I want two share a DepedencyProperty between to classes using AddOwner (any other approach is welcome), e.g.
class ClassA : DependencyObject
{
public int Number
{
get { return (int)GetValue(NumberProperty); }
set { SetValue(NumberProperty, value); }
}
public static readonly DependencyProperty NumberProperty =
DependencyProperty.Register("Number", typeof(int), typeof(ClassA),
new FrameworkPropertyMetadata(0,
FrameworkPropertyMetadataOptions.Inherits));
}
and
class ClassB : DependencyObject
{
public int Number
{
get { return (int)GetValue(NumberProperty); }
set { SetValue(NumberProperty, value); }
}
public static readonly DependencyProperty NumberProperty =
ClassA.NumberProperty.AddOwner(typeof(ClassB),
new FrameworkPropertyMetadata(0,
FrameworkPropertyMetadataOptions.Inherits));
}
like described here. As you might guess: Of course it doesn't work. That makes perfect sense, because it would make it impossible to create multiple instances of the same class that all have their "own" dependency property.
How do I make sure that all classes (and especially all instances) of ClassA, ClassB and any other class which refers to the property are talking about the exact same property (and therefore value)? A Singleton is no option, since Class A is a MainWindow and Class B is an UserControl (protected constructors are therefore not possible).
Regards,
Ben
I think you're misunderstanding the purpose of DependencyProperties.
They are basically a Property Definition, without a property Value.
They define things like name, type, default value, location of the value, etc however they do not contain the actual value itself. This allows the value to be provided with a binding pointing to any other property in any other location.
Your best bet is to probably just create a property that is backed by a singleton property.
public int Number
{
get { return MySingleton.Number; }
set { MySingleton.Number = value; }
}
Edit
Based on comments below where you say you want all instances of the object to respond to change notifications from any of the other objects, you'd want to implement INotifyPropertyChanged on your singleton object, and subscribe to it's PropertyChange event in each class that uses that value.
For example,
public ClassA
{
public ClassA()
{
MySingleton.PropertyChanged += Singleton_PropertyChanged;
}
void Singleton_PropertyChanged(object sender, NotifyPropertyChangedEventArgs e)
{
// if singleton's Number property changed, raise change
// notification for this class's Number property too
if (e.PropertyName == "Number")
OnPropertyChanged("Number");
}
public int Number
{
get { return MySingleton.Number; }
set { MySingleton.Number = value; }
}
}
One possible solution to what you want here is to use another class where you store that
value. e.g.
public class SomeValueStore : IValueStore
{
int myValue {get; set;}
}
Then, whereever you need that value, you can use Dependency injection to get it.
somewhere at Bootstrapper:
RootContainer.Register<IValueStore>(new SomeValueStore);
and in code:
var valueStore = RootContainer.Resolve<IValueStore();
valueStore.myValue = 42;
This is just an idea (And I know we have a ServiceLocator here).
Perhaps you can store a reference to that ValueStore somewhere where you
can get it from both classes you need it as a simple solution.
public SomeClassYouHaveAccessToFromBothSides
{
public IValueStore _store = new SomeValueStore();
}
Please excuse me. I do not have access to my repo / visual studio right now
so I cannot give better example. But I think the underlying idea is clear.
I have created a class that needs to alter a variable's value when it is instantiated.
Example:
In my LrgDialogBox class I might have:
public LrgDialogBox(ref oldResult)
{
// bunch of code
UserInput();
}
public UserInput()
{
newResult=false;
}
In my main class I create an object of my LrgDialogBox called lrgDia then I type:
lrgDia = new LrgDialogBox(ref result);
if (result==true) this.exit;
I basically need to know how to make the reference variable "oldResult" private in my LrgDialogBox class, so that any method can alter its value so it can be used in my main class. Hopefully without changing the parameters of my other methods. Please help.
Kris
There isn't any way for you to meaningfully store the reference parameter that is passed in and be able to modify its value later. What you need to do is add in another layer of indirection; create a reference type that holds onto the value that you really care about. Pass around references to that type, and then all of those references are indirectly pointing to a single value.
The implementation of such a wrapper is simple:
public class Wrapper<T>
{
public T Value { get; set; }
}
You can now create a class that accepts a Wrapper<bool> in the constructor, and then modifies the value within that wrapper at a later point in time.
public class Foo
{
private Wrapper<bool> flag;
public Foo(Wrapper<bool> flag)
{
this.flag = flag;
}
public void Bar()
{
flag.Value = false;
}
}
The other option available to you, since you are, in this case, only calling the method from within the constructor, is to simply have your other method return its value, rather than setting a private field. This would be the preferred design:
public class LrgDialogBox
{
public LrgDialogBox(ref bool oldResult)
{
// bunch of code
oldResult = UserInput();
}
public bool UserInput()
{
return false;
}
}
Just use a private variable to work with during the processing.
private bool _newResult;
public LrgDialogBox(ref bool oldResult)
{
// bunch of code
_newResult = oldResult;
UserInput();
oldResult = _newResult;
}
private void UserInput()
{
_newResult = false;
}
I am developing a Kinect application based on VS2012 using winform. After I tried several methods, I still couldn't pass value from one class to another class.
