How to add XmlInclude attribute dynamically - c#

I have the following classes
[XmlRoot]
public class AList
{
public List<B> ListOfBs {get; set;}
}
public class B
{
public string BaseProperty {get; set;}
}
public class C : B
{
public string SomeProperty {get; set;}
}
public class Main
{
public static void Main(string[] args)
{
var aList = new AList();
aList.ListOfBs = new List<B>();
var c = new C { BaseProperty = "Base", SomeProperty = "Some" };
aList.ListOfBs.Add(c);
var type = typeof (AList);
var serializer = new XmlSerializer(type);
TextWriter w = new StringWriter();
serializer.Serialize(w, aList);
}
}
Now when I try to run the code I got an InvalidOperationException at last line saying that
The type XmlTest.C was not expected. Use the XmlInclude or SoapInclude attribute to specify types that are not known statically.
I know that adding a [XmlInclude(typeof(C))] attribute with [XmlRoot] would solve the problem. But I want to achieve it dynamically. Because in my project class C is not known prior to loading. Class C is being loaded as a plugin, so it is not possible for me to add XmlInclude attribute there.
I tried also with
TypeDescriptor.AddAttributes(typeof(AList), new[] { new XmlIncludeAttribute(c.GetType()) });
before
var type = typeof (AList);
but no use. It is still giving the same exception.
Does any one have any idea on how to achieve it?

Two options; the simplest (but giving odd xml) is:
XmlSerializer ser = new XmlSerializer(typeof(AList),
new Type[] {typeof(B), typeof(C)});
With example output:
<AList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<ListOfBs>
<B />
<B xsi:type="C" />
</ListOfBs>
</AList>
The more elegant is:
XmlAttributeOverrides aor = new XmlAttributeOverrides();
XmlAttributes listAttribs = new XmlAttributes();
listAttribs.XmlElements.Add(new XmlElementAttribute("b", typeof(B)));
listAttribs.XmlElements.Add(new XmlElementAttribute("c", typeof(C)));
aor.Add(typeof(AList), "ListOfBs", listAttribs);
XmlSerializer ser = new XmlSerializer(typeof(AList), aor);
With example output:
<AList xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<b />
<c />
</AList>
In either case you must cache and re-use the ser instance; otherwise you will haemorrhage memory from dynamic compilation.

Building on Marc's first answer (I only have to read, so I don't need to prevent the weird output), I use a more dynamic/generic type-array to account for unknown types, inspired by this codeproject.
public static XmlSerializer GetSerializer()
{
var lListOfBs = (from lAssembly in AppDomain.CurrentDomain.GetAssemblies()
from lType in lAssembly.GetTypes()
where typeof(B).IsAssignableFrom(lType)
select lType).ToArray();
return new XmlSerializer(typeof(AList), lListOfBs);
}
(One could probably make it more efficient, e.g. using a static or read-only type-array in stead of a local variable. That would avoid repeatedly using Reflection. But I don't know enough about when assemblies get loaded and classes and properties get initialized, to know if that would get you into trouble. My usage is not that much, to take the time to investigate this all, so I just use the same Reflection multiple times.)

Have a look at the documentation of XmlSerializer. There is a constructor which expects known types as the second parameter. That should work fine for you use case.

I'm don't think attributes can be applied at runtime, as they are used to create Meta-data at the CIL code.

Related

Cannot serialize member T of type interface in C# [duplicate]

