Propagating a "volatile" property - c#

I put "volatile" because it's only vaguely so.
I have a class which has a property called StopRequested. This flag can be set by other threads at any time, and needs to indicate to my code that it should stop what it's doing and exit (this is a Windows Service based process, and when Stop is called, all processing needs to clean up and stop).
I wish to create some other classes to do the actual brunt of the processing work, however these classes also have to be aware of the "stop" flag. You can't just pass the flag because it will pass a copy, and you can't pass properties as ref types.
So how do you propagate a property that might change at any time into other classes?
The only thing I can think of is to pass a reference to the parent class, but I dislike coupling the worker classes to the parent for one flag. Any suggestions would be appreciated.
EDIT:
Here's a basic example:
public class A
{
public bool StopRequested { get; set; }
private Worker = new Worker();
public void DoWork();
{
worker.DoWork();
}
}
public class Worker
{
public void DoWork()
{
while(!StopRequested)
{
....
}
}
}

You could have each of your worker classes have their own StopRequest property and then just set that whenever StopRequest is flagged.
private List<IStopable> WorkerClasses = new List< IStopable > ()
public Bool StopRequest{
get
{
return _stopRequest;
}
set
{
_stopReqest = value;
foreach (var child in WorkerClasses)
child.StopRequest = value;
}
}

Like Rubens said, use an event. What you described basically defines event to a T:
Propagate a property change to other classes.
There is actually a facility in .NET that provides this already, albeit in a generic way: INotifyPropertyChanged. This interface provides a single event, PropertyChanged, that allows a class to notify any listeners of any property change.
In your case, you could easily provide your own interface that is more specific:
interface IStopNotifier
{
event EventHandler StopRequested;
}
This interface would be implemented by your main work manager (whatever it is), and could propagate itself like so:
class WorkManager: IStopNotifier
{
public event EventHandler StopRequested;
protected void OnStopRequested()
{
if (StopRequested != null) StopRequested(this, new EventArgs());
}
public void StopAllWorkers()
{
OnStopRequested();
}
public Worker CreateWorker<T>()
where T: Worker
{
var worker = new T(this);
return worker;
}
}
class abstract Worker: IDisposable
{
public Worker(IStopNotifier stopNotifier)
{
stopNotofier.StopRequested += HandleStopRequested;
}
private IStopNotifier m_stopNotifier;
private bool m_stopRequested = false;
internal void HandleStopRequested(object sender, EventArgs e)
{
m_stopRequested = true;
}
public void Dispose()
{
m_stopNotifier.StopRequested -= HandleStopRequested;
}
}

Why don't to create an event to handle stop requests?

Related

Is there a thread-safe way to copy a decorated object's event handlers?