Basically I have three class, a public MainWindow(), public partial FaceTrackingViewer(), and public SkeletonFaceTracker(). The last class reside in FaceTrackingViewer() class.
In SkeletonFaceTracker(), I have the following:
public bool lastFaceTrackSucceeded { get; set; }
internal void OnFrameReady(KinectSensor kinectSensor, ColorImageFormat colorImageFormat, byte[] colorImage, DepthImageFormat depthImageFormat, short[] depthImage, Skeleton skeletonOfInterest)
{
// something else
if (this.faceTracker != null)
{
this.lastFaceTrackSucceeded = frame.TrackSuccessful; //where it's set to be true.
//something else
}
}
I also tried to change to first line to:
public bool lastFaceTrackSucceeded;
public bool LastFaceTrackSucceeded
{
get { return lastFaceTrackSucceeded; }
private set { lastFaceTrackSucceeded = value; }
}
I think the two are the same though.
In MainWindow(), I have:
public partial class MainWindow : Window
{
//some other irrelevant code snippets
private FaceTrackingViewer.SkeletonFaceTracker skeletonFaceTracker = new FaceTrackingViewer.SkeletonFaceTracker();
private void button_faceOnly_Click(object sender, RoutedEventArgs e)
{
bool faceTrackSucceeded = skeletonFaceTracker.lastFaceTrackSucceeded;
// if I use the second structure in SkeletonFaceTracker(), it should be:
// bool faceTrackSucceeded = skeletonFaceTracker.LastFaceTrackSucceeded;
if (faceTrackSucceeded == true )
{
//do something
}
}
}
However, the bool faceTrackSucceeded is always false, even if the lastFaceTrackSucceeded or LastFaceTrackSucceeded in SkeletonFaceTracker() is true. I am very confused and don't know where it went wrong.
Please note that all the video processing and face tracking actions occur in FaceTrackingViewer() class. I simply want to pass some parameters and structures to MainWindow().
Thank you
One thing first - I assume you are making the variable lastFaceTrackSucceeded public purely for testing purposes. The two ways of defining the property are functionally the same in your example.
The only other thing I can think of is that you are setting LastFaceTrackSucceeded true on a different instance of SkeletonFaceTracker. You haven't provided enough code for me to be sure about this, but if you have two (or more) instances then it can be easy to get them mixed up.
I am making a personal WinForms app. In my scenario say I have a C# Form1. Form1 is constantly getting live Exchange data from the Internet. Now I click a button on Form1 and Form2 opens. Now I want some values from Form1 on Form2.
I have a timer on Form2 which can collect data from Form1 but how?
I had tried to use properties but not able to do that as it updates only once as when we initialize Form2.
Any solution?
Also, how can I pass a single instance of a class to both forms, if they are not being created at the same time?
I. Solution: Use a Common Data Source
Method 1: Data Source with Events
Well, if it were me, I would probably not be trying to directly get the data from Form1. Instead, I would set up a common datasource, and then you would even be able to eliminate the timer on Form2 and drive it by when the data comes in if you like. (Or you can leave it and just pull from the datasource as your desired intervals.)
It would be something like this:
Data Source class
public class ExchangeCommonDataSource
{
public event EventHandler NewDataReceived;
public void FireNewDataReceieved()
{
if (NewDataReceived != null)
NewDataReceived();
}
private string mySomeData1 = "";
public string SomeData1
{
get
{
return SomeData1;
}
set
{
SomeData1 = value;
FireNewDataReceieved();
}
}
// properties for any other data
}
Then, when you are opening your forms, you'll just create an instance of ExchangeCommonDataSource, and pass it to both of the forms. In the form that is receiving the data you'll want to create an event handler function, and wherever you pass it the data source, you'll hook up that event.
example: receiving class code
public void HandleDataReceived(object sender, EventArgs e)
{
// display the data
DoSomethingWith(mySource.SomeData1);
// etc...
}
private ExchangeCommonDataSource mySource;
public void SetDataSource(ExchangeCommonDataSource newSource)
{
mySource = newSource;
mySource.NewDataRecieved += new EventHandler(HandleDataReceived);
}
Then, in your first form, you just set the properties you want. You can actually have notifications that specified the actual data to load, either through separate event handlers, or by creating your own derived EventArgs and then using EventHandler<ExchangeCommonEventArgs> instead of a regular event handler.
example: main form data accessor
public void GetDataFromExchange()
{
mySource.SomeData1 = GetSomeData1FromExchange();
}
Also, this way you're not limited to having just those two forms communicate; if you decide to split it up with different forms, you could have each of them have a copy of the data source and each of them could handle the event or new events you define, and you're not tied to a model where you're expecting to communicate directly between each other. This would also allow, for instance, creating a separate class which writes some log data to disk, or whatever else you can imagine, without making significant changes to any of your existing stuff.
