces and inheritance. If I implement two classes who both have an interface each, how would I be able to add the properties of Class A and B together? For instance I wanted to associate firstitem with the seconditem.
public interface IAlpha
{
[WebInvoke(Method = "POST", BodyStyle = WebMessageBodyStyle.Bare, RequestFormat = WebMessageFormat.Xml, ResponseFormat = WebMessageFormat.Xml, UriTemplate = "/AddBravoToAlpha/{firstitem}/{seconditem}")]
void AddBravoToAlpha(int firstitem, int seconditem);
}
public interface IBravo
{
// what goes in here?
}
public Class Alpha
{
public Alpha()
{
AlphaAdd = new List<Bravo>();
}
int Firstitem { get; set }
public List<Bravo> AlphaAdd { get; set; }
}
public Class Bravo
{
public Bravo()
{
BravoAdd = new List<Alpha>(); //not sure if Bravo can access Alpha (derived class)
}
int Seconditem { get; set }
Guid Indexer { get; set }
public List<Alpha> BravoAdd { get; set; }
}
public Class BravoDoesAlpha : IBravo, IAlpha //????
{
List<Alpha> alpha = new List<Alpha>();
List<Bravo> bravo = new List<Bravo>();
public void AddBravoToAlpha(int firstitem, int seconditem)
{
var result = alpha.Where(n => String.Equals(n.Firstitem, firstitem)).FirstOrDefault();
var result1 = bravo.Where(n => String.Equals(n.Seconditem, seconditem)).FirstOrDefault();
if (result != null)
{
result.BravoAdd.Add(new Alpha() { Firstitem = firstitem });
}
if (result1 != null)
{
result1.AlphaAdd.Add(new Bravo() { Seconditem = seconditem });
}
}
}
Okay, so the question you are being asked is basically one about how to do a certain kind of refactoring known as "extracting" an interface.
This is one of the more easy refactorings to do and to understand if you understand interfaces vs. types.
All interfaces are types, but not all types are interfaces.
Now let's assume we are dealing in a world with two families of types: classes and interfaces (as in your example).
Instead of working your example directly, I will work a different but clearer example that does not use Alpha, Bravo, Charlie, Epsilon, etc. because this kind of stuff makes it harder to see the meaning.
First, here's the before:
public class Dog
{
public void Bark() { Console.WriteLine("Woof!"); }
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
}
public class DoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
}
To extract the interface of a class, simply, well, extract all the public members of the class to an interface.
public interface IDog
{
void Bark();
int NumberOfDogLegs { get; }
int NumberOfDogFriends { get; set; }
}
public interface IDoorBell
{
void Chime();
}
Now to really make use of OOP, you can find a way to abstract IDog and IDoorBell. What do they have in common? Well, the obvious one is they both make a noise. So we make a new interface, public interface IMakeANoise and say that IDog and IDoorBell both implement it.
public interface IMakeANoise
{
void MakeNoise();
}
public interface IDog : IMakeANoise
{
void Bark();
int NumberOfDogLegs { get; }
int NumberOfDogFriends { get; set; }
}
public interface IDoorBell : IMakeANoise
{
void Chime();
}
And now we have a new method to implement on Dog and DoorBell.
public class Dog : IDog
{
public void Bark() { Console.WriteLine("Woof!"); }
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
public void IMakeANoise() { Bark(); }
}