I would like to XML serialize an object that has (among other) a property of type IModelObject (which is an interface).
public class Example
{
public IModelObject Model { get; set; }
}
When I try to serialize an object of this class, I receive the following error:
"Cannot serialize member Example.Model of type Example because it is an interface."
I understand that the problem is that an interface cannot be serialized. However, the concrete Model object type is unknown until runtime.
Replacing the IModelObject interface with an abstract or concrete type and use inheritance with XMLInclude is possible, but seems like an ugly workaround.
Any suggestions?
This is simply an inherent limitation of declarative serialization where type information is not embedded within the output.
On trying to convert <Flibble Foo="10" /> back into
public class Flibble { public object Foo { get; set; } }
How does the serializer know whether it should be an int, a string, a double (or something else)...
To make this work you have several options but if you truly don't know till runtime the easiest way to do this is likely to be using the XmlAttributeOverrides.
Sadly this will only work with base classes, not interfaces. The best you can do there is to ignore the property which isn't sufficient for your needs.
If you really must stay with interfaces you have three real options:
Hide it and deal with it in another property
Ugly, unpleasant boiler plate and much repetition but most consumers of the class will not have to deal with the problem:
[XmlIgnore()]
public object Foo { get; set; }
[XmlElement("Foo")]
[EditorVisibile(EditorVisibility.Advanced)]
public string FooSerialized
{
get { /* code here to convert any type in Foo to string */ }
set { /* code to parse out serialized value and make Foo an instance of the proper type*/ }
}
This is likely to become a maintenance nightmare...
Implement IXmlSerializable
Similar to the first option in that you take full control of things but
Pros
You don't have nasty 'fake' properties hanging around.
you can interact directly with the xml structure adding flexibility/versioning
Cons
you may end up having to re-implement the wheel for all the other properties on the class
Issues of duplication of effort are similar to the first.
Modify your property to use a wrapping type
public sealed class XmlAnything<T> : IXmlSerializable
{
public XmlAnything() {}
public XmlAnything(T t) { this.Value = t;}
public T Value {get; set;}
public void WriteXml (XmlWriter writer)
{
if (Value == null)
{
writer.WriteAttributeString("type", "null");
return;
}
Type type = this.Value.GetType();
XmlSerializer serializer = new XmlSerializer(type);
writer.WriteAttributeString("type", type.AssemblyQualifiedName);
serializer.Serialize(writer, this.Value);
}
public void ReadXml(XmlReader reader)
{
if(!reader.HasAttributes)
throw new FormatException("expected a type attribute!");
string type = reader.GetAttribute("type");
reader.Read(); // consume the value
if (type == "null")
return;// leave T at default value
XmlSerializer serializer = new XmlSerializer(Type.GetType(type));
this.Value = (T)serializer.Deserialize(reader);
reader.ReadEndElement();
}
public XmlSchema GetSchema() { return(null); }
}
Using this would involve something like (in project P):
public namespace P
{
public interface IFoo {}
public class RealFoo : IFoo { public int X; }
public class OtherFoo : IFoo { public double X; }
public class Flibble
{
public XmlAnything<IFoo> Foo;
}
public static void Main(string[] args)
{
var x = new Flibble();
x.Foo = new XmlAnything<IFoo>(new RealFoo());
var s = new XmlSerializer(typeof(Flibble));
var sw = new StringWriter();
s.Serialize(sw, x);
Console.WriteLine(sw);
}
}
which gives you:
<?xml version="1.0" encoding="utf-16"?>
<MainClass
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Foo type="P.RealFoo, P, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
<RealFoo>
<X>0</X>
</RealFoo>
</Foo>
</MainClass>
This is obviously more cumbersome for users of the class though avoids much boiler plate.
A happy medium may be merging the XmlAnything idea into the 'backing' property of the first technique. In this way most of the grunt work is done for you but consumers of the class suffer no impact beyond confusion with introspection.
The solution to this is using reflection with the DataContractSerializer. You don't even have to mark your class with [DataContract] or [DataMember]. It will serialize any object, regardless of whether it has interface type properties (including dictionaries) into xml. Here is a simple extension method that will serialize any object into XML even if it has interfaces (note you could tweak this to run recursively as well).
public static XElement ToXML(this object o)
{
Type t = o.GetType();
Type[] extraTypes = t.GetProperties()
.Where(p => p.PropertyType.IsInterface)
.Select(p => p.GetValue(o, null).GetType())
.ToArray();
DataContractSerializer serializer = new DataContractSerializer(t, extraTypes);
StringWriter sw = new StringWriter();
XmlTextWriter xw = new XmlTextWriter(sw);
serializer.WriteObject(xw, o);
return XElement.Parse(sw.ToString());
}
what the LINQ expression does is it enumerates each property,
returns each property that is an interface,
gets the value of that property (the underlying object),
gets the type of that concrete object
puts it into an array, and adds that to the serializer's list of known types.
Now the serializer knows how about the types it is serializing so it can do its job.
If you know your interface implementors up-front there's a fairly simple hack you can use to get your interface type to serialize without writing any parsing code:
public interface IInterface {}
public class KnownImplementor01 : IInterface {}
public class KnownImplementor02 : IInterface {}