II. Extensibility for External Updates
The Dispatcher Base Class
So, what if you want to update to eventually send to another application or another machine even?
Well, this is actually very well accounted for since you've not got any dependencies on the forms left. So, say you wanted to support three methods: the initial, form to form method; sending via a named pipe to another app on the same machine; and TCP/IP to another machine entirely. All you would need to do is to define a class that acts as a dispatcher, hook it up as a receiver, and then you can hook up that object to take the events coming from the form and put the data wherever you want.
It should be fairly straightforward to define an abstract class or interface to do this, and then simply derive a class for any mode you want to support:
example: a notional abstract Dispatcher class
public class ExchangeDataDispatcher :
IDisposable
{
public ExchangeDataDispatcher(ExchangeCommonDataSource parDataSource)
{
myDataSource = parDataSource;
myDataSource.HandleDataReceived +=
new EventHandler(HandleDataReceived);
DispatcherInitialization();
}
private ExchangeCommonDataSource myDataSource;
private void HandleDataReceived(object sender, e EventArgs)
{
// here you could record statistics or whatever about the data
DispatcherHandleDataReceived(EventArgs);
}
protected abstract void DispatcherHandleDataReceived(e EventArgs);
protected abstract void DispatcherShutdown();
// significantly ripped from Microsoft's page on IDisposable
private bool disposed = false;
protected virtual void Dispose(bool disposing)
{
// Check to see if Dispose has already been called.
if(!this.disposed)
{
// If disposing equals true, dispose all managed
// and unmanaged resources.
if(disposing)
{
// call a function which can be overridden in derived
// classes
DispatcherShutdown();
}
// Note disposing has been done.
disposed = true;
}
}
}
see the Microsoft page on IDisposable for some great example code and more information on IDisposable...
Deriving Dispatchers for Other Communication Methods
There's no way to make the form itself derive from this class, but there's no real need since you can just hook up as before. But, as quick example (just notional, not actually implementing the protocols, and you really should really consider the best way to implement these types of things, but I wanted to give you a fairly comprehensive example of what it takes, it's not as simple as the really really naive versions tend to be. )
example: (very) notional Pipe-based Dispatcher
// add these to your using statments
using System.IO.Pipes;
using System.Threading;
// NOTE: take all the async stuff with a grain of salt; this should give you a
// basic idea but there's no way I've gotten it right without actually testing
// and debugging everything. See the link
// http://stackoverflow.com/questions/6710444/named-pipes-server-read-timeout
// for some information on why it has to be done this way: basically timeout
// is not supported for named pipe server streams.
public class ExchangeDataLocalMachineDispatcher :
ExchangeDataDispatcher
{
// see http://www.switchonthecode.com/tutorials/dotnet-35-adds-named-pipes-support
// for some info on named pipes in .NET
public ExchangeDataLocalMachineDispatcher(
ExchangeCommonDataSource parDataSource,
NamedPipeServerStream ServerPipe
) :
base(parDataSource)
{
myPipe = ServerPipe;
// do any extra initialization, etc. here, negotiation for instance
StartPipeThread();
}
private NamedPipeServerStream myPipe;
private ExchangeCommonDataSource myDataSource;
// assuming you have PipeMessage defined and that your handler
// fills them in.
private List<PipeMessage> myOutgoingMessages =
new List<PipeMessage>();
private Thread myPipeThread;
private bool EndPipeListener = false;
private AutoResetEvent myWaitEvent = null;
private AutoResetEvent myDataReadyToGoEvent = null;
// set this to something reasonable for the response timeout
private int WaitTimeout = 10000;
// example: at least every minute there should be data to send
private int WaitForDataToSendTimeout = 60000;
private void StartPipeThread()
{
IAsyncResult LastResult = null;
Action<IAsyncResult> WaitForResult =
(a) =>
{
LastResult = a;
myWaitEvent.Set();
}
myPipeThread = new System.Threading.ThreadStart(
() =>
{
try
{
myWaitEvent = new AutoResetEvent(false);
myPipe.BeginWaitForConnection(
WaitForResult, null
);
bool TimedOut = !myWaitEvent.WaitOne(WaitTimeout);
if (TimedOut || !LastResult.IsCompleted)
throw new Exception("Error: pipe operation error.");
while (!EndPipeListener)
{
byte[] Response = myPipe.BeginRead(
WaitForResult, null
);
myWaitEvent.WaitOne(WaitTimeout);
if (TimedOut || !LastResult.IsCompleted)
throw new Exception("Error: pipe operation error.");
// another assumed function to handle ACKs and such
HandleResponse(Response);
myWaitEvent.Set();
// now wait for data and send
bool TimedOut =
myDataReadyToGoEvent.WaitOne(WaitForDataToSendTimeout);
if (TimedOut || !LastResult.IsCompleted)
throw new Exception("Error: no data to send.");
// an assumed function that will pull the messages out of
// the outgoing message list and send them via the pipe
SendOutgoingMessages();
myDataReadyToGoEvent.Set();
}
myWaitEvent.Set();
}
finally
{
// here you can clean up any resources, for instance you need
// to dispose the wait events, you can leave the pipe for the
// DispatcherShutdown method to fire in case something else
// wants to handle the error and try again... this is all
// fairly naive and should be thought through but I wanted
// to give you some tools you can use.
