.NET - Thread synchronization - c#

I've been working on a thread which will live as long as the application is running, and runs at a interval of 500ms. I noted that I could be uselessly processing if there's nothing in the queue for it to process, so I went around looking at some sources I had locally, and I found an example close to mine, but it's in Java.
The example had this:
synchronized(this) {
try {
wait();
} catch (InterruptedException e) {
cleanup();
break;
}
}
Inside a while loop which goes on forever.
The thread has this to notify the wait:
synchronized(this) {
notifyAll();
}
This was inside the enqueue thread.
I'd also like you to note that the class inherits Runnable.
Could anyone quickly explain the corresponding functions in C#? And maybe an example if you could!

.NET/C# best practice would be to use an EventWaitHandle.
You'd have some variable shared between the threads as so:
EventWaitHandle handle = new EventWaitHandle(false, EventResetMode.AutoReset);
In the consumer thread (the one that you're waking up every 500ms right now), you'd loop waiting for the handle (perhaps with a timeout):
try
{
while(true)
{
handle.WaitOne();
doSomething();
}
}
catch(ThreadAbortException)
{
cleanup();
}
And in the producer thread:
produceSomething();
handle.Set();

Maybe you can use a blocking queue : http://www.eggheadcafe.com/articles/20060414.asp
It's a Queue except Dequeue function blocks until there is an object to return.
Usage:
BlockingQueue q = new BlockingQueue();
void ProducerThread()
{
while (!done)
{
MyData d = GetData();
q.Enqueue(d);
Thread.Sleep(100);
}
}
void ConsumerThread()
{
while (!done)
{
MyData d = (MyData)q.Dequeue();
process(d);
}
}
The consumer thread only executes when there is something in the queue to process, and doesn’t waste CPU time polling when there is nothing to do.

Use a timer that fires every 500ms and let your timer handler do the work. Timer handler threads run in the thread pool. Read about it here: http://www.albahari.com/threading/part3.aspx#_Timers.
System.Timers.Timer timer = new System.Timer(500);
timer.Elapsed += new System.Timers.ElapsedEventHandler (MyTimerHandler);
timer.Start();
private void TimerHandler(object sender, System.Timers.ElapsedEventArgs e)
{
// optional - stop the timer to prevent overlapping events
timer.Stop();
// this is where you do your thing
timer.Start();
}

You might want to download and read Joe Albahari's free ebook on threading in C#. It's a great introduction and reference.
Threading in C#