public class DoorBell : IDoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
public void IMakeANoise() { Chime(); }
}
Now let's say we are actually writing a video game and Dog and DoorBell are both things that we can show on the screen. Well, this makes them a lot bigger because we will need to provide more information like their coordinates, their states, etc.
In this case, Dog and DoorBell may be very different to us but are similar enough to potentially merit sharing a base class. (Really, this is a stretch, but it does get the point across.)
Without adding all those new interfaces and their implementations, let's just do the "sharing a base class" refactoring for what we already have.
public class RenderableThing : IMakeANoise, IDoAThousandOtherThings
{
protected virtual string MyNoiseToMake { get { return ""; } }
public virtual void MakeANoise()
{
Console.WriteLine(MyNoiseToMake);
}
}
public class Dog : RenderableThing, IDog
{
protected override string MyNoiseToMake { get { return "Woof!"; } }
public void Bark() { MakeANoise(); } // see what we did there?
// Notice that I am not declaring the method MakeANoise because it is inherited and I am using it by overriding MyNoiseToMake
public int NumberOfDogLegs { get { return 2; } }
public int NumberOfDogFriends { get; set; } // this can be set
private string SecretsOfDog { get; set; } // this is private
}
public class DoorBell : RenderableThing, IDoorBell
{
public void Chime() { Console.WriteLine("Ding!"); }
public override void MakeANoise()
{
Chime(); Chime(); Chime(); //I'll do it my own way!
}
}
You may wonder, what's the point? So we can do this...
IMakeANoise dogNoiseMaker = new Dog();
IMakeANoise doorBellNoiseMaker = new DoorBell();
IList<IMakeANoise> listOfNoiseMakers = new List<IMakeANoise>();
listOfNoiseMakers.Add(dogNoiseMaker);
listOfNoiseMakers.Add(doorBellNoiseMaker);
foreach (IMakeANoise noiseMaker in listOfNoiseMakers)
{
noiseMaker.MakeANoise();
}
// This will output
// Woof!
// Ding!
// Ding!
// Ding!
I'm going to take a shot in the dark and venture a guess that you don't quite understand what interfaces and inheritance is. I'll start off by explaining what interfaces are:
Interfaces contain only the definitions of methods, properties, events or indexers that an inheriting class must implement.
For example:
interface IExample
{
void HelloWorld();
}
class ExampleClass : IExample
{
public void HelloWorld()
{
Console.WriteLine("Hello world.");
}
}
Now for Inheritance; when you derive a class from a base class the derived class will inherit all members of the base class except for the constructors. Note: Depending on the accessibility of the members in the base class it's children may or may not be able to access the parents members.
public class Animal
{
public string Name { get; set; }
public Animal(string name)
{
Name = name;
}
public void Talk()
{
Console.WriteLine("{0} is talking", Name);
}
}
public class Cat : Animal
{
public Cat(string name) : base(name) { }
}
public class Dog : Animal
{
public string FurColor { get; set; }
public Dog(string name, string furColor) : base(name)
{
FurColor = furColor;
}
public void Greeting()
{
Console.WriteLine("{0} has {1} fur.", Name, FurColor);
}
}
class Program
{
static void Main(string[] args)
{
var cat = new Cat("Rex");
cat.Talk();
var dog = new Dog("Beanie", "Red");
dog.Talk();
}
}

