I would like to use Model View Presenter pattern for a library containing user controls which will be used in other projects.
According to MVP I have to implement an IView-interface on a user control and pass it on to a Presenter-class.
In my case the consumers don't need access to the IView-contract.
But because the IView-interface is a public contract it means that consumers of the user control can also access its methods\properties and I want these to be only accessible for the Presenter.
What is a good way to accomplish this?
I've found a solution for my situation.
I make my IView-interfaces internal and implement them explicitly on the user controls.
This way the IView-interfaces is not part of the public interface of a user control which is what I need in my case.
I always consider User Controls tied to the Views not be a separate view themselves. They should be able to access any Presenter that the view they are tied can access but are not in themselves views. Rather they are part of a view and can be replace or altered without concern to the present if the UI changes.
In your specific example I would have the User control not implement any view interface. Instead I would just have the User Control Assembly reference the Presenter Assembly and have properties to allow access to the View Object that it is a part of.
Related
I'm new to c# and mvvm.
I have a class that has many properties, and because of that, it is not possible to present every property to user in one page. Therefore, I decided to break the UI into 4 different part. I designed one user control for each of these parts.
As of now, I have 4 different user controls which are presented to user with the help of a side bar selection.
However, I still have one object to work with and it is not possible to break the object too.
The problem is I cant access to object from user controls' code behind. It means that I can bind object with UI but I'm not able to change parameters in code behind.
Welcome to SO!
On one hand you talk about MVVM and data-binding, but then on the other hand you talk about modifying changing parameters in code-behind. These are antithetical design patterns. Pick one!
If you are implementing MVVM then, as you know you have the View (UI e.g. Page1.xaml) in XAML, with code behind (Page1.xaml.cs) these then use a ViewModel (e.g. Page1ViewModel.cs) as their data context, i.e. where they can access the Model.
You do not have to have a one-to-one correlation of Views, ViewModels and Models.
You can have more than one View use the same ViewModel as its data context and you can have a ViewModel contain yet more ViewModels and a ViewModel can reference several Models if required.
So in your situation I'd have several pages reference the same ViewModel.
WPF newb here.
Consider the following situation
Parent user control A
Parent control has a placeholder / slot that
these MEF extension User control can be loaded into dynamically.
All MEF extensions that provide a User control implement a specific interface. This includes a boolean that they can set to indicate an operation is complete.
Parent A has a button that needs to be enabled when the specific property(mentioned in the point above) is set to true.
Is this possible? If yes , how?
Is binding + INotifyPropertyChanged the way to go?
We've also thought of passing in Actions that can be used to update the state of the parent.
Are there any other alternatives?
So let me explain;
if dynamically loaded user control has no data context (no view model is set), then user control uses view model of parent.
But if you define a view model for each user control, you can import these view models and manage them in parent view model.
Consider also using a BaseViewModel (BindableBase for MEF)
I have multiple of views (user controls), each with its own ViewModel. To navigate between them I am using buttons. Buttons display image and text from corresponding view model and also need column and row (because there are like 10 views: 10 columns with different number of rows each).
Right now buttons are created dynamically (I made a Navigator control for this) and for view models I have base class to hold text, image, column and row. Number of views available will be different (depends on user level and certain settings), that's why it's I need control here.
Question: how shall my control get data from view models?
Right now I have interface INavigator, defined in (lol) control itself. And view models implement it. I could go opposite, let my control to know about view models. Both looks wrong.
There is a single Navigator control what has, lets say, Items bound to a list of view models. It can cast each view model to INavigator or ViewModelBase (common for all pages) to obtain specific view model image, text, column and row. So either view model knows about control (to implement INavigator) or control knows about ViewModelBase.. And this is a problem, both solution bind tight control and view models, which is bad in mvvm.
Schematically
The way you've drawn your diagram answers your own question as to how you should structure the code for this.
What you need is one VM (let's call it MainVM) which contains an ObservableCollection<VMBase> of the other VMs (using your base type so that they can all happily live in the same collection).