Related

Notify when thread is complete, without locking calling thread

I am working on a legacy application that is built on top of NET 3.5. This is a constraint that I can't change.
I need to execute a second thread to run a long running task without locking the UI. When the thread is complete, somehow I need to execute a Callback.
Right now I tried this pseudo-code:
Thread _thread = new Thread(myLongRunningTask) { IsBackground = True };
_tread.Start();
// wait until it's done
_thread.Join();
// execute finalizer
The second option, which does not lock the UI, is the following:
Thread _thread = new Thread(myLongRunningTask) { IsBackground = True };
_tread.Start();
// wait until it's done
while(_thread.IsAlive)
{
Application.DoEvents();
Thread.Sleep(100);
}
// execute finalizer
Of course the second solution is not good cause it overcharge the UI.
What is the correct way to execute a callback when a _thread is complete? Also, how do I know if the thread was cancelled or aborted?
*Note: * I can't use the BackgroundWorker and I can't use the Async library, I need to work with the native thread class.
There are two slightly different kinds of requirement here:
Execute a callback once the long-running task has completed
Execute a callback once the thread in which the long-running task was running has completed.
If you're happy with the first of these, the simplest approach is to create a compound task of "the original long-running task, and the callback", basically. You can even do this just using the way that multicast delegates work:
ThreadStart starter = myLongRunningTask;
starter += () => {
// Do what you want in the callback
};
Thread thread = new Thread(starter) { IsBackground = true };
thread.Start();
That's very vanilla, and the callback won't be fired if the thread is aborted or throws an exception. You could wrap it up in a class with either multiple callbacks, or a callback which specifies the status (aborted, threw an exception etc) and handles that by wrapping the original delegate, calling it in a method with a try/catch block and executing the callback appropriately.
Unless you take any special action, the callback will be executed in the background thread, so you'll need to use Control.BeginInvoke (or whatever) to marshal back to the UI thread.
I absolutely understand your requirements, but you've missed one crucial thing: do you really need to wait for the end of that thread synchronously? Or maybe you just need to execute the "finalizer" after thread's end is detected?
In the latter case, simply wrap the call to myLongRunningTask into another method:
void surrogateThreadRoutine() {
// try{ ..
mytask();
// finally { ..
..all 'finalization'.. or i.e. raising some Event that you'll handle elsewhere
}
and use it as the thread's routine. That way, you'll know that the finalization will occur at the thread's and, just after the end of the actual job.
However, of course, if you're with some UI or other schedulers, the "finalization" will now run on yours thread, not on the "normal threads" of your UI or comms framework. You will need to ensure that all resources are external to your thread-task are properly guarded or synchronized, or else you'll probably clash with other application threads.
For instance, in WinForms, before you touch any UI things from the finalizer, you will need the Control.InvokeRequired (surely=true) and Control.BeginInvoke/Invoke to bounce the context back to the UI thread.
For instance, in WPF, before you touch any UI things from the finalizer, you will need the Dispatcher.BeginInvoke..
Or, if the clash could occur with any threads you control, simple proper lock() could be enough. etc.
You can use a combination of custom event and the use of BeginInvoke:
public event EventHandler MyLongRunningTaskEvent;
private void StartMyLongRunningTask() {
MyLongRunningTaskEvent += myLongRunningTaskIsDone;
Thread _thread = new Thread(myLongRunningTask) { IsBackground = true };
_thread.Start();
label.Text = "Running...";
}
private void myLongRunningTaskIsDone(object sender, EventArgs arg)
{
label.Text = "Done!";
}
private void myLongRunningTask()
{
try
{
// Do my long task...
}
finally
{
this.BeginInvoke(Foo, this, EventArgs.Empty);
}
}
I checked, it's work under .NET 3.5
You could use the Observer Pattern, take a look here:
http://www.dofactory.com/Patterns/PatternObserver.aspx
The observer pattern will allow you, to notify other objects which were previously defined as observer.
A very simple thread of execution with completion callback
This does not need to run in a mono behavior and is simply used for convenience
using System;
using System.Collections.Generic;
using System.Threading;
using UnityEngine;
public class ThreadTest : MonoBehaviour
{
private List<int> numbers = null;
private void Start()
{
Debug.Log("1. Call thread task");
StartMyLongRunningTask();
Debug.Log("2. Do something else");
}
private void StartMyLongRunningTask()
{
numbers = new List<int>();
ThreadStart starter = myLongRunningTask;
starter += () =>
{
myLongRunningTaskDone();
};
Thread _thread = new Thread(starter) { IsBackground = true };
_thread.Start();
}
private void myLongRunningTaskDone()
{
Debug.Log("3. Task callback result");
foreach (int num in numbers)
Debug.Log(num);
}
private void myLongRunningTask()
{
for (int i = 0; i < 10; i++)
{
numbers.Add(i);
Thread.Sleep(1000);
}
}
}
Try to use ManualRestEvent to signal of thread complete.
Maybe using conditional variables and mutex, or some functions like wait(), signal(), maybe timed wait() to not block main thread infinitely.
In C# this will be:
void Notify()
{
lock (syncPrimitive)
{
Monitor.Pulse(syncPrimitive);
}
}
void RunLoop()
{
for (;;)
{
// do work here...
lock (syncPrimitive)
{
Monitor.Wait(syncPrimitive);
}
}
}
more on that here:
Condition Variables C#/.NET
It is the concept of Monitor object in C#, you also have version that enables to set timeout
public static bool Wait(
object obj,
TimeSpan timeout
)
more on that here:
https://msdn.microsoft.com/en-us/library/system.threading.monitor_methods(v=vs.110).aspx

lock with while loop on multthread application form c# blocking all threads on single core machine

