I have a Form that uses a BackgroundWorker to execute a series of tests. I use the ProgressChanged event to send messages to the main thread, which then does all of the updates on the UI. I've combed through my code to make sure I'm not doing anything to the UI in the background worker. There are no while loops in my code and the BackgroundWorker has a finite execution time (measured in seconds or minutes). However, for some reason when I lock my computer, often times the application will be hung when I log back in. The thing is, the BackgroundWorker isn't even running when this happens. The reason I believe it is related to the BackgroundWorker though is because the form only hangs when the BackgroundWorker has been executed since the application was loaded (it only runs when given a certain user input).
I pass this thread a List of TreeNodes from a TreeView in my UI through the RunWorkerAsync method, but I only read those nodes in the worker thread..any modifications I make to them is done in the UI thread through the progressChanged event.
I do use Thread.Sleep in my worker thread to execute tests at timed intervals (which involves sending messages over a TCP socket, which was not created in the worker thread).
I am completely perplexed as to why my application might be hanging. I'm sure I'm doing something 'illegal' somewhere, I just don't know what.
I pass this thread a List of TreeNodes from a TreeView in my UI through the RunWorkerAsync method, but I only read those nodes in the worker thread.
By "only read" I assume you mean "only access property getters". But property getters can execute code that you don't control - for example TreeNode.IsSelected will call a native method and send a Windows message (take a look with Reflector).
Instead you should extract the data you need from the TreeView in the UI thread and pass it to the background worker. Not only will you avoid this problem, but your design will be more loosely coupled.
Well, this one is old but it turned out that the problem was completely unrelated to my code. Due to recent changes in our software, the amount of logging had increased exponentially and our log buffer was overflowing causes the application to crash. It was just a coincidence that this was happening at the same time that I was working on this specific piece of code. In any case, I still made sure that I wasn't doing any operations on UI elements from a BackgroundWorker, even if it was as trivial as checking/unchecking a TreeNode.
Sounds like the dreaded UserPreferenceChanged event problem where a ui component has been created on a background thread without a message pump. The main ui thread synchronously sends the event to all registered ui windows and will hang because the ui component on the background worker thread is unable to process the UserPreferenceChanged event.
Related
I'm building a WPF application. I'm doing some async communication with the server side, and I use event aggregation with Prism on the client. Both these things results in new threads to be spawned which are not the UI thread. If I attempt to do "WPF operations" on these callback and event handler threads the world will fall apart, which it now has started doing.
First I met problems trying to create some WPF objects in the callback from server. I was told that the thread needed to run in STA mode. Now I'm trying to update some UI data in a Prism event handler, and I'm told that:
The caller cannot access this thread because a different thread owns it.
So; what's the key to getting things right in WPF? I've read up on the WPF Dispatcher in this MSDN post. I'm starting to get it, but I'm no wizard yet.
Is the key to always use Dispatcher.Invoke when I need to run something which I'm not sure will be called on the UI thread?
Does it matter if it actually was called on the UI thread, and I do Dispatcher.Invoke anyway?
Dispatcher.Invoke = synchronously. Dispathcher.BeginInvoke = async?
Will Dispatcher.Invoke request the UI thread, and then stop to wait for it? Is it bad practice and risk of less responsive programs?
How do I get the dispatcher anyway? Will Dispatcher.CurrentDispatcher always give me the dispatcher representing the UI thread?
Will there exist more than one Dispatcher, or is "Dispatcher" basically the same as the UI thread for the application?
And what's the deal with the BackgroundWorker? When do I use this instead? I assume this is always async?
Will everything that runs on the UI thread (by being Invoked) be run in STA apartment mode? I.e. if I have something that requires to be run in STA mode - will Dispatcher.Invoke be sufficient?
Anyone wanna clearify things for me? Any related recommendations, etc? Thanks!
Going over each of your questions, one by one:
Not quite; you should only invoke onto the UI thread when necessary. See #2.
Yes, it does matter. You should not just automatically Invoke everything. The key is to only invoke onto the UI thread if necessary. To do this, you can use the Dispatcher.CheckAccess method.