Your View needs an ItemsControl (bound to your ObservableCollection<VMBase>) where you specify a DataTemplate for the Button using the properties exposed by the VMBase type only. Set the Command property in the Button to call SwitchCommand, CommandParameter is set to the item itself (i.e. {Binding .}).
Your View also needs a ContentControl bound to a SelectedVM property on MainVM which you can populate.
Implement SwitchCommand to set the SelectedVM property based on the value from the CommandParameter.
public void ExecuteSwitchCommand(object parameter)
{
var vmBase = parameter as VMBase;
if (vmBase != null)
SelectedVM = vmBase;
}
All properties mentioned here should be INotifyPropertyChanged enabled so that the View registers when they change and updates the UI.
To get the different UIs for the ContentControl, add type-specific DataTemplates for each of your specific VM types to the Resources file of your View (or if you're smart and are building a custom plug-in framework, merge the Resource Dictionaries).
A lot of people forget with MVVM that the whole point is that there is a purposeful separation of View from ViewModel, thus meaning you can potentially have many Views for a single ViewModel, which is what this demonstrates.
I find it's easiest to think of MVVM as a top-down approach... View knows about it's ViewModel, ViewModel knows about its Model, but Model does not know about its ViewModel and ViewModel does not know about its View.
I also find a View-first approach to development the easiest to work with, as UI development in XAML is static (has to be).
I think a lot of people get to wrapped up in 'making every component (M, V, VM) standalone and replaceable', myself included, but I've slowly come to the conclusion that is just counter-productive.
Technically, sure you could get very complicated and using IoC containers, create some ViewLocator object which binds a View-type to a ViewModel-type, but... what exactly does that gain you besides more confusion? It makes it honestly harder (because I've done this at one point) to develop because now you've lost design-time support first and foremost, among other things; and you're still either binding to a specific view model interface in your view or creating the binding at run-time. Why complicate it?
This article is a good read, and the first Note: explicitly talks about View vs. ViewModel. Hopefully, it will help you draw your own conclusions.
To directly answer your question, I think having your ViewModels implement an INavigator interface of some sort is probably ideal. Remember your VM is 'glue' between your view and model/business logic, its job is to transform business data into data that is consumable by your views, so it exists somewhere between both your UI and business layers.
This is why there are things like Messengers and View Services, which is where your navigator service on the ViewModels can fit in nicely.
I think the design has led to a no way out situation.
I believe that creating a custom button control where the dependency properties tie the image, the row and column actually provide a way for the page, which it resides on ,to get that information to them; whether they are dynamically created or not.
Continuing on with that thought. There is no MVVM logic applied to a custom control, the control contains what it needs to do its job and that is through the dependency properties as mentioned. Any functionality of the button should be done by commanding; all this makes the button data driven and robust enough to use in a MVVM methodology or not.
Question: how shall my control get data from view models?
There should only one viewmodel which is the page the control resides on. The control is simply bound to information which ultimately resides on that VM. How it gets there, that is up to the programmer. If the button is going to contain state data, that is bound from its dependency property in a two way fashion back to the item it is bound to.
By keeping VMs out of the buttons and only having one VM that is the best way to segregate and maintain the data. Unless I am really missing something here....
Same as others here I find it a bit hard to actually understand what you are asking, so this is quite general. The answer to the question header is simply: the Control gets the data from the ViewModel through bindings, always. You set the DataContext of your Control to the corresponding ViewModel, and from there you keep the ViewModel and the Control synchronized:
If you add an ItemsControl containing buttons to the View, you add an ObservableCollection<ButtonViewModel> to the ViewModel and bind the ItemsSource of the ItemsControl to this.
If you allow the user to dynamically add content to the View, the actual code that does it resides in the ViewModel, e.g. when the user clicks on a button "Add Button", you use the Command property to call a ViewModel method that adds a ButtonViewModel to the collection and the View will automatically reflect your changes.