I am having a problem with my multi-threaded app on windows form C# application. This application works fine on multicore machine, but then when it runs in a single core machine all the threads hang. I'm using backgroundWorker, code follow as this:
class custonTime // delay class
{
public void sleep_sec(int sleep)
{
int time_now = Environment.TickCount;
int time_sleep = sleep;
while ((Environment.TickCount - time_now) < time_sleep) ;
}
}
When I press a button on UI the flags action and doAlways are set to true and the following backgroundworkers are started. The backgorundworker1 await and fire the task on right time the other one does the task:
private void backgroundWorker2_DoWork(object sender, DoWorkEventArgs e)
{
while(action)
{
if(doItAlways)
{
//do important tasks
}
if(task1)
{
//do things
task1 = false;
}
if(task2)
{
//do things
task1 = false;
}
}
}
private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)
{
task1=true;
manegerTimewr2.sleep_sec(12000);//call delay class to wait 12 secs
task2=true;
manegerTimewr2.sleep_sec(12000);//call delay class to wait 12 secs
}
My delay class lock not just my backgorundworker1 but the backgroundworker2 as well, make impossible to do the tasks fired by flag doItAlways, the application is only released when the while loop finish.
And it just happens on single core machine only.
Is there another method? A direct and easy method to hang a thread until elapse some time without block the other ones?
Note Thread.Sleep won't work because the time elapsed varies too much on different machines.
The problem is, that BackgroundWorker use a thread pool internally which contains usually the same number of threads as you have CPUs/cores on the machine. Therefore on a single-CPU machine you'll have only one thread processing BackgroundWorkers, I guess they are scheduled sequentially so the first one runs both sleep_sec calls, and only after that, the second one starts.
On a multi-core machine on the other hand, you have more threads in the thread pool, therefore it works as you expect it.
You could use either a "normal" Thread (together with Thread.Sleep, dont use a while loop) for the "waiting", since this doesn't require any UI interaction. You could also just use a Timer object, which is meant for exactly this purpose (firing an event after a specified amount of time).
Implement waiting for a specified amount of time with this method: Thread.Sleep.
Instead of using a BackgroundWorker, instead launch a new Thread, and set the ThreadPriority for that thread manually. Then you'll be able to use Thread.Sleep and it should work more precisely since the thread is higher priority. Here's about what you should end up with:
void Run()
{
// some initialization stuff
new Thread(DoWork1) { Priority = ThreadPriority.AboveNormal }.Start();
new Thread(DoWork2) { Priority = ThreadPriority.Highest }.Start();
}
private void DoWork2()
{
while (action)
{
if (doItAlways)
{
//do important tasks
}
if (task1)
{
//do things
task1 = false;
}
if (task2)
{
//do things
task1 = false;
}
Thread.Sleep(1);
}
}
private void DoWork1()
{
task1 = true;
Thread.Sleep(12000);//call delay class to wait 12 secs
task2 = true;
Thread.Sleep(12000);//call delay class to wait 12 secs
}