I'm writing a C# class that decorates an object that can raise events. The decorator can instantiate a new decorated object and swap the old one out in response to an asynchronous event that occurs on any consuming thread. In initializing the new decorated object, I need to add all of the event handlers from the old decorated object to the new decorated object and continue to add/remove handlers from both objects until the swap occurs. Is there an existing common solution to this problem?
This is a conceptual example of what's going on:
interface IFoo
{
event Action Barred;
void Bar();
}
class BasicFoo : IFoo
{
public event Action Barred;
public void Bar()
{
Console.WriteLine("Barring");
Barred?.Invoke();
}
}
class DecoratedFoo : IFoo
{
private IFoo _Decorated;
public DecoratedFoo()
{
_Decorated = new BasicFoo();
}
public event Action Barred
{
add => _Decorated.Barred += value;
remove => _Decorated.Barred -= value;
}
public void Bar() => _Decorated.Bar();
public void SwapDecoratedFoo()
{
// Can occur at any time from any thread.
var newFoo = new BasicFoo();
/*
* How to reassign events from _Decorated to newFoo, and in a way
* that's thread safe while _Decorated.Barred may still be adding
* or removing handlers while the swap is occurring?
*/
Interlocked.Exchange(ref _Decorated, newFoo);
}
}
The normal way to do this is to have your own event in the Decorated wrapper and invoke it when the wrapped (Basic) object's event fires. You will also need another kind of locking other than Interlocked, because Interlocked is not enough to group together multiple statements. You can use SemaphoreSlim(1,1) to do it, like this:
interface IFoo
{
event Action Barred;
void Bar();
}
class BasicFoo : IFoo
{
public event Action Barred;
public void Bar() { … }
}
class DecoratedFoo : IFoo
{
public DecoratedFoo(IFoo foo = null) => this.Decorated = foo;
public event Action Barred;
public void Bar()
{
try {
this._lock.Wait();
this._decorated?.Bar();
} finally {
this._lock.Release();
}
}
private SemaphoreSlim _lock = new SemaphoreSlim(1, 1);
public IFoo Decorated {
get {
try {
this._lock.Wait();
return this._decorated;
} finally {
this._lock.Release();
}
}
set {
try {
this._lock.Wait();
if (this._decorated != null) {
this._decorated.Barred -= this.OnDecoratedBarred;
}
this._decorated = value;
if (this._decorated != null) {
this._decorated.Barred += this.OnDecoratedBarred;
}
} finally {
this._lock.Release();
}
}
}
private IFoo _decorated = null;
private void OnDecoratedBarred() => this.Barred?.Invoke();
}
One comment about this, the design assumes that IFoo.Bar() does not call back into user code. If it does, then there is a pretty high chance of deadlock if/when that user code calls DecoratedFoo.Bar(). In that situation you should make the design asynchronous to prevent deadlock.
Use of this.Barred seems to be thread-safe, see C# Is it thread safe to subscribe Same event handler for all Objects . Also since the event handlers are invoked sequentially there is not much risk that the event handlers will interfere with each other (at least not directly).

All classes with particular Interface should be notify by event

How,does one should call an event declared by interface so that all the classes that has implemented that interface get notified??
For example in structure like this,
public delegate void myDel(int value);
interface IEventCaller{
event myDel myDelEventCall;
}
public Class One : IEventCaller {
public event myDel myDelEventCall;
}
public Class Two : IEventCaller {
public event myDel myDelEventCall;
}
I want both class One and Two to get notify and act as event gets called, I am feeling somewhere I am going wrong direction , is it possible to do?
Actually what you want doesn't involve events. Events would be used by an object implementing IEventCaller to notify some object holding a reference to that object of some change. To invoke something on the object implementing IEventCaller would just require a method, for example Hello();
First, you need code that informs all the objects that implement this interface. To make that possible, you somewhere need to store a list of instances that want to get notified.
One solution would be to create a class that manages that list. Let's say like this
private static List<IEventCaller> eventCallers = new List<IEventCaller>();
public static void AddEventCaller(IEventCaller c)
{
eventCallers.Add(c);
}
public static void RemoveEventCaller(IEventCaller c)
{
eventCallers.Remove(c);
}
public static IEventCaller[] EventCallers
{
get { return eventCallers.ToArray() }
}
Of course this code needs to be thread safe, etc. I'd put all this into a singleton to be globally available.
Then, all objects that implement IEventCallers need to register/unregister accordingly. Thus, I'd also have them Implement IDisposable so that in the constructor you can do
public EventCallable()
{
Singleton.Instance.AddEventCaller(this);
}
and in the Dispose method you can do this:
public void Dispose(bool disposing)
{
Singleton.Instance.RemoveEventCaller(this);
}
Now the code that should notify every instance could just do this:
public void NotifyAll()
{
foreach (IEventCaller caller in Singleton.Instance.EventCallers)
caller.Hello();
}
I think you might be looking at this the other one around.
With events, you want to have an object which is the publisher, which is responsible for publishing the event and saying "hey guys, something just occurred and you should know about it", and you have your subscribers, which are the guys who say "Yo dawg, let me know when that thing occurs, so i can act on it".
What you can do is have the object which is responsible for the event occurring implement your interface:
public class Publisher : IEventCaller
{
public event MyDel MyDeleteEvent;
public void OnDeleteOccured()
{
var myDeleteEvent = MyDeleteEvent;
if (myDeleteEvent != null)
{
MyDeleteEvent(1);
}
}
}
And then have your One and Two objects register to that event occurring, where they pass a method which signature matches the delegate type of MyDel:
public class SubscriberOne
{
public void OnSomethingOccured(int value)
{
Console.WriteLine(value);
}
}
public class SubscriberTwo
{
public void OnSomethingOccured(int value)
{
Console.WriteLine(value);
}
}
And the registration goes:
void Main()
{
var publisher = new Publisher();
var subscriberOne = new SubscriberOne();
var subscriberTwo = new SubscriberTwo();
publisher.MyDeleteEvent += subscriberOne.OnSomethingOccured;
publisher.MyDeleteEvent += subscriberTwo.OnSomethingOccured;
}