public class KnownImplementor03 : IInterface {}
public class ToSerialize {
[XmlIgnore]
public IInterface InterfaceProperty { get; set; }
[XmlArray("interface")]
[XmlArrayItem("ofTypeKnownImplementor01", typeof(KnownImplementor01))]
[XmlArrayItem("ofTypeKnownImplementor02", typeof(KnownImplementor02))]
[XmlArrayItem("ofTypeKnownImplementor03", typeof(KnownImplementor03))]
public object[] InterfacePropertySerialization {
get { return new[] { InterfaceProperty }; ; }
set { InterfaceProperty = (IInterface)value.Single(); }
}
}
The resulting xml should look something along the lines of
<interface><ofTypeKnownImplementor01><!-- etc... -->
You can use ExtendedXmlSerializer. This serializer support serialization of interface property without any tricks.
var serializer = new ConfigurationContainer().UseOptimizedNamespaces().Create();
var obj = new Example
{
Model = new Model { Name = "name" }
};
var xml = serializer.Serialize(obj);
Your xml will look like:
<?xml version="1.0" encoding="utf-8"?>
<Example xmlns:exs="https://extendedxmlserializer.github.io/v2" xmlns="clr-namespace:ExtendedXmlSerializer.Samples.Simple;assembly=ExtendedXmlSerializer.Samples">
<Model exs:type="Model">
<Name>name</Name>
</Model>
</Example>
ExtendedXmlSerializer support .net 4.5 and .net Core.
Replacing the IModelObject interface with an abstract or concrete type and use inheritance with XMLInclude is possible, but seems like an ugly workaround.
If it is possible to use an abstract base I would recommend that route. It will still be cleaner than using hand-rolled serialization. The only trouble I see with the abstract base is that your still going to need the concrete type? At least that is how I've used it in the past, something like:
public abstract class IHaveSomething
{
public abstract string Something { get; set; }
}
public class MySomething : IHaveSomething
{
string _sometext;
public override string Something
{ get { return _sometext; } set { _sometext = value; } }
}
[XmlRoot("abc")]
public class seriaized
{
[XmlElement("item", typeof(MySomething))]
public IHaveSomething data;
}
Unfortunately there's no simple answer, as the serializer doesn't know what to serialize for an interface. I found a more complete explaination on how to workaround this on MSDN
Unfortuantely for me, I had a case where the class to be serialized had properties that had interfaces as properties as well, so I needed to recursively process each property. Also, some of the interface properties were marked as [XmlIgnore], so I wanted to skip over those. I took ideas that I found on this thread and added some things to it to make it recursive. Only the deserialization code is shown here:
void main()
{
var serializer = GetDataContractSerializer<MyObjectWithCascadingInterfaces>();
using (FileStream stream = new FileStream(xmlPath, FileMode.Open))
{
XmlDictionaryReader reader = XmlDictionaryReader.CreateTextReader(stream, new XmlDictionaryReaderQuotas());
var obj = (MyObjectWithCascadingInterfaces)serializer.ReadObject(reader);
// your code here
}
}
DataContractSerializer GetDataContractSerializer<T>() where T : new()
{
Type[] types = GetTypesForInterfaces<T>();
// Filter out duplicates
Type[] result = types.ToList().Distinct().ToList().ToArray();
var obj = new T();
return new DataContractSerializer(obj.GetType(), types);
}
Type[] GetTypesForInterfaces<T>() where T : new()
{
return GetTypesForInterfaces(typeof(T));
}
Type[] GetTypesForInterfaces(Type T)
{
Type[] result = new Type[0];
var obj = Activator.CreateInstance(T);
// get the type for all interface properties that are not marked as "XmlIgnore"
Type[] types = T.GetProperties()
.Where(p => p.PropertyType.IsInterface &&
!p.GetCustomAttributes(typeof(System.Xml.Serialization.XmlIgnoreAttribute), false).Any())
.Select(p => p.GetValue(obj, null).GetType())
.ToArray();
result = result.ToList().Concat(types.ToList()).ToArray();
// do the same for each of the types identified
foreach (Type t in types)
{
Type[] embeddedTypes = GetTypesForInterfaces(t);
result = result.ToList().Concat(embeddedTypes.ToList()).ToArray();
}
return result;
}
I have found a simpler solution (you don't need the DataContractSerializer), thanks to this blog here:
XML serializing derived types when base type is in another namespace or DLL
But 2 problems can rise in this implementation:
(1) What if DerivedBase is not in the namespace of class Base, or even worse in a project that depends on Base namespace, so Base cannot XMLInclude DerivedBase
(2) What if we only have class Base as a dll ,so again Base cannot XMLInclude DerivedBase
Till now, ...
So the solution to the 2 problems is by using XmlSerializer Constructor (Type, array[]) :
XmlSerializer ser = new XmlSerializer(typeof(A), new Type[]{ typeof(DerivedBase)});
A detailed example is provided here on MSDN:
XmlSerializer Constructor (Type, extraTypesArray[])
It seems to me that for DataContracts or Soap XMLs, you need to check the XmlRoot as mentioned here in this SO question.
A similar answer is here on SO but it isn't marked as one, as it not the OP seems to have considered it already.
in my project, I have a
List<IFormatStyle> FormatStyleTemplates;
containing different Types.
I then use the solution 'XmlAnything' from above, to serialize this list of different types.
The generated xml is beautiful.
[Browsable(false)]
[EditorBrowsable(EditorBrowsableState.Never)]
[XmlArray("FormatStyleTemplates")]
[XmlArrayItem("FormatStyle")]
public XmlAnything<IFormatStyle>[] FormatStyleTemplatesXML
{
get
{
return FormatStyleTemplates.Select(t => new XmlAnything<IFormatStyle>(t)).ToArray();
}
set
{
// read the values back into some new object or whatever
m_FormatStyleTemplates = new FormatStyleProvider(null, true);
value.ForEach(t => m_FormatStyleTemplates.Add(t.Value));
}
}