// can't remember if you're supposed to use .Close
// .Dispose or both off the top of my head; I think it's
// one or the other.
myWaitEvent.Dispose();
myDataReady.Dispose();
myWaitEvent = null;
myDataReady = null;
}
}
);
}
protected PipeMessage[] ConstructEventMessage(e EventArgs)
{
// actually we're not using the event args here but I left it
// as a placeholder for if were using the derived ones.
return
PipeMessage.CreateMessagesFromData(
myDataSource.GetMessageData()
);
}
protected override void DispatcherHandleDataReceived(e EventArgs)
{
// create a packet to send out; assuming that the
// ConstructEventMessage method is defined
myOutgoingMessages.Add(ConstructEventMessage(e));
}
protected override void DispatcherShutdown()
{
// this is called from the base class in the Dispose() method
// you can destroy any remaining resources here
if (myWaitEvent != null)
{
myWaitEvent.Dispose();
}
// etc. and
myPipe.Dispose();
}
// you could theoretically override this method too: if you do, be
// sure to call base.Dispose(disposing) so that the base class can
// clean up if resources are there to be disposed.
// protected virtual void Dispose(bool disposing)
// {
// // do stuff
// base.Dispose(disposing);
// }
}
Phew. Note that I'm very unhappy currently with the length of the StartPipeThread function, and I would definitely be refactoring that.
So, you could also implement this for TCP/IP sockets, or whatever protocol you can imagine, and it's all handled without having to continually modify the classes from the first section.
My apologies for the quality of any of the code there; I am open to suggestion/correction/flaming about it, and I'll do my best to make corrections if you just let me know. :P
III. Putting the Data Where it's Needed
After you have this set up, you'll need to pass the same data to whatever forms are using it. If you're not creating both your forms at the same time, then you'll need some way to get each destination a reference to the same data source. (Note: the numbering of the options is in no way intended to imply these are your only choices!)
Here are a few options for doing so:
Option 1: via Property on your main Form
This method is appropriate if your main form is responsible for creating each of the child forms, for instance, through menu items. You simply create a member variable to hold the data, and wherever you create the data, store a reference to it in that member. If you have multiple instances of the source, you can store them e.g. in a dictionary that allows you to look up the one you need.
example: code for main Form
private ExchangeCommonDataSource myData { get; set; }
// you can also store in something that lets you identify multiple
// possible data sources; in this case, you could use, say, email address
// as a lookup: myData["mickey#example.com"];
//private Dictionary<string, ExchangeCommonDataSource> myData =
// new Dictionary<string, ExchangeCommonDataSource>();
public frmMyMainForm()
{
InitializeComponent();
// ... other initialization for the main form ...
// create the data here and save it in a private member on your
// form for later; this doesn't have to be in the constructor,
// just make sure you save a reference to the source when you
// do create your first form that uses the source.
myData = new ExchangeCommonDataSource();
}
// then, in the methods that actually create your form
// e.g. if creating from a menu item, the handlers
public void FirstFormCreatorMethod()
{
frmFirstForm = new frmFirstForm(myData);
frmFirstForm.MdiParent = this;
frmFirstForm.Show();
}
public void SecondFormCreatorMethod()
{
frmSecondForm = new frmSecondForm(myData);
frmSecondForm.MdiParent = this;
frmSecondForm.Show();
}
Option II: static Properties on your Data Source
This option can be used if the forms are being created externally from the main form, in which case you will not have access to its methods. The idea behind this method is that you want an easy way to find whatever item you need, independent of the main form itself, and by providing a static method, additional data consumers can find the sources on their own using properties accessible with access only to the class declaration and then some sort of key if there can be multiple sources.
example: ExchangeCommonDataSource.cs
// a dummy source class; this is just the parts that were relevant
// to this particular discussion.