How to get list of currently instantiated instances of some dependency in Castle Windsor?

Suppose I have a component Bar that does Foo and notifies about that calling FooHappened method on all services implementing IFooConsumer interface.
I can write Bar like this
class Bar
{
public Bar(IEnumerable<IFooConsumer> fooConsumers) { ... }
public void Foo()
{
// foo-ing
foreach (var f in _fooConsumers) f.FooHappened();
}
}
It will work, but instantiating Bar will instantiate all possible IFooConsumers. What if I need to notify only those IFooConsumers that exist at the moment when Foo happened?
Is there a way to get some kind of tracker that knows about all instantiated instances of IFooConsumer?
I could probably write one myself via subscribing to IWindsorContainer.Kernel.ComponentCreated, but I'm interested if something like that exists? Or maybe there's another way to solve my issue?
You can create a simple facility like the one showing below, that will do the event registration every time a components get's instantiated. The code below here is for using Winsor with Caliburn.Micro. This will also make sure that events get deregistered, which will otherwise result in weird behaviour. In your case I would not have Bar directly fire the event's to all the classes, but rather use a singleton component (like IEventAggregator below) to fire events to multiple classes. This will also make sure that events get deregistered, which will otherwise result in weird behaviour. In the code every class that derives from IHandle will receive events. You can change this according to your needs.
If you have any questions just let me know.
class EventRegistrationFacility : AbstractFacility
{
private IEventAggregator _eventAggregator;
protected override void Init()
{
Kernel.ComponentCreated += ComponentCreated;
Kernel.ComponentDestroyed += ComponentDestroyed;
}
void ComponentCreated(Castle.Core.ComponentModel model, object instance)
{
if (!(instance is IHandle)) return;
if (_eventAggregator == null) _eventAggregator = Kernel.Resolve<IEventAggregator>();
_eventAggregator.Subscribe(instance);
}
void ComponentDestroyed(Castle.Core.ComponentModel model, object instance)
{
if (!(instance is IHandle)) return;
if (_eventAggregator == null) return;
_eventAggregator.Unsubscribe(instance);
}
}
===EDIT====
Combining this with the bouncer as described by Sammy:
public interface IBouncer {
IEnumerable<IFooConsumer> WhoIsInside {get;}
void WelcomeTo(IFooConsumer consumer);
void EscortOut(IFooConsumer consumer);
}
public class Bouncer {
private IList<IFooConsumer> _inside {get;}
void WelcomeTo(IFooConsumer consumer) {
_inside.Add(consumer);
}
void EscortOut(IFooConsumer consumer);
_inside.Remove(consumer);
}
IEnumerable<IFooConsumer> WhoIsInside {
get {
return _inside;
}
}
public Consumer: IFooConsumer {
FooHappened() {
// Do something.
}
// no need to implement constructor/dispose
}
class Bar
{
public Bar(IBouncer bouncer) { ... }
public void Foo()
{
// foo-ing ==> alernatively create a function on Bouncer that does this. And keep WhoIsInside private.
foreach (var f in bouncer.WhoIsInside) f.FooHappened();
}
}
class BouncerRegistrationFacility : AbstractFacility
{
private IBouncer _bouncer
protected override void Init()
{
Kernel.ComponentCreated += ComponentCreated;
Kernel.ComponentDestroyed += ComponentDestroyed;
}
void ComponentCreated(Castle.Core.ComponentModel model, object instance)
{
if (!(instance is IFooConsumer)) return;
if (_bouncer == null) _bouncer = Kernel.Resolve<IEventAggregator>();
_bouncer.WelcomeTo(instance);
}
void ComponentDestroyed(Castle.Core.ComponentModel model, object instance)
{
if (!(instance is IFooConsumer)) return;
if (_bouncer == null) return;
_bouncer.EscortOut(instance);
}
}
Allthough you need some more code for writing the facility, there is no need for FooConsumers to register/unregister themselves. As the registration code must originally be written in all FooConsumers it tends to repeat. In this way the subscription/unsubscription is done as a commission/decommission requirement and only needs to be dealt with once.
P.S. Code is written in notepad and might contain compile errors.
I think that putting the crux of knowing which objects are instantiated on Castle Windsor is not the best way forward; you will certainly need to access some container methods and doing so will link your components to Castle, which shouldn't happen.
What I'd recommend instead is to create a component IBouncer. That component would be injected as singleton in all IFooConsumer which would call it upon being created and disposed (dispose being one option, you could use other methods)
public interface IBouncer {
IEnumerable<IFooConsumer> WhoIsInside {get;}
void WelcomeTo(IFooConsumer consumer);
void EscortOut(IFooConsumer consumer);
}
public Consumer: IFooConsumer {
public Consumer(IBouncer bouncer) {
bouncer.WelcomeTo(this);
}
public Dispose() {
bouncer.EscortOut(this); // dispose pattern ommitted
}
}
Now instead of passing the list of IFooConsumer to your Bar, just add the IBouncer to it and ask which consumers are inside.
class Bar
{
public Bar(IBouncer bouncer) { ... }
public void Foo()
{
// foo-ing
foreach (var f in bouncer.WhoIsInside) f.FooHappened();
}
}