XML Serialization similar to what Json.Net can do

I have the following Console application:
using System;
using System.IO;
using System.Xml.Serialization;
using Newtonsoft.Json;
namespace OutputApp
{
public class Foo
{
public object Value1 { get; set; }
public string Value2 { get; set; }
}
public class Bar
{
public int Arg1 { get; set; }
public double Arg2 { get; set; }
}
class Program
{
public static Foo CreateFooBar()
{
return new Foo
{
Value1 = new Bar
{
Arg1 = 123,
Arg2 = 99.9
},
Value2 = "Test"
};
}
public static string SerializeXml(object obj)
{
using (var stream = new MemoryStream())
{
using (var reader = new StreamReader(stream))
{
var serializer = new XmlSerializer(obj.GetType());
serializer.Serialize(stream, obj);
stream.Position = 0;
return reader.ReadToEnd();
}
}
}
static void Main(string[] args)
{
var fooBar = CreateFooBar();
// Using Newtonsoft.Json
var json = JsonConvert.SerializeObject(fooBar, Formatting.Indented);
var xnode = JsonConvert.DeserializeXNode(json, "RootElement");
var xml = xnode.ToString();
// Using XmlSerializer, throws InvalidOperationException
var badXml = SerializeXml(fooBar);
Console.ReadLine();
}
}
}
I have two classes. Class Foo and class Bar. Class Foo has a property of type object. This is a requirement, because it is a contract which can hold a variety of objects and therefore I cannot set the property to a concrete type or a generic.
Now I compose a dummy fooBar object using the CreateFooBar() method. After that I first serialize it into JSON, which works wonderfully with Json.Net.
Then I use Json.Net's XML converter method to convert the json string into an XNode object. It works great as well.
The output of both is the following:
{
"Value1": {
"Arg1": 123,
"Arg2": 99.9
},
"Value2": "Test"
}
<RootElement>
<Value1>
<Arg1>123</Arg1>
<Arg2>99.9</Arg2>
</Value1>
<Value2>Test</Value2>
</RootElement>
Now while this works, it is certainly not very nice, because I have to serialize into json only to serialize it into xml afterwards. I would like to serialize directly into xml.
When I use the XmlSerializer to do this I get the infamous InvalidOperationExceptoin, because I did not decorate my classes with the XmlInclude attribute or did one of the other workarounds.
InvalidOperationException
The type OutputApp.Bar was not expected. Use the XmlInclude or
SoapInclude attribute to specify types that are not known statically.
None of the workarounds for the XmlSerializer is a good solution IMHO and I don't see the need for it as it is perfectly feasible to serialize an object into XML without crappy attributes.
Does anyone know a good Xml serializer in .NET which can do this or is there a plan to add this feature to Json.Net?
Any ideas?
Update1
I am not opposed to use attributes, but it needs to make sense. What I don't like about the XmlInclude attribute is that it forces me into circular dependencies. Say I have assembly A which defines a base class, and assembly B which implements derived classes. Now the way the XmlInclude attribute works is that I'd have to decorate the base class in Assembly A with the type name of the child class from assembly B. This would mean I have a circular dependency and is a no go!
Update2
I shall clarify that I am not looking for a solution to re-factor my console application to make it work with the XmlSerializer, I am looking for a way to XML serialize what I have there.
There was a comment below which mentions that using object as a data type is poor design. Whether this is true or not, this is a whole other discussion. The point is that there is no reason why it shouldn't be able to serialize into XML and I am curious to find such a solution.
Personally I find creating a "marker" interface a dirty design. It abusing an interface to workaround the incapabilities of one single .NET class (XmlSerializer). If I would ever swap the serialization library for something else, then the whole marker interface would be redundant clutter. I don't want to couple my classes to one serializer.
I am looking for an elegant solution (if there is one)?
You don't need to pollute your models with XmlInclude attributes. You could explicitly indicate all known classes to the XmlSerializer's constructor:
var serializer = new XmlSerializer(obj.GetType(), new[] { typeof(Bar) });
Also using object as base class seems like a crappy approach. At least define a marker interface:
public interface IMarker
{
}
that your Bar's will implement:
public class Bar : IMarker
{
public int Arg1 { get; set; }
public double Arg2 { get; set; }
}
and then then specialize the Value1 property of your Foo class to this marker instead of making it like the most universal type in the universe (it can't be):
public class Foo
{
public IMarker Value1 { get; set; }
public string Value2 { get; set; }
}
Coz now it's pretty trivial to get all loaded types at runtime in all referenced assemblies that are implementing the marker interface and passing them to the XmlSerializer constructor:
var type = typeof(IMarker);
var types = AppDomain.CurrentDomain.GetAssemblies()
.SelectMany(s => s.GetTypes())
.Where(p != type)
.Where(p => type.IsAssignableFrom(p))
.ToArray();
var serializer = new XmlSerializer(obj.GetType(), types);
Now you've got a pretty capable XmlSerializer that will know how to properly serialize all types implementing your marker interface. You've achieved almost the same functionality as JSON.NET. And don't forget that this XmlSerializaer instantiation should reside in your Composition Root project which knows about all loaded types.
And once again using object is a poor design decision.

