Best Way to wake a thread up to quit? C# - c#

I spawn a thread (only one) to do some work and it pretty much takes care of itself not accessing any data outside of the tread except calling callback() to see if the user wants to quit (also sends a status report back to the main thread to display in the GUI).
When the close closes the exe i would like to wake up the thread and have it quit, whats the best way of doing this? The callback already says if the user wants to quit so now the issue is using Thread.Sleep and waking it up prematurely so it can quit instead of having the process live for another few seconds or minutes. This feature would be nice for stop to exit more quickly.

Another approach would be as follows:
Have a ManualResetEvent in your program and call Set when you want the thread to finish up and close down. Instead of calling Thread.Sleep on your work thread, call event.WaitOne and pass in a TimeSpan object. If the event is signalled, your worker thread will wake up before the timeout occurs - WaitOne will return true.

Use a BackgroundWorker or set your thread's IsBackground property to true, then it won't keep your application open.
I'd recommend the BackgroundWorker, but the latter is a quick fix.
Update
Original poster changed his requirements after posting the question (see comments attached to this question). Update to answer follows:
If you want to stop a background operation without ending the application, please see Background worker's CancelAsync method. Also, don't use Thread.Sleep - use a WaitHandle and call WaitOne on what you need to wait for.

I have to agree with Mark. The only thing clear about your question is that you need to reexamine your threading strategy.
You say you have a thread doing work but then you say you want to wake it up?
Is the thread waiting for work? If so, sleep in shorter cycles and check for exit more often or use a reset event. The best way to wake a thread up is to not put it to sleep. Do what you have to do and exit. Always check for interrupt signals, in whatever form you implement them, before starting any long running operations, and again, if you must sleep the thread, do it in short cycles.
Is the thread busy and you want to interrupt it? You may have no choice but to kill it if you cannot instrument it such that it can respond to interrupt signals in a timely fashion.

Related

Does Sleep block program exit? How is it implemented?

In a single-threaded console application, people often use Thread.Sleep as a lazy way to pause the application for some time.
This question raised interesting points about NOT using this approach: Why is Thread.Sleep so harmful
However other than knowing that Sleep blocks the current thread, I don't understand how it works - for instance does it max out the CPU core in a tight loop or does it actually pause the thread?
More importantly to me, how does a console app respond to various app-exit scenarios (CTRL-C, kill, window close button) when caught in the middle of a Sleep? Will it blindly continue executing until the OS force-kills it, or will it behave well?
This is more of an OS question than a C#/.NET related question, but I'll try and answer succinctly.
Thread.Sleep will not spin lock your CPU, instead it will call the appropriate mechanism in the underlying OS to suspend your thread. On windows, that function is described here: https://msdn.microsoft.com/en-us/library/windows/desktop/ms686298(v=vs.85).aspx
Using this normal system call your thread cannot be rescheduled until the timeout has elapsed. Forcefully killing the thread (or the entire process) is then required.
When you hit ctrl+c in cmd.exe, the console spawns a new thread in each process attached to handle the event (Described here: https://msdn.microsoft.com/en-us/library/windows/desktop/ms682541(v=vs.85).aspx). Because of this, your program as a whole will still "behave well" when you hit ctrl+c, but your sleeping thread itself will wind up being killed prematurely.
This is source code of Thread.Sleep method:
[System.Security.SecuritySafeCritical] // auto-generated
public static void Sleep(int millisecondsTimeout)
{
SleepInternal(millisecondsTimeout);
// Ensure we don't return to app code when the pause is underway
if(AppDomainPauseManager.IsPaused)
AppDomainPauseManager.ResumeEvent.WaitOneWithoutFAS();
}
As we can see this method calls Thread.SleepInternal method. In comment about it we can read that this method suspends the current thread for timeout milliseconds. Next, we can read that if timeout == 0 then this method forces the thread to give up the remainder of its timeslice and if timeout equals Timeout.Infinite then no timeout will occur. I recommend you reading about multithreading and application lifecycle (in this case especially suspended).
Links:
https://msdn.microsoft.com/en-us/library/ms900951.aspx
https://msdn.microsoft.com/en-us/windows/uwp/launch-resume/app-lifecycle

Alternative to Thread.Sleep that keeps the UI responsive?