public partial class ExchangeCommonDataSource
{
public string Username { get; set; }
public string OptionalString { get; set; }
public int MailboxNumber { get; set; }
public Guid SourceGuid { get; set; }
public long BigNumber { get; set; }
// these static members provide the functionality necessary to look
// retrieve an existing source just through the class interface
// this holds the lookup of Guid -> Source for later retreival
static Dictionary<Guid, ExchangeCommonDataSource> allSources =
new Dictionary<Guid,ExchangeCommonDataSource>();
// this factory method looks up whether the source with the passed
// Guid already exists; if it does, it returns that, otherwise it
// creates the data source and adds it to the lookup table
public static ExchangeCommonDataSource GetConnection(
Guid parSourceGuid, string parUsername, long parBigNumber
)
{
// there are many issues involved with thread safety, I do not
// guarantee that I got it right here, it's to show the idea. :)
// here I'm just providing some thread safety; by placing a lock
// around the sources to prevent two separate calls to a factory
// method from each creating a source with the same Guid.
lock (allSources)
{
ExchangeCommonDataSource RetVal;
allSources.TryGetValue(parSourceGuid, out RetVal);
if (RetVal == null)
{
// using member initializer, you can do this to limit the
// number of constructors; here we only need the one
RetVal = new ExchangeCommonDataSource(parSourceGuid) {
Username = parUsername, BigNumber = parBigNumber
};
allSources.Add(parSourceGuid, RetVal);
}
return RetVal;
}
}
// this function is actually extraneous since the GetConnection
// method will either create a new or return an existing source.
// if you had need to throw an exception if GetConnection was
// called on for existing source, you could use this to retrieve
public static
ExchangeCommonDataSource LookupDatasource(Guid parSourceGuid)
{
// again locking the sources lookup for thread-safety. the
// rules: 1. don't provide external access to allSources
// 2. everywhere you use allSources in the class,
// place a lock(allsources { } block around it
lock (allSources)
{
ExchangeCommonDataSource RetVal;
allSources.TryGetValue(parSourceGuid, out RetVal);
return RetVal;
}
}
// private constructor; it is private so we can rely on the
// fact that we only provide factory method(s) that insert the
// new items into the main dictionary
private ExchangeCommonDataSource(Guid SourceGuid)
{
// if you didn't want to use a factory, you could always do
// something like the following without it; note you will
// have to throw an error with this implementation because
// there's no way to recover.
//lock (allSources)
//{
// ExchangeCommonDataSource Existing;
// ExchangeCommonDataSource.allSources.
// TryGetValue(parSourceGuid, out Existing);
// if (Existing != null)
// throw new Exception("Requested duplicate source!");
//}
// ... initialize ...
}
}
now to access, the client just needs to have some sort of key to access the data:
example: frmClientClass.cs
public partial class frmClientClass
{
ExchangeCommonDataSource myDataSource = null;
public void InitializeSource(Guid parSourceGuid)
{
myDataSource = ExchangeCommonDataSource.GetConnection(parSourceGuid);
}
}
I find this a generally more compelling solution that Option 1, simply because anything that has access to the class and an ID can get the data source, and because it's fairly easy to implement, and it gives automatic support for doing multiple instances of your data source class.
It has fairly low overhead, and since getting a data source is, in most cases, something that is not going to be done in tight loops (and if it were, you would have local copies, not looking them up from a dictionary every time) any small performance loss should be worth the ease of use. And, best of all, even if you start with one data source, you can easily extend your application to more without having to rewrite any code or go to any further effort.
For instance, a very quick way to use this assuming you only have one data source would be just to use a known value for your Dictionary key, and then you just can hard code that in your second for for now. So, for the example, you could just have the empty GUID as your key, and use that for both your forms. i.e. the Main Form or your first data form would call the create method with Guid.Empty to create the data initially, and then you can just use that to access it when the time comes to open your second form.
Option 3: The 'Singleton' Pattern Class
Okay, I'm not going to spend much time or write code for this one, but I would be remiss if I didn't mention it. It's very similar to option 2, except, instead of having a static Dictionary to look up multiple data sources, you create a class that has one instance of the class stored in a static property, and you prevent (via exception) any attempts to create more classes. Then, you set all constructors to private, have them throw exceptions if the static variable already contains an object, and you create a getInstance() method which returns the single instance of the class, creating it if it's null.
Now, there are some little thread-safety trickiness issues with this that you will need to understand to write a traditional singleton, so be sure to understand those (there are questions on StackOverflow dealing with the issue). If you don't need any particular knowledge to construct the instance of the class, you can avoid the issues by simply initializing the variable where you declare it e.g. static MyClass theInstance = new MyClass();, and I highly recommend doing that if you do ever use one.
I have used Singletons in the (fairly distant) past, and it's not that they don't occasionally have their uses, especially in embedded systems. But, this is not an embedded system, and almost every time I used a Singleton in a GUI application, I regretted doing it because I ended up eventually re-writing it into something that would allow multiple instances. If you really just need one copy, all you have to do is put a member variable in the class that uses it, say, your main form, and make sure that you don't ever create but one. Doing this, you could even use the pattern by setting a static flag in the class that you can trigger an exception on; set it to true when you first create the object, and then if that's true you can throw your exception.