Access const with generics C#

I have the following base class:
public class Base
{
public string LogicalName { get; set; }
public int NumberOfChars { get; set; }
public Base()
{
}
public Base(string logicalName, int numberOfChars)
{
LogicalName = logicalName;
NumberOfChars = numberOfChars;
}
}
and the following derived classes:
public class Derived1 : Base
{
public const string EntityLogicalName = "Name1";
public const int EntityNumberOfChars = 30;
public Derived1() : base(EntityLogicalName, EntityNumberOfChars)
{
}
}
public class Derived2 : Base
{
public const string EntityLogicalName = "Name2";
public const int EntityNumberOfChars = 50;
public Derived2()
: base(EntityLogicalName, EntityNumberOfChars)
{
}
}
and I also have this function that is provided by a service:
public IEnumerable<T> GetEntities<T>(string entityName, int numberOfChars) where T : Base
{
//Some code to get the entities
}
My problem is how can I call this function generically? I want to call it with something that looks like this:
public void TestEntities<T>() where T : Base
{
var entities = GetEntities<T>(T.EntityLogicalName, T.EntityNumberOfChars);
//some other code to test the entities
}
This of course doesn't work because at this point T is not known. How can I accomplish something similar to this? EntityLogicalName and EntityNumberOfChars are characteristics that all Base derived classes have and they never change for each derived class. Can I get them from the Base class without instantiating objects or some other way that I am not seeing?
Replace constants with getter abstract properties
public abstract class Base
{
public abstract string LogicalName { get; }
public abstract int NumberOfChars { get; }
public Base()
{
}
}
public class Derived1 : Base
{
public string LogicalName { get { return "Name1"; } }
public int NumberOfChars { get { return 30; } }
public Derived1() : base()
{
}
}
Also, you will be able to put some logic into overriden getter, e.g. :
...
public string LogicalName { get { return this.EntityMap.Name; } }
...
UPDATE: The fact that you do not want to instantiate object from class but want to be able to get that string in a strongly typed manner can be handled in one more way. It is totally separate from answer above ( Since you can't override static props in c#). Consider the following code. We are adding one more class here, but LocatorInner can be a member of BaseClass. We are using this approach a lot in several existing apps.:
public class Locator
{
public static class LocatorInner<T> where T : BaseClass
{
public static string Name { get; set; }
}
public static string GetName<T>() where T : BaseClass
{
return LocatorInner<T>.Name;
}
public static void SetName<T>(string name) where T : BaseClass
{
LocatorInner<T>.Name = name;
}
}
public class BaseClass
{
}
public class DerivedClass: BaseClass
{
static DerivedClass()
{
Locator.LocatorInner<DerivedClass>.Name = "me";
}
}
public class TestClass<T> where T : BaseClass
{
public void Method()
{
var name = Locator.GetName<T>();
}
}
IMHO, I believe using constants here is a bad design decision.
You can either solve the issue using #vittore approach, but for me it sounds like you should use meta-programming with attributes if you're looking to get data from the T generic argument
For example, what about:
public class LogicalNameAttribute : Attribute
{
public LogicalNameAttribute(string name)
{
Name = name;
}
public string Name { get; private set; }
}
public class NumberOfCharsAttribute : Attribute
{
public NumberOfCharsAttribute (int number)
{
Number = number;
}
public string Number { get; private set; }
}
[LogicalName("Name1"), NumberOfChars(30)]
public class Derived1 : Base
{
public Derived1() : base()
{
}
}
Now your service method can extract attribute metadata as follows:
public void TestEntities<T>() where T : Base
{
LogicalNameAttribute logicalNameAttr = typeof(T).GetCustomAttribute<LogicalNameAttribute>();
NumberOfCharsAttribute numberOfCharsAttr = typeof(T).GetCustomAttribute<NumberOfCharsAttribute >();
Contract.Assert(logicalNameAttr != null);
Contract.Assert(numberOfCharsAttr != null);
string logicalName = logicalNameAttr.Name;
int numberOfChars = numberOfCharsAttr.Number;
// Other stuff
}
There's a performance penalty because you need to use reflection to get attributes applied to T, but you gain the flexibility of not forcing derived classes to provide this static info.
As #vittore mentioned, move the properties to base,pass the hard coded values from derived and in creation use just defautl(T)
public IEnumerable<T> GetEntities<T>(string entityName, int numberOfChars) where T : Base
{
yield return default(T); //Is its always class use new constraint and return new T();
}

C#: Confusion about Interfaces, Implementation and Inheritance

I'm wondering about what's the way to go, if I need to publicate data-interfaces but want to use them internal with extended calculated properties. To make it clearer:
// The public interface
public interface IData
{
int Property { get; }
}
// The internal interface
internal interface IExtendedData : IData
{
int ExtendedProperty { get; }
}
// The assumed implementation of someone using my interface
public class Data : IData
{
public Data(int a)
{
Property = a;
}
public int Property
{
get;
private set;
}
public override string ToString()
{
return Property.ToString();
}
}
// My implementation
internal class ExtendedData : IExtendedData
{
public ExtendedData(int a)
{
Property = a;
}
public int Property
{
get;
private set;
}
public int ExtendedProperty
{
get
{
return 2 * Property;
}
}
public override string ToString()
{
return Property.ToString() + ExtendedProperty.ToString();
}
}
// publicated by me, for the person who uses my dll
public static class Calculations
{
public static int DoSomeCalculation(IData data, int parameter)
{
// This probably don't work, but maybe shows what I want to do
IExtendedData tempData = (ExtendedData)data;
return tempData.ExtendedProperty * parameter;
}
}
I'm realy frustrated, cause I feel like missing some basical programing skills.
You could solve this problem by implementing ExtendedData as a Wrapper for a class implementing IData
internal class ExtendedData : IExtendedData
{
private IData data;
public ExtendedData(IData data)
{
this.data = data;
}
public int Property
{
get { return data.Property; }
private set { data.Property = value; }
}
public int ExtendedProperty
{
get
{
return 2 * Property;
}
}
}
and use this in DoSomeCalculation like
IExtendedData tempData = new ExtendedData(data);
ExtendedData could inherit from Data:
class ExtendedData : Data
{...}
And for creation of a Data object you add a factory like so:
public class DataFactory
{
public IData CreateData()
{
return new ExtendedData();
}
}
User have to create all its Data objects by this factory. You can ensure it by making Data's constructor internal.
In your DLL you can then cast to ExtendedData.

Categories