How to implement Serialize on collection that contain interface? [duplicate]

I would like to XML serialize an object that has (among other) a property of type IModelObject (which is an interface).
public class Example
{
public IModelObject Model { get; set; }
}
When I try to serialize an object of this class, I receive the following error:
"Cannot serialize member Example.Model of type Example because it is an interface."
I understand that the problem is that an interface cannot be serialized. However, the concrete Model object type is unknown until runtime.
Replacing the IModelObject interface with an abstract or concrete type and use inheritance with XMLInclude is possible, but seems like an ugly workaround.
Any suggestions?
This is simply an inherent limitation of declarative serialization where type information is not embedded within the output.
On trying to convert <Flibble Foo="10" /> back into
public class Flibble { public object Foo { get; set; } }
How does the serializer know whether it should be an int, a string, a double (or something else)...
To make this work you have several options but if you truly don't know till runtime the easiest way to do this is likely to be using the XmlAttributeOverrides.
Sadly this will only work with base classes, not interfaces. The best you can do there is to ignore the property which isn't sufficient for your needs.
If you really must stay with interfaces you have three real options:
Hide it and deal with it in another property
Ugly, unpleasant boiler plate and much repetition but most consumers of the class will not have to deal with the problem:
[XmlIgnore()]
public object Foo { get; set; }
[XmlElement("Foo")]
[EditorVisibile(EditorVisibility.Advanced)]
public string FooSerialized
{
get { /* code here to convert any type in Foo to string */ }
set { /* code to parse out serialized value and make Foo an instance of the proper type*/ }
}
This is likely to become a maintenance nightmare...
Implement IXmlSerializable
Similar to the first option in that you take full control of things but
Pros
You don't have nasty 'fake' properties hanging around.
you can interact directly with the xml structure adding flexibility/versioning
Cons
you may end up having to re-implement the wheel for all the other properties on the class
Issues of duplication of effort are similar to the first.
Modify your property to use a wrapping type
public sealed class XmlAnything<T> : IXmlSerializable
{
public XmlAnything() {}
public XmlAnything(T t) { this.Value = t;}
public T Value {get; set;}
public void WriteXml (XmlWriter writer)
{
if (Value == null)
{
writer.WriteAttributeString("type", "null");
return;
}
Type type = this.Value.GetType();
XmlSerializer serializer = new XmlSerializer(type);
writer.WriteAttributeString("type", type.AssemblyQualifiedName);
serializer.Serialize(writer, this.Value);
}
public void ReadXml(XmlReader reader)
{
if(!reader.HasAttributes)
throw new FormatException("expected a type attribute!");
string type = reader.GetAttribute("type");
reader.Read(); // consume the value
if (type == "null")
return;// leave T at default value
XmlSerializer serializer = new XmlSerializer(Type.GetType(type));
this.Value = (T)serializer.Deserialize(reader);
reader.ReadEndElement();
}
public XmlSchema GetSchema() { return(null); }
}
Using this would involve something like (in project P):
public namespace P
{
public interface IFoo {}
public class RealFoo : IFoo { public int X; }
public class OtherFoo : IFoo { public double X; }
public class Flibble
{
public XmlAnything<IFoo> Foo;
}
public static void Main(string[] args)
{
var x = new Flibble();
x.Foo = new XmlAnything<IFoo>(new RealFoo());
var s = new XmlSerializer(typeof(Flibble));
var sw = new StringWriter();
s.Serialize(sw, x);
Console.WriteLine(sw);
}
}
which gives you:
<?xml version="1.0" encoding="utf-16"?>
<MainClass