Alternative to Thread.Sleep

Working on a windows service, which has to process request in every predefined interval of time. Thread.Sleep does the work perfectly fine but problem with this is when service is invoked to be stopped, service freeze if thread is in sleep mode.
I have read about the alternative approach like Timer, but problem with that is after that defined interval new thread is getting started.
Is there a better way to achieve same result and not run in to issue.
What you're looking for is the ability to respond to the notification of two different events - (1) when the timer elapses and (2) when the service is stopped. #Anurag Ranhjan is on the right track with WaitHandle, but you have two events, not one. To properly handle this, do the following.
First, define the two events you care about using ManualResetEvent. You can use AutoResetEvent if you prefer; I just prefer resetting the events manually.
using System.Threading;
ManualResetEvent shutdownEvent = new ManualResetEvent();
ManualResetEvent elapsedEvent = new ManualResetEvent();
You need to trigger these events when they occur. For the shutdownEvent, it's easy. In the OnStop callback of your Windows service, just set the event.
protected override void OnStop
{
shutdownEvent.Set();
}
For the elapsedEvent, you could do this a couple different ways. You could create a background thread, i.e., the ThreadPool, that uses Thread.Sleep. When the thread wakes up, set the elapsedEvent and go back to sleep. Since it's a background thread, it won't hang your service when it shuts down. The alternative, as you've already suggested, is to use a timer. This is how I do it.
using System.Timers;
Timer timer = new Timer();
timer.Interval = 5000; // in milliseconds
timer.Elapsed += delegate { elapsedEvent.Set(); };
timer.AutoReset = false; // again, I prefer manual control
timer.Start();
Now that you've got events being set properly, put them in a WaitHandle array.
WaitHandle[] handles = new WaitHandle[]
{
shutdownEvent,
elapsedEvent
};
Instead of the WaitHandle.WaitOne method, use the WaitHandle.WaitAny method inside a while loop, like this.
while (!shutdownEvent.WaitOne())
{
switch (WaitHandle.WaitAny(handles))
{
case 0: // The shutdownEvent was triggered!
break;
case 1: // The elapsedEvent was triggered!
Process(); // do your processing here
elapsedEvent.Reset(); // reset the event manually
timer.Start(); // restart the timer manually
break;
default:
throw new Exception("unexpected switch case");
}
}
I've condensed this example from production code in my project. I know this mechanism works, but I may have missed something in the writeup. Let me know if you have any questions.
You can use WaitHandle.WaitOne instead. You can wait for closing event to trigger or timeout that you are specifying in predefined interval of time.
static AutoResetEvent seviceStopRequested = new AutoResetEvent(false);
....
((AutoResetEvent)stateInfo).WaitOne([timeout], false)
Then when Service stop is invoked, you can just trigger the event
seviceStopRequested .Set();
I usually use the following pattern:
public class MyJob
{
System.Threading.Timer _timer;
bool _isStopped;
public void MyJob()
{
_timer = new Timer(OnWork, null, TimeSpan.FromSeconds(30), TimeSpan.FromSeconds(-1));
}
private void OnWork(object state)
{
//[.. do the actual work here ..]
if (!_isStopped)
_timer.Change(TimeSpan.FromSeconds(30), TimeSpan.FromSeconds(-1));
}
public void Stop()
{
_isStopped = true;
_timer.Change(TimeSpan.FromSeconds(-1), TimeSpan.FromSeconds(-1));
}
public void Start()
{
_isStopped = false;
_timer.Change(TimeSpan.FromSeconds(30), TimeSpan.FromSeconds(-1));
}
}
Key points:
Only using the initial interval gives you full control of when the timer is started again (i.e. the work time is not counted in the timer interval)
Changing the timer to -1 seconds pauses it until changed again
It should therefore work with all your requirements.
Use a Timer to add commands/tasks including the task for shutdown to a blocking queue. Make your service thread to wait for tasks on the blocking queue and execute them when available. The timer thread will keep adding the tasks to the queue periodically.
For what it is worth most of the blocking calls in the .NET BCL will respond to Thread.Interrupt. That is, they will not wait for the full amount of time specified when called and instead return immediately. However, I would avoid using this method and instead use a single ManualResetEvent to perform both the idle waiting and the shutdown signal. It would look like this.
public class MyServer : ServiceBase
{
private ManualResetEvent shutdown = new ManualResetEvent(false);
protected override void OnStart(string[] args)
{
new Thread(
() =>
{
while (!shutdown.WaitOne(YourInterval))
{
// Do work here.
}
}).Start();
}
protected override void OnStop()
{
shutdown.Set();
}
}

Waiting for a timer elapsed event to complete before application/service closes/stops