That is correct.
Also correct, and yes, you do run the risk of less responsive programs. Most of the time, you are not going to be looking at a severe performance hit (we're talking about milliseconds for a context switch), but you should only Invoke if necessary. That being said, at some points it is unavoidable, so no, I would not say it is bad practice at all. It is just one solution to a problem that you will encounter every now and then.
In every case I have seen, I have made due with Dispatcher.CurrentDispatcher. For complex scenarios, this may not be sufficient, but I (personally) have not seen them.
Not entirely correct, but this line of thinking will not do any harm. Let me put it this way: the Dispatcher can be used to gain access to the UI thread for the application. But it is not in and of itself the UI thread.
BackgroundWorker is generally used when you have a time-consuming operation and want to maintain a responsive UI while running that operation in the background. Normally you do not use BackgroundWorker instead of Invoke, rather, you use BackgroundWorker in conjunction with Invoke. That is, if you need to update some UI object in your BackgroundWorker, you can Invoke onto the UI thread, perform the update, and then return to the original operation.
Yes. The UI thread of a WPF application, by definition, must be running in a single-threaded apartment.
There's a lot to be said about BackgroundWorker, I'm sure many questions are already devoted to it, so I won't go into too much depth. If you're curious, check out the MSDN page for BackgroundWorker class.
I am creating winform to process (convert txt files to tiff) large amount of files. I put all the code behind a button (btnProcess). Is this a good idea? It works but I noticed when I go away from the winform and come back to this I see blank window until the process is complete. I heard about background worker. what is the purpose of background worker?
What you need here is multi-threading. That means that two (or more) threads of code would run in parallel. One of them would be the UI thread, the one responsible for drawing the window. In your case you are running your code in the UI thread and thus blocking the UI rendering while your code is running.
The purpose of the BackgroundWorker is to start an operation on a new thread and is what you need.
BackgroundWorker class
The BackgroundWorker class allows you
to run an operation on a separate,
dedicated thread. Time-consuming
operations like downloads and database
transactions can cause your user
interface (UI) to seem as though it
has stopped responding while they are
running. When you want a responsive UI
and you are faced with long delays
associated with such operations, the
BackgroundWorker class provides a
convenient solution.
The page I linked above contains a complete BackgroundWorker example.
It depends on your application. If this is a single purpose application that is not extremely long and the only problem is the screen doesn't paint. Which is what it sounds like to me, just throw an Application.DoEvents into the loop and be done with it.
I am having an issue where I have a Windows CE compact framework Application written in C#, where I have the primary GUI thread set to normal priority and a communication thread set to above normal priority to get as close to pseudo real time performance. The issue I am having is within a button handler I run a loop to load config data from a file to the GUI before allowing it to be edited. This takes around 2-3 seconds to complete. While this blocking in the event handler is happening, my higher priority communication thread is being blocked. There are no locks are thread syncs in place. The communicatio thread has no dependencies on the GUI thread.
This is how I spawn my comm thread:
MbWorkerThread = new Thread(MbPollingThread);
MbWorkerThread.IsBackground = true;
MbWorkerThread.Priority = ThreadPriority.AboveNormal;
MbWorkerThread.Start();
It is an MTA application. Also, I have tried to use Thread.Sleep(1) in the GUI event handler to yield to the higher priority thread and it does not work. I also tried using signals to yield to the higher priority thread, and that does not work. The only thing that works is if I place Application.DoEvents() in the loop while loading config in the event handler. This of coarse whas just a test, as I do not want to sprinkle Application.DoEvents() throught my code to make it work since I know Application.DoEvents() is dangerous.
My understanding is that the primary GUI thread is a foreground thread, but a thread none the less. Also, I have made the communication thread a background thread just to allow it to be killed when the primary thread is exited.
I have tried everything, I have search the Internet endlessly before asking this question.
Any help will be greatly appreciated.
P.S. - I though about a form timer but I know it runs in the GUI thread so that would not help. I though about another thread but I really did not what to marshall GUI updates via Invoke.