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<Foo type="P.RealFoo, P, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">
<RealFoo>
<X>0</X>
</RealFoo>
</Foo>
</MainClass>
This is obviously more cumbersome for users of the class though avoids much boiler plate.
A happy medium may be merging the XmlAnything idea into the 'backing' property of the first technique. In this way most of the grunt work is done for you but consumers of the class suffer no impact beyond confusion with introspection.
The solution to this is using reflection with the DataContractSerializer. You don't even have to mark your class with [DataContract] or [DataMember]. It will serialize any object, regardless of whether it has interface type properties (including dictionaries) into xml. Here is a simple extension method that will serialize any object into XML even if it has interfaces (note you could tweak this to run recursively as well).
public static XElement ToXML(this object o)
{
Type t = o.GetType();
Type[] extraTypes = t.GetProperties()
.Where(p => p.PropertyType.IsInterface)
.Select(p => p.GetValue(o, null).GetType())
.ToArray();
DataContractSerializer serializer = new DataContractSerializer(t, extraTypes);
StringWriter sw = new StringWriter();
XmlTextWriter xw = new XmlTextWriter(sw);
serializer.WriteObject(xw, o);
return XElement.Parse(sw.ToString());
}
what the LINQ expression does is it enumerates each property,
returns each property that is an interface,
gets the value of that property (the underlying object),
gets the type of that concrete object
puts it into an array, and adds that to the serializer's list of known types.
Now the serializer knows how about the types it is serializing so it can do its job.
If you know your interface implementors up-front there's a fairly simple hack you can use to get your interface type to serialize without writing any parsing code:
public interface IInterface {}
public class KnownImplementor01 : IInterface {}
public class KnownImplementor02 : IInterface {}
public class KnownImplementor03 : IInterface {}
public class ToSerialize {
[XmlIgnore]
public IInterface InterfaceProperty { get; set; }
[XmlArray("interface")]
[XmlArrayItem("ofTypeKnownImplementor01", typeof(KnownImplementor01))]
[XmlArrayItem("ofTypeKnownImplementor02", typeof(KnownImplementor02))]
[XmlArrayItem("ofTypeKnownImplementor03", typeof(KnownImplementor03))]
public object[] InterfacePropertySerialization {
get { return new[] { InterfaceProperty }; ; }
set { InterfaceProperty = (IInterface)value.Single(); }
}
}
The resulting xml should look something along the lines of
<interface><ofTypeKnownImplementor01><!-- etc... -->
You can use ExtendedXmlSerializer. This serializer support serialization of interface property without any tricks.
var serializer = new ConfigurationContainer().UseOptimizedNamespaces().Create();
var obj = new Example
{
Model = new Model { Name = "name" }
};
var xml = serializer.Serialize(obj);
Your xml will look like:
<?xml version="1.0" encoding="utf-8"?>
<Example xmlns:exs="https://extendedxmlserializer.github.io/v2" xmlns="clr-namespace:ExtendedXmlSerializer.Samples.Simple;assembly=ExtendedXmlSerializer.Samples">
<Model exs:type="Model">
<Name>name</Name>
</Model>
</Example>
ExtendedXmlSerializer support .net 4.5 and .net Core.
Replacing the IModelObject interface with an abstract or concrete type and use inheritance with XMLInclude is possible, but seems like an ugly workaround.
If it is possible to use an abstract base I would recommend that route. It will still be cleaner than using hand-rolled serialization. The only trouble I see with the abstract base is that your still going to need the concrete type? At least that is how I've used it in the past, something like:
public abstract class IHaveSomething
{
public abstract string Something { get; set; }
}
public class MySomething : IHaveSomething
{
string _sometext;