Anyway, my personal first rule for when to write a singleton is: don't do it unless you are certain you will never need more than one. If it passes that one, then the second rule is: you are wrong, there is a way it could happen, so just write it as a normal class and handle the singleton-ness of it in some other way. :) Seriously though, the real rule is, just don't do it unless you have get some a very solid reason or a significant benefit from doing it.
Oh, and to reiterate: it's very possible to accomplish the pattern of singleton, without writing the canonical singleton class. The pattern is fine, just do it in a way that when that need for a second instance of that class comes along, there is a very low cost to eliminate the pattern.
Option 4: A Separate Class
Option 4 is very similar to Option 2, but implemented in a second class. (In fact, if you ever think you might have multiple sources of data, it would be worthwhile to just start here, although it's a little more time to set up initially.) Instead of having your static items as members of that class, implement another class that has something like them and provides access. This is a way to decouple the class itself from the creating of it. For example, if you were writing a library, and you wanted to provide several different types of data source, you could implement a base class and then derive your other objects from the base class, and then provide creation mechanisms via a class that gives factory methods to create the different kinds.
In a situation like this you very well may not even want whatever is using your data source to have to know anything about the implementation of the data source classes at all, and only go through the base interface, and this provides an easy way to do that. If you had to write it all as base class static members, then you would be forcing a rewrite of the base every time you derived a new class, and it would also be forcing the base to know something about the derived classes, each of which is, in general, something to avoid. In other words, it's not that it's never useful, but don't do it without very good reason, and don't do it without understanding the implications.
example: code for external class
InfostoreBase.cs
// our data source base class; could do interface instead like:
// public interface IInfostoreBase
public abstract class InfostoreBase
{
public abstract int Information { get; set; }
public abstract string NameOfItem { get; set; }
public abstract decimal Cost { get; set; }
// ... etc ...
}
InfostoreEnterprise.cs
public class InfostoreHomeEdition :
InfostoreBase
{
public override int Information { get { /* ... */ } set { /* ... */ }}
public override string NameOfItem { get { /* ... */ } set { /* ... */ }}
public override decimal Cost { get { /* ... */ } set { /* ... */ }}
public void SetFeatures(string parSomething) { /* ... */ }
}
InfostoreHomeEdition.cs
public class InfostoreEnterpriseEdition :
InfostoreBase
{
public override int Information { get { /* ... */ } set { /* ... */ }}
public override string NameOfItem{ get { /* ... */ } set { /* ... */ }}
public override decimal Cost { get { /* ... */ } set { /* ... */ }}
public void SetBaseDiscount(decimal parSomethingElse) { /* ... */ }
}
InfostoreProvider.cs
public class InfostoreProvider
{
static Dictionary<Guid, InfostoreBase> allSources =
new Dictionary<Guid,InfostoreBase>();
public static InfostoreBase
GetHomeConnection(Guid CustomerKey, string HomeFeatures)
{
lock (allSources)
{
InfostoreBase RetVal;
if (!ValidHomeKey(CustomerKey))
throw new
InvalidKeyException("not valid for Home Edition");
allSources.TryGetValue(CustomerKey, out RetVal);
if (RetVal == null)
{
RetVal = new InfostoreHomeEdition();
allSources.Add(CustomerKey, RetVal);
}
var ActualVersion = (InfostoreHomeEdition) RetVal;
RetVal.SetFeatures(HomeFeatures);
return RetVal;
}
}
public static InfostoreBase
GetEnterpriseConnection(Guid CustomerKey, decimal BaseDiscount)
{
lock (allSources)
{
InfostoreBase RetVal;
if (!ValidEnterpriseKey(CustomerKey))
throw new
InvalidKeyException("not valid for Enterprise Edition");
allSources.TryGetValue(CustomerKey, out RetVal);
if (RetVal == null)
{
RetVal = new InfostoreHomeEdition();
allSources.Add(CustomerKey, RetVal);
}
var ActualVersion = (InfostoreEnterpriseEdition) RetVal;
RetVal.SetBaseDiscount(CostBase);
return RetVal;
}
}
}
code in client class
private InfostoreBase myConnectionSource;
private void Initialize()
{
// ...
myConnectionSource =
InfostoreProvider.GetConnection(
myKey, isEnterprise, myData
);
//...
}
Closing
I think that covers a very good range of possible solutions; none of them is particularly hard to implement, and each has its own benefits and disadvantages. In general I would go for Option 2 or Option 4, but [broken record] it always depends on your exact situation. I think it would be fairly easy to use extend these to handle lots of different situations. And of course if there are any problems, just let me know.
Another possible way to handle this would be to create some interfaces to represent the role of data provider and data receiver, and then you would implement those interfaces on your form. It would be very similar to doing it with a common data source, but instead of running things through an object, you would implement the interfaces and the data can go directly where it is needed. It may be a bit more efficient that doing it through a DataSource, although it's hard to say without knowing all the specifics, but if you are really transferring loads of data putting it through a separate datasource could cost you some efficiency, especially if you never have a need for all the data in one spot.