There do exist complicated cases that are impossible to code exclusively in the ViewModel, I have found Behaviors to be the missing link there, but I'll get into that when you show me the specific case.
If you'd like to get a working example, please provide as much code as you can, with your exact expectations of what it should do.
I'm trying to create a kind of master/detail UI using an MVP pattern. I have the usual suspects:
interface IMainView{}
class MainView: Form, IMainView{}
interface IMainPresenter{}
class MainPresenter{}
// Numerous domain objects
I also have a UserControl which is also a View of its own MVP triad:
interface ISubView{}
class SubView: UserControl, ISubView{}
interface ISubPresenter{}
class SubPresenter{}
The MainPresenter creates and instance of the SubPresenter, which in turn, creates an instance of SubView. My problem is the Views don't contain references to each other or even know each other exist. They only know about their own presenters but I want to attach one view that is a UserControl to another view that is a Form. Is this possible to do and still maintain each view's ignorance of each other?
Up until this point all the views have exposed the properties needed by each presenter as system types so the presenters would not be affected if a ListBox changed to a ComboBox or a RadioGroup. I'd like to keep it this way if possible but I'm willing to break this pattern if I have no other choice.
My reasons for doing this is the MainView presents the user with a collection of objects. Each object can be one of several (more than 50) different classes. All will implement a common interface but the UI for manipulating each object will vary with the underlying class.
By the way, this is a Winforms application targeting .NET 2.0 (it's compiled as C# 3.0 though)
I solved this by having the subpresenter pass a reference to its view to the main presenter which then passes it to its view, which then assigns it to an empty panel.
subView
|
V
subPresenter
|
V
mainPresenter
|
V
mainView
It's passed as a plain old object so neither of the presenters need to include references to the winforms namespace. The mainView simply assumes its a decedent of UserControl and casts it as such.
I have a a user control which contains several other user controls. I am using MVVM. Each user control has a corresponding VM. How do these user controls send information to each other? I want to avoid writing any code in the xaml code behind. Particularly I am interested in how the controls (inside the main user control) will talk to each other and how will they talk to the container user control.
EDIT:
I know that using events-delegates will help me solve this issue. But, I want to avoid writing any code in xaml code-behind.
Typically, it's best to try to reduce the amount of communication between parts, as each time two user controls "talk" to each other, you're introducing a dependency between them.
That being said, there are a couple of things to consider:
UserControls can always "talk" to their containing control via exposing properties and using DataBinding. This is very nice, since it preserves the MVVM style in all aspects.
The containing control can use properties to "link" two properties on two user controls together, again, preserving clean boundaries
If you do need to have more explicit communication, there are two main approachs.
Implement a service common to both elements, and use Dependency Injection to provide the implementation at runtime. This lets the controls talk to the service, which can in turn, keep the controls synchronized, but also keeps the dependency to a minimum.
Use some form of messaging to pass messages between controls. Many MVVM frameworks take this approach, as it decouples sending the message from receiving the message, again, keeping the dependencies to a minimum.
Your conceptual problem is here:
Each user control has a corresponding VM.
Having a separate ViewModel for every view pretty much defeats the concept of a ViewModel. ViewModels should not be one-to-one with views, otherwise they are nothing but glorified code-behind.
A ViewModel captures the concept of "current user interface state" -- such as what page you are on and whether or not you are editing -- as opposed to "current data values'.
To really reap the benefits of M-V-VM, determine the number of ViewModel classes used based on distinct items that need state. For example, if you have a list of items each of which can be displayed in 3 states, you need one VM per item. Contrarily, if you have three views all of which display data in 3 different ways depending on a common setting, the common setting should be captured in a single VM.
Once you have strucutred your ViewModels to reflect the requirements of the task at hand you generally find there is no need nor desire to communicate state between views. If there is such a need, the best thing to do is to re-evaluate your ViewModel design to see if a shared ViewModel could benefit from a small amount of additional state information.
There will be times when the complexity of the application dictates the use of several ViewModels for the same model object. In this case the ViewModels can keep references to a common state object.