public override string Something
{ get { return _sometext; } set { _sometext = value; } }
}
[XmlRoot("abc")]
public class seriaized
{
[XmlElement("item", typeof(MySomething))]
public IHaveSomething data;
}
Unfortunately there's no simple answer, as the serializer doesn't know what to serialize for an interface. I found a more complete explaination on how to workaround this on MSDN
Unfortuantely for me, I had a case where the class to be serialized had properties that had interfaces as properties as well, so I needed to recursively process each property. Also, some of the interface properties were marked as [XmlIgnore], so I wanted to skip over those. I took ideas that I found on this thread and added some things to it to make it recursive. Only the deserialization code is shown here:
void main()
{
var serializer = GetDataContractSerializer<MyObjectWithCascadingInterfaces>();
using (FileStream stream = new FileStream(xmlPath, FileMode.Open))
{
XmlDictionaryReader reader = XmlDictionaryReader.CreateTextReader(stream, new XmlDictionaryReaderQuotas());
var obj = (MyObjectWithCascadingInterfaces)serializer.ReadObject(reader);
// your code here
}
}
DataContractSerializer GetDataContractSerializer<T>() where T : new()
{
Type[] types = GetTypesForInterfaces<T>();
// Filter out duplicates
Type[] result = types.ToList().Distinct().ToList().ToArray();
var obj = new T();
return new DataContractSerializer(obj.GetType(), types);
}
Type[] GetTypesForInterfaces<T>() where T : new()
{
return GetTypesForInterfaces(typeof(T));
}
Type[] GetTypesForInterfaces(Type T)
{
Type[] result = new Type[0];
var obj = Activator.CreateInstance(T);
// get the type for all interface properties that are not marked as "XmlIgnore"
Type[] types = T.GetProperties()
.Where(p => p.PropertyType.IsInterface &&
!p.GetCustomAttributes(typeof(System.Xml.Serialization.XmlIgnoreAttribute), false).Any())
.Select(p => p.GetValue(obj, null).GetType())
.ToArray();
result = result.ToList().Concat(types.ToList()).ToArray();
// do the same for each of the types identified
foreach (Type t in types)
{
Type[] embeddedTypes = GetTypesForInterfaces(t);
result = result.ToList().Concat(embeddedTypes.ToList()).ToArray();
}
return result;
}
I have found a simpler solution (you don't need the DataContractSerializer), thanks to this blog here:
XML serializing derived types when base type is in another namespace or DLL
But 2 problems can rise in this implementation:
(1) What if DerivedBase is not in the namespace of class Base, or even worse in a project that depends on Base namespace, so Base cannot XMLInclude DerivedBase
(2) What if we only have class Base as a dll ,so again Base cannot XMLInclude DerivedBase
Till now, ...
So the solution to the 2 problems is by using XmlSerializer Constructor (Type, array[]) :
XmlSerializer ser = new XmlSerializer(typeof(A), new Type[]{ typeof(DerivedBase)});
A detailed example is provided here on MSDN:
XmlSerializer Constructor (Type, extraTypesArray[])
It seems to me that for DataContracts or Soap XMLs, you need to check the XmlRoot as mentioned here in this SO question.
A similar answer is here on SO but it isn't marked as one, as it not the OP seems to have considered it already.
in my project, I have a
List<IFormatStyle> FormatStyleTemplates;
containing different Types.
I then use the solution 'XmlAnything' from above, to serialize this list of different types.
The generated xml is beautiful.
[Browsable(false)]
[EditorBrowsable(EditorBrowsableState.Never)]
[XmlArray("FormatStyleTemplates")]
[XmlArrayItem("FormatStyle")]
public XmlAnything<IFormatStyle>[] FormatStyleTemplatesXML
{
get
{
return FormatStyleTemplates.Select(t => new XmlAnything<IFormatStyle>(t)).ToArray();
}
set
{
// read the values back into some new object or whatever
m_FormatStyleTemplates = new FormatStyleProvider(null, true);
value.ForEach(t => m_FormatStyleTemplates.Add(t.Value));
}
}