In the example code here I'm showing what it would look like if you implemented your own event args for different types of data, this also could be used in a common data source for the events if you wanted to be able to have a little more granularity over what got sent when. (Please keep in mind I've typed this all in on the webpage without trying to compile it; this is supposed to give you the idea of how to do it, but its possible (I would estimate 100% change) that I didn't get everything in perfectly. :D)
public class FirstDataKindEventArgs : EventArgs
{
public FirstDataKindEventArgs(int parID, string parName, string parOtherInfo)
{
Id = parId;
Name = parName;
OtherInfo = parOtherInfo;
}
public int ID { get; set; }
public string Name { get; set; }
public string OtherInfo { get; set; }
}
// plus other event arg definitions
public interface IExchangeDataProvider
{
event EventHandler<FirstDataKindEventArgs> FirstDataKindReceived;
event EventHandler<SecondDataKindEventArgs> SecondDataKindReceived;
event EventHandler<ThirdDataKindEventArgs> ThirdDataKindReceived;
}
public interface IExchangeDataReceiver
{
void ConnectDataProvider(IExchangeDataProvider Provider);
}
then in your data providing form you would implement the interface:
public partial class MyProvidingForm : System.Windows.Forms.Form, IExchangeDataProvider
{
// normal form stuff
// ...
#region IExchangeDataProvider
public event EventHandler<FirstDataKindEventArgs> FirstDataKindReceived;
public event EventHandler<SecondDataKindEventArgs> SecondDataKindReceived;
public event EventHandler<ThirdDataKindEventArgs> ThirdDataKindReceived;
public void FireDataReceived(EventArgs Data)
{
FirstDataKindEventArgs FirstKindData = Data as FirstDataKindEventArgs;
if (FirstDataKindEventArgs != null)
if (FirstDataKindReceived != null)
FirstDataKindReceived(FirstKindData);
//... etc.
}
public void GotSomeDataOfTheFirstKind(int TheID, string SomeName, string Other)
{
FirstDataKindEventArgs eArgs =
new FirstDataKindEventArgs(TheId, SomeName, Other);
FireDataReceived(eArgs);
}
and in your receiver form(s) or other classes you wish to receive data:
public partial class FirstDataKindReceivingForm :
System.Windows.Forms.Form,
IExchangeDataReceiver
{
// usual form stuff
// ...
private IExchangeDataProvider myDataProvider;
public void ConnectDataProvider(IExchangeDataProvider Provider)
{
myDataProvider = Provider;
myDataProvider.FirstDataKindReceived +=
new EventHandler<FirstDataKindEventArgs>(
HandleFirstKindOfDataReceived
);
}
private void HandleFirstKindOfDataRecieved (
object sender, FirstDataKindEventArgs
)
{
// do whatever with data
}
}
#endregion
}
and so forth.
edit Form2 's constructor, so that you can pass some values from Form1 while running a new Form2 with .Show or .ShowDialog
Form2 myForm = new Form2(value1, value2, value3 ...);
And on Form2.cs you shall convert (or add a new one) public Form2() to public Form2(var value1, var value 2...)
If you have to send to Form2 continuously data, you may use a shared memory or shared data file.
The answer in the db forum by Mahrous seems to be the simplest http://www.daniweb.com/software-development/csharp/threads/126879/617436#post617436
Some of the other solutions are also valid and may be appropriate depending on the design of the applicaiton.
All I need is a way to make a property of one class only 'settable' from one other class (a sort of manager class).
Is this even possible in c#?
My colleague 'reliably' informs me that I have a design flaw, but I feel I should at least ask the community before I concede defeat!
No, it's not really possible to do this in any clean way in C#. You probably have a design flaw ;-)
You can use the internal modifier, which lets all types in the same assembly access the data (or nominated assemblies if using [InternalsVisibleTo] - but no: there is no friend equivalent in C#.
For example:
public string Foo {get; internal set;}
You have a design flaw. Also, don't be paranoid about data hiding. Here's 3.5's way to do it:
class Program
{
static void Main(string[] args)
{
Managed m = new Managed();
Console.WriteLine(m.PrivateSetter);
m.Mgr.SetProperty("lol");
Console.WriteLine(m.PrivateSetter);
Console.Read();
}
}
public class Managed
{
private Manager _mgr;
public Manager Mgr
{
get { return _mgr ?? (_mgr = new Manager(s => PrivateSetter = s)); }
}
public string PrivateSetter { get; private set; }
public Managed()
{
PrivateSetter = "Unset";
}
}
public class Manager
{
private Action<string> _setPrivateProperty;
public Manager(Action<string> setter)
{
_setPrivateProperty = setter;
}
public void SetProperty(string value)
{
_setPrivateProperty(value);
}
}
Here's how we'd do it in pre-lambda days:
public class Managed
{
private Manager _mgr;
public Manager Mgr
{
get { return _mgr ?? (_mgr = new Manager(this)); }
}
public string PrivateSetter { get; private set; }
public Managed()
{
PrivateSetter = "Unset";
}
public class Manager
{
public void SetProperty(string value)
{
m.PrivateSetter = value;
}
private Managed m;
public Manager(Managed man)
{
m = man;
}
}
}
The best way to do it would be:
/// <summary>
/// Gets or sets foo
/// <b>Setter should only be invoked by SomeClass</b>
/// </summary>
public Object Foo
{
get { return foo; }
set { foo = value; }
}
When you have some complex access or inheritance restriction, and enforcing it demands too much complexity in the code, sometimes the best way to do it is just properly commenting it.