There are many differenct mechanisms for this, but you should first find out in what layer of your architecture this communication belongs.
One of the purposes of the MVVM framework is that different views can be made over the same viewmodel. Would those usercontrols talk to each other only in the view you are currently implementing, or would they have to talk to each other in other possible views? In the latter case, you want to implement it below the view level, either in the viewmodel or the model itself.
An example of the first case may be if your application is running on a very small display surface. Maybe your user controls have to compete for visual space. If the user clicks one usercontrol to maximize, the others must minimize. This would have nothing to do with the viewmodel, it's just an adaption to the technology.
Or maybe you have different viewmodels with different usercontrols, where things can happen without changing the model. An example of this could be navigation. You have a list of something, and a details pane with fields and command buttons that are connected to the selected item in the list. You may want to unit test the logic of which buttons are enabled for which items. The model isn't concerned with which item you're looking at, only when button commands are pressed, or fields are changed.
The need for this communication may even be in the model itself. Maybe you have denormalized data that are updated because other data are changed. Then the various viewmodels that are in action must change because of ripples of changes in the model.
So, to sum up: "It depends...."
I think the best solution would be using Publisher/Subscriber pattern. Each control registers some events and attaches delegetes to events exposed by other controls.
In order to expose events and attach to them you would need to use some kind of Mediator/EventBroker service. I found a good example here
The best way to do this in my opinion is via Commanding (Routed Commands / RelayCommand, etc).
I want to avoid writing any code in the xaml code behind.
While this is a laudable goal, you have to apply a bit of practicality to this, it shouldn't be applied 100% as a "thou shalt not" type of rule.
You can communicate between elements on the UI by using element binding, so assuming a user control you created exposes a property, the other user controls could bind to it. You can configure the binding, use dependency properties instead of basic properties / implement INotifyPropertyChanged but it is in theory possible, but does require some forethought to enable to communication this way.
You will probably find it far easier using a combination of events, code and properties than try a pure declarative way, but in theory possible.
You can share some View Model objects between controls as well as Commands...
For example, you have some main control, which contains two other controls. And you have some filtering functionality in the main control, but you want to allow user to set some part of the filter in the first sub-control (like "Full filter") and some part of the filter in another (like "Quick filter"). Also you want to be able to start filtering from any of sub-controls. Then you could use code like this:
public class MainControlViewModel : ObservableObject
{
public FirstControlViewModel firstControlViewModel;
public SecondControlViewModel firstControlViewModel;
public ICommand FilterCommand;
public FilterSettings FilterSettings;
public MainControlViewModel()
{
//...
this.firstControlViewModel = new FirstControlViewModel(this.FilterSettings, this.FilterCommand);
this.secondControlViewModel = new SecondControlViewModel(this.FilterSettings, this.FilterCommand);
}
}
public class FirstControlViewModel : ObservableObject
{
//...
}
public class SecondControlViewModel : ObservableObject
{
//...
}
In the main control XAML you will bind sub-controls DataContext to the appropriate View Models. Whenever a sub-control changes filter setting or executes a command other sub-control will be notified.
As others have said you have a couple of options.
Exposing DepedencyProperties on your user controls and binding to those properties provides a pure XAML solution in most cases but can introduce some UI dependencies in order for the bindings to see each other
The other option is a decoupled messaging pattern to send messages between ViewModels. I would have your user controls bind to properties on thier own VM's and then on the property change inside that VM it can "publish" a message that notifies other "subscribers" that something has happened and they can react to that message however they want to.
I have a blog post on this very topic if it helps: http://www.bradcunningham.net/2009/11/decoupled-viewmodel-messaging-part-1.html
If you're using strict MVVM, then the user-control is a View and should only "talk", or rather, bind, to its ViewModel. Since your ViewModels most likely already implement INotifyPropertyChanged, as long as they have a reference to each other, they can use the PropertyChanged events to be notified when properties change, or they can call methods (better if it's through an interface) to communicate with each other.