Summary:
Within a Windows service & Console Application I am calling a common library that contains a Timer that periodically triggers an action that takes around 30 seconds to complete. This works fine, however...
When a service stop or application exit is called and the timer is in the ElapsedEventHandler I need the service stop/application exit to wait until the event handler has completed.
I have implemented this functionality by having a Boolean InEvent property that is checked when the timer stop method is called.
While this is functional, the question is: Is this the best way to go about doing this? Is there an alternative approach that may serve this purpose better?
The other issue is that I need to avoid the service stop request failing with a "Service failed to respond to stop request"
This is my implementation
public sealed class TimedProcess : IDisposable
{
static TimedProcess singletonInstance;
bool InEvent;
Timer processTimer;
private TimedProcess()
{
}
public static TimedProcess Instance
{
get
{
if (singletonInstance == null)
{
singletonInstance = new TimedProcess();
}
return singletonInstance;
}
}
public void Start(double interval)
{
this.processTimer = new Timer();
this.processTimer.AutoReset = false;
this.processTimer.Interval = interval;
this.processTimer.Elapsed += new ElapsedEventHandler(this.processTimer_Elapsed);
this.processTimer.Enabled = true;
}
public void Stop()
{
if (processTimer != null)
{
while (InEvent)
{
}
processTimer.Stop();
}
}
void processTimer_Elapsed(object sender, ElapsedEventArgs e)
{
try
{
InEvent = true;
// Do something here that takes ~30 seconds
}
catch
{
}
finally
{
InEvent = false;
processTimer.Enabled = true;
}
}
public void Dispose()
{
if (processTimer != null)
{
Stop();
processTimer.Dispose();
}
}
}
And this is how it is called in the service OnStart / console application main:
TimedProcess.Instance.Start(1000);
This is how it is called in service OnStop and application main (pending keypress):
TimedProcess.Instance.Stop();
Probably the easiest and most reliable way is to use a Monitor. Create an object that the main program and the timer callback can access:
private object _timerLock = new object();
Your main program tries to lock that before shutting down:
// wait for timer process to stop
Monitor.Enter(_timerLock);
// do shutdown tasks here
And your timer callback locks it, too:
void processTimer_Elapsed(object sender, ElapsedEventArgs e)
{
if (!Monitor.TryEnter(_timerLock))
{
// something has the lock. Probably shutting down.
return;
}
try
{
// Do something here that takes ~30 seconds
}
finally
{
Monitor.Exit(_timerLock);
}
}
The main program should never release the lock once it's obtained it.
If you want the main program to go ahead and shut down after some period of time, regardless of whether it's obtained the lock, use Monitor.TryEnter. For example, this will wait 15 seconds.
bool gotLock = Monitor.TryEnter(_timerLock, TimeSpan.FromSeconds(15));
The return value is true if it was able to obtain the lock.
By the way, I strongly suggest that you use System.Threading.Timer rather than System.Timers.Timer. The latter squashes exceptions, which can end up hiding bugs. If an exception occurs in your Elapsed event, it will never escape, meaning that you never know about it. See my blog post for more information.
EDIT
Each callback to the System.Timers.Timer is queued on the ThreadPool. Be aware that the System.Timers.Timer can have a race condition (you can read more about it here.) System.Threading.Timer is a slightly nicer wrapper which I prefer to use due to it's simplicity.
You haven't described enough details to know if your particular application could handle that race condition, so it's hard to tell. But given your code, it is possible that there might be a callback queued up for processTimer_Elapsed after Stop() is called.
For the service timeout issue --
One way to do this is to make a call to the ServiceController method WaitForStatus with a timeout. I've done this in the past and it works reasonably well, although I recall there being some edge cases around waiting for a very long time.
See the MSDN reference. A sample use is described here.
One possible alternative seems to be to not do the actual work in the timer callback itself but to just queue a work item from there on the tread pool to do the work. Then you can go ahead and dispose of the timer - anything currently running on the thread pool will remain operational, and your service can respond to the stop request immediately but the thread pool item (if queued) will still get processed.