How to stop base static events/actions firing in other derived classes

I am working on an LOB application in C# using a WinForms tabbed MDI interface. I have various forms with DataGridViews to allow the user to select an object they are interested in, which they can then view/edit in a new form.
Each of my main business objects inherit from Entity, which is defined as below:
public abstract class Entity
{
public static event Action Saved;
internal virtual void OnSaved()
{
if (Saved != null)
{
Saved();
}
}
}
I then have the objects that populate the grid (these are actually auto-generated classes from Linq-to-SQL, although I can replicate the problem with normal classes):
class Class1 : Entity
{
//Stuff
}
class Class2 : Entity
{
//Stuff
}
I want to know when an object of a given class is modified, but i don't care which instance (hence the static action) so that i can refresh the grid and perform other activities.
The problem comes when the event is fired from a derived class instance - it fires for all other derived classes too. For example:
Class1.Saved += new Action(s1);
Class2.Saved += new Action(s2);
private void TestIt()
{
Class2 o2 = new Class2();
o2.OnSaved();
}
This would fire s1 and s2, but I only want the specific one to be fired (i.e. s2). What is the best way to do this? I have quite a few classes that need this behviour and would like to avoid having to add any code to each class if possible.
Update:
Thank you for all your responses, they have been very helpful.
I have opted for a slightly different option, which I admit seems quite hacky, but works well for my purposes. This involves passing the type with the action and letting a handler filter and call relevant operations.
Entity Class:
public abstract class Entity
{
public static event Action<Type> Saved;
internal void OnSaved()
{
private Action<Type> SavedCopy = Saved;
if (SavedCopy != null)
SavedCopy(this.GetType());
}
}
Hook up handler:
Entity.Saved += new Action<Type>(Handler);
Example Handler method (this will vary from form to form):
void Handler(Type obj)
{
if (obj==typeof(Class1))
UpdateGrid();
else if (obj==typeof(Class2))
UpdateBasicInfo();
else if (obj == typeof(Class3))
DoAnotherThing();
}
Using generics could be a work around; each generic class gets a copy of the static fields.
public abstract class Entity<T>
{
public static event Action Saved = delegate { };
internal virtual void OnSaved()
{
Saved();
}
}
class Class1 : Entity<Class1>
{
//Stuff
}
class Class2 : Entity<Class2>
{
//Stuff
}
I'm not sure doing it like this is a good idea, but you could specify the type when you subscribe and when you save the data:
public abstract class Entity
{
private static Dictionary<Type, Action> Subscribers
= new Dictionary<Type, Action>();
internal virtual void OnSaved()
{
OnSaved(GetType());
}
private OnSaved(Type type)
{
Action subscribed;
Subscribers.TryGetValue(type, out subscribed);
if (subscribed != null)
subscribed();
}
public Subscribe(Type type, Action action)
{
Action subscribed;
Subscribers.TryGetValue(type, out subscribed);
Subscribers[type] = subscribed + action;
}
public Unsubscribe(Type type, Action action)
{
Action subscribed;
Subscribers.TryGetValue(type, out subscribed);
Subscribers[type] = subscribed - action;
}
}
Keep in mind that this code is not thread-safe, so if you want to use it from different threads at the same time, you need to add locking.
You will need to have an event per type, because can't determine for which type the delegate is registered when the event is defined on the base type.
public abstract class Entity
{
internal abstract void OnSaved();
}
class Class1 : Entity
{
public static event Action Saved = () => { };
internal override void OnSaved()
{
this.Saved();
}
//Stuff
}
class Class2 : Entity
{
public static event Action Saved = () => { };
internal override void OnSaved()
{
this.Saved();
}
//Stuff
}
Why does it have to be static? Make it an instance event instead.
public event Action Saved;
You have to hook it up for each instance instead of just once per class (or, in your current case, once), but it will separate the events.