I'm doing all this in C#, in Visual Studio 2008.
I want to slow down the work of my algorithm so that the user can watch it's work. There is a periodic change visible at the GUI so I added Thread.Sleep after every instance.
Problem is that Thread.Sleep, when set to at least a second, after a few instances of Thread.Sleep (after few loops) simply freezes entire GUI and keeps it that way till program completion. Not right away, but it always happens. How soon depends on the length of the sleep.
I have proof that entire program does not freeze, it's working it's thing, even the sleep is making pauses of correct length. But the GUI freezes at certain point until the algorithm ends, at which point it shows the correct final state.
How to solve this issue? Alternative to pausing algorithm at certain point?
First off, don't make the user wait for work that is done before they even think about when it will be finished. Its pointless. Please, just say no.
Second, you're "sleeping" the UI thread. That's why the UI thread is "locking up." The UI thread cannot be blocked; if it is, the UI thread cannot update controls on your forms and respond to system messages. Responding to system messages is an important task of the UI thread; failing to do so makes your application appear locked up to the System. Not a good thing.
If you want to accomplish this (please don't) just create a Timer when you start doing work that, when it Ticks, indicates its time to stop pretending to do work.
Again, please don't do this.
I'd guess everything is running out of a single thread. The user probably invokes this algorithm by clicking on a button, or some such. This is handled by your main thread's message queue. Until this event handler returns, your app's GUI cannot update. It needs the message queue to be pumped on regular basis in order to stay responsive.
Sleeping is almost never a good idea, and definitely not a good idea in the GUI thread. I'm not going to recommend that you continue to use sleep and make your GUI responsive by calling Application.DoEvents.
Instead, you should run this algorithm in a background thread and when it completes it should signal so to the main thread.
You are about to commit some fairly common user interface bloopers:
Don't spam the user with minutiae, she's only interested in the result
Don't force the user to work as fast as you demand
Don't forbid the user to interact with your program when you are busy.
Instead:
Display results in a gadget like a ListBox to allow the user to review results at her pace
Keep a user interface interactive by using threads
Slow down time for your own benefit with a debugger
This depends on a lot of things, so its hard to give a concrete answer from what you've said. Still, here are some matters that might be relevant:
Are you doing this on a UI thread (e.g. the thread the form-button or UI event that triggered the work started on)? If so, it may be better to create a new thread to perform the work.
Why do you sleep at all? If the state related to the ongoing work is available to all relevant threads, can the observer not just observe this without the working thread sleeping? Perhaps the working thread could write an indicator of the current progress to a volatile or locked variable (it must be locked if it's larger than pointer size - e.g. int or an object - but not otherwise. If not locked, then being volatile will prevent cache inconsistency between CPUs, though this may not be a big deal). In this case you could have a forms timer (there are different timers in .Net with different purposes) check the status of that variable and update the UI to reflect the work being done, without the working thread needing to do anything. At most it may be beneficial to Yield() in the working thread on occasion, but its not likely that even this will be needed.

C# Communication between threads

I am using .NET 3.5 and am trying to wrap my head around a problem (not being a supreme threading expert bear with me).
I have a windows service which has a very intensive process that is always running, I have put this process onto a separate thread so that the main thread of my service can handle operational tasks - i.e., service audit cycles, handling configuration changes, etc, etc.
I'm starting the thread via the typical ThreadStart to a method which kicks the process off - call it workerthread.
On this workerthread I am sending data to another server, as is expected the server reboots every now and again and connection is lost and I need to re-establish the connection (I am notified by the lost of connection via an event). From here I do my reconnect logic and I am back in and running, however what I easily started to notice to happen was that I was creating this worker thread over and over again each time (not what I want).
Now I could kill the workerthread when I lose the connection and start a new one but this seems like a waste of resources.
What I really want to do, is marshal the call (i.e., my thread start method) back to the thread that is still in memory although not doing anything.
Please post any examples or docs you have that would be of use.
Thanks.
You should avoid killing the worker thread. When you forcibly kill a Win32 thread, not all of its resources are fully recovered. I believe the reserved virtual address space (or is it the root page?) for the thread stack is not recovered when a Win32 thread is killed. It may not be much, but in a long-running server service process, it will add up over time and eventually bring down your service.
If the thread is allowed to exit its threadproc to terminate normally, all the resources are recovered.
If the background thread will be running continuously (not sleeping), you could just use a global boolean flag to communicate state between the main thread and the background thread. As long as the background thread checks this global flag periodically. If the flag is set, the thread can shut itself down cleanly and exit. No need for locking semantics if the main thread is the only writer and the background thread only reads the flag value.
When the background thread loses the connection to the server that it's sending data to, why doesn't it perform the reconnect on its own? It's not clear to me why the main thread needs to tear down the background thread to start another.
You can use the Singleton pattern. In your case, make the connection a static object. Both threads can access the object, which means construct it and use it.
The main thread could construct it whenever required, and the worker thread access it whenever it is available.
Call the method using ThreadPool.QueueUserWorkItem instead. This method grabs a thread from the thread pool and kicks off a method. It appears to be ideal for the task of starting a method on another thread.
Also, when you say "typical ThreadStart" do you mean you're creating and starting a new Thread with a ThreadStart parameter, or you're creating a ThreadStart and calling Invoke on it?
Have you considered a BackgroundWorker?
From what I understand, you just have a single thread that's doing work, unless the need arises where you have to cancel it's processing.
I would kill (but end gracefully if possible) the worker thread anyway. Everything gets garbage-collected, and you can start from scratch.
How often does this server reboot happen? If it happens often enough for resources to be a problem, it's probably happening too often.
The BackgroundWorker is a bit slower than using plain threads, but it has the option of supporting the CancelAsync method.
Basically, BackgroundWorker is a wrapper around a worker thread with some extra options and events.
The CancelAsync method only works when WorkerSupportsCancellation is set.
When CancelAsync is called, CancellationPending is set.
The worker thread should periodically check CancellationPending to see if needs to quit prematurely.
--jeroen