Serializing XML with multiple possible inner elements

I'm having trouble figuring out how to construct and configure a class structure for serializing/deserializing XML such as this in .Net:
<OuterElem>
<InnerElem>
<C1>...</C1>
</InnerElem>
</OuterElem>
Some notes:
C1 is a complex type.
There can also be C2, C3 etc. distinct complex types.
There can be one or multiple of the Cx elements present at the same time.
OuterElem and InnerElem comes from a different namespace than the Cx elements.
At runtime (actually compiletime), the complete set of possible Cx elements is well known the current use case, however the wrapping elements are part of a generic solution so preferably they should not depend on or know about the Cx elements.
This is what I have so far:
[XmlRoot(Namespace = "urn:outer-ns")]
public class OuterElem
{
public object[] InnerElem { get; set; }
}
[XmlRoot(ElementName = "C1", Namespace = "urn:ns1")]
public class C1 { }
[XmlRoot(ElementName = "C2", Namespace = "urn:ns1")]
public class C2 { }
But this doesn't give what I want. Serializing with:
var xs = new XmlSerializer (typeof(OuterElem),
new [] {typeof(C1), typeof(C2)});
var s = new StringWriter();
xs.Serialize (s, outerElemInstance);
yields XML as:
<?xml version="1.0" encoding="utf-16"?>
<OuterElem>
<Body>
<anyType xmlns:q1="urn:ns1" xsi:type="q1:C1">
How can I make it use the element name C1 instead of this anyType?
For this use case, typically the InnerElem has to be decorated with the XmlElement attribute as below:
public class OuterElem
{
[XmlElement(typeof(C1))]
[XmlElement(typeof(C2))]
public object[] InnerElem { get; set; }
}
However as you have mentioned that you are working on a generic solution which shall not depend on the C1/C2... types, one possible solution is to add these attributes through XmlAttributeOverrides
XmlAttributeOverrides overrides = new XmlAttributeOverrides();
XmlAttributes attribs = new XmlAttributes();
attribs.XmlIgnore = false;
attribs.XmlElements.Add(new XmlElementAttribute(typeof(C1)));
attribs.XmlElements.Add(new XmlElementAttribute(typeof(C2)));
overrides.Add(typeof(OuterElem), "InnerElem", attribs);
var xs = new XmlSerializer(typeof(OuterElem), overrides, new [] {typeof(C1), typeof(C2)}, null, null);
var s = new StringWriter();
xs.Serialize(s, outerElemInstance);

Serialize collection of base class to XML dynamically

O hai there,
I want to serialize and object, which looks like this:
public class Wrapper
{
[XmlArray("Entities"), XmlArrayItem("Entity")]
public List<Base> Entities { get; set; }
}
I want to keep application as flexible as possible, thus setting manually derived class types in XmlArrayItem attribute is not an option, how can I do it dynamically, i.e. make serializer aware of all derived classes.
Btw I have already a class to get all directly derived types like BaseDerived.DerivedClasses and XmlSerializer cs = new XmlSerializer(this.GetType(),BaseDerived.DerivedClasses); doesnt work...
Any idea?
Found a soultion, during serialization u can pretty much insert item attributes directly
So first you collect attributes like
XmlAttributeOverrides xOver = new XmlAttributeOverrides();
XmlAttributes xAttrs = new XmlAttributes();
foreach (var cls in BaseDerived.DerivedClasses)
{
var attr = new XmlArrayItemAttribute(cls);
xAttrs.XmlArrayItems.Add(attr);
}
xOver.Add(this.GetType(), BaseDerived.GetMemberName((Wrapper x) => x.Entities), xAttrs);
Btw:
public static string GetMemberName<T, TValue>(Expression<Func<T, TValue>> memberAccess)
{
return ((MemberExpression)memberAccess.Body).Member.Name;
}
and then you just mention it in serialization:
XmlSerializer cs = new XmlSerializer(this.GetType(), xOver);

Categories