What ways are there for classes to provide progress information

I have multiple classes that do lengthy tasks in threads and want them to output some kind of progress, so i can display it to a progress bar or a counter.
I could use an event or a delegate, defined in an interface, but it seems for every implementation I will need to write the exact same FireEvent code to check if the event is null and raise it, if it's not.
Using an abstract class seems bad too, since functionality like that does not belong in the top most class, which means I have to implement it at different places again.
How do I do that in the most reusable way, without duplicate code everywhere?
If you're using a BackgroundWorker for your other threads, you can use the ReportProgress method, which will raise the ProgressChanged event.
http://msdn.microsoft.com/en-us/library/cc221403%28v=vs.95%29.aspx
I usually reverse the relationship between the view and the model so that the view knows about the model. In this example the progress dialog would have a reference to a IProgress interface. It then hooks up to a ProgressChanged event and the view can thus update itself when it needs to. The main advantage of this is the code inside the various classes are not duplicated - Only the code that tells how much is left is inside those classes. This way it is also very easy to clamp progress updates of classes that emit progress status very often.
Just to give you an idea what I usually do:
interface IProgress
{
event EventHandler ProgressChanged;
int ProgressTarget { get; }
int CurrentProgress { get; }
}
And a implementing class. I don't even know if it works as it should - It's just to give an impression on how to implement this interface.
class StreamCopier: IProgress
{
private Stream _source;
private Stream _destination;
public StreamCopier(Stream source, Stream destination)
{
_source = source;
_destination = destination;
}
public void WriteAll()
{
int b;
while ((b = _source.ReadByte()) != -1)
{
_destination.WriteByte((byte)b);
EventRaiser.Raise(ProgressChanged, this); // Just one call here! Can't be less
}
}
public event EventHandler ProgressChanged;
public int ProgressTarget {
get { return (int)_source.Length; }
}
public int CurrentProgress {
get { return (int)_destination.Position; }
}
}
And then the EventRaiser class. Note how the handler reference is passed on the parameter stack, and therefor no thread-safe copy to a 'tmp' is necessary! :)
static class EventRaiser
{
public static void Raise(EventHandler handler, object sender, EventArgs args)
{
handler(sender, args);
}
public static void Raise(EventHandler handler, object sender)
{
Raise(handler, sender, EventArgs.Empty);
}
}

Categories