Note however that you cannot rely on this if this restriction has some security implications, as you are depending on the goodwill of the developer that will use this code.
You cannot do that on that way, but you can access a property's setter method from a derived class, so you can use inheritance for the purpose. All you have to do is to place protected access modifier. If you try to do so, your colleague is right :). You can try doing it like this:
public string Name
{
get{ return _name; }
protected set { _name = value; }
}
keep in mind that the set method of the property is only accessible from the derived class.
Or you could have these two classes in an assembly alone and have the setter as internal. I would vote up for the design flaw though, unless the previous answer by milot (inheriting and protected) makes sense.
You could do:
public void setMyProperty(int value, Object caller)
{
if(caller is MyManagerClass)
{
MyProperty = value;
}
}
This would mean that you could use a 'this' pointer from the calling class. I would question the logic of what you're attempting to achieve, but without knowing the scenario I can't advise any futher. What I will say is this: if it is possible to refactor your code to make it clearer, then it is often worthwhile doing so.
But this is pretty messy and certinly NOT fool-proof ... you have been warned!
Alternativly...
You could pass a delegate from the Class with the Property (Class A) to the Manager Class (Class B). The delegate can refer to a private function within A to allow B to call that delegate as any normal function. This precludes that A knows about B and potentially that A is created before B. Again... messy and not fool-proof!
You can achieve to this by making a Public property in your "settable class" that will inherit from the real class that will have a protected property... this way only the inherit class can SET and not class that doesn't inherit. But the drawback is that you will require to have an inherit class...
Reflection, though I would agree that having to do this just to get around an access modifier is probably an indication of a bad design.
public class Widget
{
private int count;
public int Count
{
get { return this.count; }
private set { this.count = value; }
}
}
public static class WidgetManager
{
public static void CatastrophicErrorResetWidgetCount( Widget widget )
{
Type type = widget.GetType();
PropertyInfo info = type.GetProperty("Count",BindingFlags.Instance|BindingFlags.NonPublic);
info.SetValue(widget,0,null);
}
}
The reason this is a design flaw is because it seems muddled between the scope of the two objects.
The properties of a class should be accessible in the context of that class, at least internally.
It sounds like the settable property on your item class is really a property of the manager class.
You could do something similar to what you want by closely coupling the two classes:
public class MyItem {
internal MyItemManager manager { get;set; }
public string Property1 {
get { return manager.GetPropertyForItem( this ); }
}
}
Unfortunately this isn't great design either.
What your looking for is what C++ calls a Friend class but neither c# or vb has this functionality. There is a lot of debate as to the merit of such functionality since it almost encourages very strong coupling between classes. The only way you could implement this in c# would be with reflection.
If your goal is to have a class Foo let some property (e.g. Bar, of type Biz) to be changed by some other object, without exposing it publicly, a simple way to do that is to have an instance of Foo which is supposed to be changeable by some other object to pass that other object an Action<Biz> which points to a private method that changes Bar to the passed-in value. The other object may use that delegate to change the Bar value of the object that supplied it.
If one wishes to have give all instances of some type Woozle the ability to set the Bar value of any instance of Foo, rather than exposing such abilities on a per-instance basis, one may require that Woozle have a public static method Woozle.InstallFooBarSetter which takes a parameter of type Action<Foo, Biz> and one of type Object. Foo should then have a static method WoozleRequestBarSetter which takes an Object, and passes it to Woozle.InstallFooBarSetter along with an Action<Foo,Biz>. The class initializer for Woozle should generate a new Object, and pass it to Foo.RequestBarSetter; that will pass the object to Woozle.InstallFooBarSetter along with a delegate. Woozle can then confirm that the passed-in object is the one that it generated, and--if so--install the appropriate delegate. Doing things this way will ensure that nobody but Woozle can get the delegate (since the delegate is only passed to Woozle.InstallFooBarSetter), and Woozle can be sure its delegate comes from Foo (since nobody else would have access to the object that Woozle created, and Woozle.InstallFooBarSetter won't do anything without it).
if it is a design flaw depends on what you want to do. You could use the StackTrace class from System.Diagnostics to get the Type of the class setting your property and then compare to the type you want to allow setting yor property..but maybe there are better ways for performing something like this (e.g. boxing)