How to let Timer skip tick if the previous thread is still busy

I created a windows service, that is supposed to check a certain table in the db for new rows every 60 seconds. For every new row that was added, I need to do some heavy processing on the server that could sometimes take more than 60 seconds.
I created a Timer object in my service, that ticks every 60 seconds and invokes the wanted method.
Since I don't want this timer to tick while processing the new lines found, I wrapped the method in a lock { } block, so this won't be accessible by another thread.
It looks something like this :
Timer serviceTimer = new Timer();
serviceTimer.Interval = 60;
serviceTimer.Elapsed += new ElapsedEventHandler(serviceTimer_Elapsed);
serviceTimer.Start();
void serviceTimer_Elapsed(object sender, ElapsedEventArgs e)
{
lock (this)
{
// do some heavy processing...
}
}
Now, I'm wondering -
If my timer ticks, and finds a lot of new rows on the db, and now the processing will take more than 60 seconds, the next tick won't do any processing till the previous one finished. This is the effect I want.
But now, will the serviceTimer_Elapsed method go off immediatly once the first processing was finished, or will it wait for the timer to tick again.
What I want to happen is - if the processing requires more than 60 seconds, than the timer will notice the thread is locked, and wait another 60 seconds to check again so I will never get stuck in a situation where there are a queue of threads waiting for the previous one to finish.
How can i accomplish this result ?
What is the best practice for doing this ?
Thanks!
You might try disabling the timer during processing, something like
// Just in case someone wants to inherit your class and lock it as well ...
private static object _padlock = new object();
try
{
serviceTimer.Stop();
lock (_padlock)
{
// do some heavy processing...
}
}
finally
{
serviceTimer.Start();
}
Edit : OP didn't specify whether the reentrancy was caused only by the timer or whether the service was multi threaded. Have assumed the later, but if the former then locking should be unnecessary if the timer is stopped (AutoReset or manually)
You don't need the lock in this case. Set timer.AutoReset=false before starting it.
Restart the timer in the handler after you are done with your processing. This will ensure that the timer fires 60 seconds after each task.
A similar variation on other answers, that allows the timer to keep ticking and only do the work when the lock can be obtained, instead of stopping the timer.
Put this in the elapsed event handler:
if (Monitor.TryEnter(locker)
{
try
{
// Do your work here.
}
finally
{
Monitor.Exit(locker);
}
}
Put a quick check it see if the service is running. if it is running it will skip this event and wait for the next one to fire.
Timer serviceTimer = new Timer();
serviceTimer.Interval = 60;
serviceTimer.Elapsed += new ElapsedEventHandler(serviceTimer_Elapsed);
serviceTimer.Start();
bool isRunning = false;
void serviceTimer_Elapsed(object sender, ElapsedEventArgs e)
{
lock (this)
{
if(isRunning)
return;
isRunning = true;
}
try
{
// do some heavy processing...
}
finally
{
isRunning = false;
}
}
I recommend you don't let the timer tick at all while its processing.
Set the Timers AutoReset to false. And start it at the end. Here's a full answer you might be interested in
Needed: A Windows Service That Executes Jobs from a Job Queue in a DB; Wanted: Example Code
Other options might be to use a BackGroundWorker class, or TheadPool.QueueUserWorkItem.
Background worker would easily give you the option check for current processing still occurring and process 1 item at a time. The ThreadPool will give you the ability to continue queueing items every tick (if necessary) to background threads.
From your description, I assume you are checking for items in a queue in a database. In this case, I would use the ThreadPool to push the work to the background, and not slow/stop your checking mechanism.
For a Service, I would really suggest you look at using the ThreadPool approach. This way, you can check for new items every 60 seconds with your timer, then Queue them up, and let .Net figure out how much to allocate to each item, and just keep pushing the items into the queue.
For Example: If you just use a timer and you have 5 new rows, which require 65 seconds of processing time total. Using the ThreadPool approach, this would be done in 65 seconds, with 5 background work items. Using the Timer approach, this will take 4+ minutes (the minute you will wait between each row), plus this may cause a back-log of other work that is queueing up.
Here is an example of how this should be done:
Timer serviceTimer = new Timer();
void startTimer()
{
serviceTimer.Interval = 60;
serviceTimer.Elapsed += new ElapsedEventHandler(serviceTimer_Elapsed);
serviceTimer.AutoReset = false;
serviceTimer.Start();
}
void serviceTimer_Elapsed(object sender, ElapsedEventArgs e)
{
try
{
// Get your rows of queued work requests
// Now Push Each Row to Background Thread Processing
foreach (Row aRow in RowsOfRequests)
{
ThreadPool.QueueUserWorkItem(
new WaitCallback(longWorkingCode),
aRow);
}
}
finally
{
// Wait Another 60 Seconds and check again
serviceTimer.Stop();
}
}
void longWorkingCode(object workObject)
{
Row workRow = workObject as Row;
if (workRow == null)
return;
// Do your Long work here on workRow
}
There's quite a neat way of solving this with Reactive Extensions. Here's the code, and you can read a fuller explanation here: http://www.zerobugbuild.com/?p=259
public static IDisposable ScheduleRecurringAction(
this IScheduler scheduler,
TimeSpan interval,
Action action)
{
return scheduler.Schedule(
interval, scheduleNext =>
{
action();
scheduleNext(interval);
});
}
And you could use it like this:
TimeSpan interval = TimeSpan.FromSeconds(5);
Action work = () => Console.WriteLine("Doing some work...");
var schedule = Scheduler.Default.ScheduleRecurringAction(interval, work);
Console.WriteLine("Press return to stop.");
Console.ReadLine();
schedule.Dispose();
another posibility would be something like this:
void serviceTimer_Elapsed(object sender, ElapsedEventArgs e)
{
if (System.Threading.Monitor.IsLocked(yourLockingObject))
return;
else
lock (yourLockingObject)
// your logic
;
}

Categories