Thread, abort and wait

I am aborting a thread (will be threads soon enough) and the problem is i need to stall until all threads have been aborted.
After doing the Thread.Abort(); I thought of using the Thread.Join() to wait until its been fully aborted. However that doesnt work. It just waits forever. How can i abort each thread and wait until its done before continuing?
Additional information: If your curious why - in this case I am closing a window, I pass a delegate func into the thread which it calls when its done (or aborted). If I dont stall then the window will close and the function will call invalid handles/objs. I can easily use the same method, stick a flag in and loop & sleep until all flags are set but that doesnt feel right.
I've learnt from many years experience with threads that there are a couple of rules that, if followed, make life a lot easier.
The one pertinent to this question is:
let threads control their own resources, including their lifetime.
I wouldn't abort a thread, I'd simply set up a communications method between the threads creator and the thread itself to signal the thread to terminate, and then let the thread itself shut down.
This method can often be as simple as a write-by-creator/read-by-thread flag which controls the threads main loop. If the thread has long running tasks while in the loop, you should also check periodically.
Then the creator thread should just join until the thread exits. Properly designed, you can set an upper limit to the time this will take.
Use a synchronisation object such as an Event. For example, each background thread has an Event associated with it. When the thread is terminating, it signals the Event. The main thread does a WaitHandle.WaitAll on the set of Events, and proceeds only when all Events are signalled.
Be warned that if there is a chance that the background threads will take a long time to terminate, blocking the main thread while waiting for them would create a bad user experience. So if this is the case, you may want to hide the window before blocking. Also, you'll want to test what the impact of this is on your callback delegate -- if the UI thread is blocked in a wait, will it be able to handle your delegate?
Might not a better design be not to call the delegate if the thread is being killed due to the window closing? Just have the main thread tell the background threads why they are terminating and have them skip the callback if the reason is "window closing." (This assumes that you are communicating with the threads, as Pax rightly recommends, rather than just calling Abort.)

How do I abort CCR threads\tasks?

I want to implement a timeout on the execution of tasks in a project that uses the CCR. Basically when I post an item to a Port or enqueue a Task to a DispatcherQueue I want to be able to abort the task or the thread that its running on if it takes longer than some configured time. How can I do this?
Can you confirm what you are asking? Are you running a long-lived task in the Dispatcher? Killing the thread would break the CCR model, so you need to be able to signal to the thread to finish its work and yield. Assuming it's a loop that is not finishing quick enough, you might choose to enqueue a timer:
var resultTimeoutPort = new Port<DateTime>();
dispatcherQueue.EnqueueTimer(TimeSpan.FromSeconds(RESULT_TIMEOUT),
resultTimeoutPort);
and ensure the blocking thread has available a reference to resultTimeoutPort. In the blocking loop, one of the exit conditions might be:
do
{
//foomungus amount of work
}while(resultTimeoutPort.Test()==null&&
someOtherCondition)
Please post more info if I'm barking up the wrong tree.
You could register the thread (Thread.CurrentThread) at the beginning of your CCR "Receive" handler (or in a method that calls your method via a delegate). Then you can do your periodic check and abort if necessary basically the same way you would have done it if you created the thread manually. The catch is that if you use your own Microsoft.Ccr.Core.Dispatcher with a fixed number of threads, I don't think there is a way to get those threads back once you abort them (based on my testing). So, if your dispatcher has 5 threads, you'll only be able to abort 5 times before posting will no longer work regardless of what tasks have been registered. However, if you construct a DispatcherQueue using the CLR thread pool, any CCR threads you abort will be replaced automatically and you won't have that problem. From what I've seen, although the CCR dispatcher is recommended, I think using the CLR thread pool is the way to go in this situation.

Categories