Your program starts in Main(), where you typically call Application.Run( new MyForm() ). Application.Run() implements the standard Windows Message Pump, which deals with messages from the OS and other applications, including user input, inter-process communication, repaint requests, etc.
GUI events, like Button click, are dispatched via this thread. If you perform long-running work in an event handler, other messages are not being processed.
Application.DoEvents() blocks the calling thread, and waits for all pending messages to be processed. If DoEvents helps your communication thread when Sleep(1) did not, then I suspect there is a dependency between your communication thread and the GUI/Message Pump thread.
Even if this is not the case, it is not a good idea to block the GUI thread. Move your file loading into the background with ThreadPool.QueueUserWorkItem() and marshal the results back to the UI at the end with Invoke or BeginInvoke.
BeginInvoke instead of Invoke fixed the issue. Thanks for the replies.
Completely rewrote the question as I now have more information about what is happening.
I have a customtracelistener which overrides the writeline method to add strings to a custom observablecollection. This collection class dispatches all notification events to the UI thread to allow other threads to update it, and still allow WPF data binding.
I have a usercontrol which includes a listbox. The listbox binds the observablecollection in the trace listener to it's itemssource.
In my application startup, I set up the windows/usercontrols/viewmodels, and show the window. I then kick off a worker thread that runs some backend processes required for the app. If the background threads do a Trace.WriteLine before the UI thread has completed all the user control setup and databinding, my application deadlocks.
I've been able to somewhat reasonably prove this race condition by adding sleeps and other random long running tasks in the UI thread and/or delaying starting the worker thread to give the UI thread time to complete.
The solution I'm thinking of implementing now is creating a AppSetupCompleted method which kicks off the worker threads for all the backend processes, and sending this to the Dispatcher with a Background priority. In theory, should this delay the worker threads until all of the bindings for the WPF controls and viewmodels have been setup successfully?
sounds like a deadlock or livelock to me... assuming deadlock (low cpu when app freezes), attach a debugger to the application and break it. Look at the call stack of the threads (UI and the one you called Trace.WriteLine from) to see where they are locking.
If you can't figure out that is blocking, add the call stacks to your question, it may help us answer your question.
I have a problem with interface lag in C#.
Since I'm still learning please be patient whilst I explain.
I have narrowed the problem to my timer object.
Basically my program queries a device through TCP/IP socket and outputs it to a textbox on screen.
Now I am polling the device for data every second which requires some logic to be buried within timer object and the following is what happens between ticks:
Increment a value.
Construct the 2 strings that represents the command to be sent to
the box (encapsulated in a function
Encode the command
Send command
Clear the byte array
Receive reply.
Could this be too much processing being done in the event handler? Every time I try to move the window during the polling session i.e. when the timer is running I get a very bad input lag.
The timer you are using is executing on the windows message thread. Therefore, while the polling is running the windows message queue is blocked. This isn't a problem with doing too much processing, most of the time the thread will be waiting for the TCP/IP response.
To fix this, you just have to do the do the work on a background thread and then update the UI on the UI thread.
There are a heap of different timers in the .NET framework that work in different ways, the one you are using works processed the timer event on the same thread, others work on background threads. Check this article out about the different timers.
You could also just use your current timer to invoke a BackgroundWorker component to do the work on the background thread. The main benefit of this is the the BackgroundWorker will do the work on a background thread, but will raise the work complete event on the UI thread so that it is simple to update the UI without having to worry about which thread you are on.
I think this is because you're trying to do work in your UI thread. Have your timer run in a background work thread.
It seems like there are a few things going on. First, you may be doing too much in your timer tick handler. How are you constructing the string and encoding the command? Can any of this be done once outside the tick handler or simplified in any way (using String.Format calls, for instance)? There are actually three different timers available in .NET, with different resolutions. Which timer are you using?
The biggest issue is the fact that your interval is 1 second. No matter what, that is a lot of processing overhead. Keep in mind that, for the most part, every time the interval is hit and the tick handler is invoked you are causing a context switch between threads. There is a bit of overhead involved in this (nothing which you can do anything about) and the more often you context switch the slower your performance appears.