I was wondering if it's possible to create a foreach loop in C# with a where loop. Not with a if statement inside, but and where clause in the declaring of the loop.
Maybe something like this?
foreach(var n in people where n.sex == male)
{
}
Yes, it is possible:
Method Syntax:
foreach (var person in people.Where(n => n.sex == "male"))
{
}
Or the rather lengthy Query Syntax:
foreach (var person in from person in people where person.sex == "male" select person)
It looks like what you need is a lambda expression to limit the items the foreach look works with.
Based on your limited example, something like this:
foreach(var n in people.Where(n => n.sex == male))
{
}
As Yuval's answer and its comments point out, you can put any query -- in either "fluent" or "query syntax" form -- as the collection expression. This leads to awkward constructions like:
foreach(var person in from person in people where person.sex == male select person)
Not only is this very verbose, in the example I have given here the simple name person is used both in the query and the loop declaration. You might wonder why that is even legal, as normally C# is strict about ensuring that a simple name has only one meaning in a given local variable scope. The answer is here: http://ericlippert.com/2009/11/05/simple-names-are-not-so-simple-part-two/
IIRC the C# design team briefly considered a syntax such as you describe, but never got even as far as writing a specification. It's a nice idea but it just wasn't a sufficiently awesome language extension to make it to the top of the list. This would be a nice feature to pitch for a future version of C#.
This question already has answers here:
Closed 10 years ago.
Possible Duplicate:
LINQ equivalent of foreach for IEnumerable<T>
List<T> has a method called ForEach which executes the passed action on each element of it.
var names = new List<String>{ "Bruce", "Alfred", "Tim", "Richard" };
names.ForEach(p => { Console.WriteLine(p); });
But what if names is not a List<T> but an IList<T>? IList<T> doesn't have a method like ForEach.
Is there some alternative?
Use a foreach loop:
foreach (var p in names) {
Console.WriteLine(p);
}
There is no reason to use delegates and extension methods all over the place if that doesn't actually improve readability; a foreach loop is not any less explicitly telling readers what's being done than a ForEach method.
If your IList<T> is an array (T[]), then you have Array.ForEach method on them similar to ForEach on List<T>. You can create an extension method for your custom IList<T> or IEnumerable<T> or whatever you prefer.
public static void ForEach<T>(this IList<T> list, Action<T> action)
{
foreach (T t in list)
action(t);
}
You just have to be wary of the fact that the objects in the original collection will be modified, but I guess the naming does imply that.
------------------------------------------------------------------------------------------------------------------------------------
I prefer to call:
people.Where(p => p.Tenure > 5)
.Select(p => p.Nationality)
.ForEach(n => AssignCitizenShip(n);
than
foreach (var n in people.Where(p => p.Tenure > 5).Select(p => p.Nationality))
{
AssignCitizenShip(n);
}
If so you can create the extension method on IEnumerable. Mind you the terminating call ForEach executes the Linq query. If you do not want it, you can defer it too by using yield statement and returning an IEnumerable<T> back:
public static IEnumerable<T> ForEach<T>(this IEnumerable<T> list, Action<T> action)
{
foreach (T t in list)
{
action(t);
yield return t;
}
}
That solves the side-effect issue, but I personally like a method named ForEach to finally execute the call.
-----------------------------------------------------------------------------------------------------------------------------------
To address the opposing views on preferences, here is a better link from Eric Lippert than this. To quote him:
"The first reason is that doing so violates the functional programming
principles that all the other sequence operators are based upon.
Clearly the sole purpose of a call to this method is to cause side
effects. The purpose of an expression is to compute a value, not to
cause a side effect. The purpose of a statement is to cause a side
effect. The call site of this thing would look an awful lot like an
expression (though, admittedly, since the method is void-returning,
the expression could only be used in a “statement expression”
context.) It does not sit well with me to make the one and only
sequence operator that is only useful for its side effects.
The second reason is that doing so adds zero new representational
power to the language".
Eric's not saying it's a bad thing to do - just the philosophical reasons behind the decision to not include the construct in Linq by default. If you believe a function on an IEnumerable shouldn't act on the contents, then don't do it. Personally I dont mind it since I'm well aware what it does. I treat it as any other method that causes side-effect on a collection class. I can enter into the function and debug it too if I want. Here is another one from Linq itself.
people.Where(p => p.Tenure > 5)
.Select(p => p.Nationality)
.AsParallel()
.ForAll(n => AssignCitizenShip(n);
As I would say, there is nothing bad about these. Its just personal preference. I wouldn't use this for nested foreachs or if it involves more than one line of code to execute inside the foreach loop since thats plain unreadable. But for simple example I posted, I like it. Looks clean and concise.
Edit: See a performance link btw: Why is List<T>.ForEach faster than standard foreach?
You could make an extension method and use most of the implementation of void List<T>.ForEach(Action<T> action). You can download the source code at the Shared Source Initiative site.
Basically you will end to something like this:
public static void ForEach<T>(this IList<T> list, Action<T> action)
{
if (list == null) throw new ArgumentNullException("null");
if (action == null) throw new ArgumentNullException("action");
for (int i = 0; i < list.Count; i++)
{
action(list[i]);
}
}
It is slightly better than the other implementations that use the foreach statement since it takes advantage of the fact that IList includes an indexer.
Although I aggree with the answer of O. R. Mapper, sometimes in big projects with many developers it is hard to convicne everybody that a foreach statement is clearer. Even worse, if your API is based on interfaces (IList) instead of concrete types (List) then developers that are used to the List<T>.ForEach method might start calling ToList on your IList references! I know because it happened in my previous project. I was using the collection interfaces everywhere in our public APIs following the Framework Design Guidelines. It took me a while to notice that many developers where not used to this and call to ToList started apprearing with an alarming rate. Finally I added this extension method to a common assembly that everybody was using and made sure that all unecessary call to ToList were removed from the codebase.
Add this code to static class and call it extensions:
public static void ForEach<T>(this IList<T> list, Action<T> action) {
foreach(var item in list) {
action.Invoke(item);
}
}
When i use a standard Extension Method on a List such as
Where(...)
the result is always IEnumerable, and when
you decide to do a list operation such as Foreach()
we need to Cast(not pretty) or use a ToList() extension method that
(maybe) uses a new List that consumes more memory (is that right?):
List<string> myList=new List<string>(){//some data};
(Edit: this cast on't Work)
myList.Where(p=>p.Length>5).Tolist().Foreach(...);
or
(myList.Where(p=>p.Length>5) as List<string>).Foreach(...);
Which is better code or is there a third way?
Edit:
Foreach is a sample, Replace that with BinarySerach
myList.Where(p=>p.Length>5).Tolist().Binarysearch(...)
The as is definitely not a good approach, and I'd be surprised if it works.
In terms of what is "best", I would propose foreach instead of ForEach:
foreach(var item in myList.Where(p=>p.Length>5)) {
... // do something with item
}
If you desperately want to use list methods, perhaps:
myList.FindAll(p=>p.Length>5).ForEach(...);
or indeed
var result = myList.FindAll(p=>p.Length>5).BinarySearch(...);
but note that this does (unlike the first) require an additional copy of the data, which could be a pain if there are 100,000 items in myList with length above 5.
The reason that LINQ returns IEnumerable<T> is that this (LINQ-to-Objects) is designed to be composable and streaming, which is not possible if you go to a list. For example, a combination of a few where / select etc should not strictly need to create lots of intermediate lists (and indeed, LINQ doesn't).
This is even more important when you consider that not all sequences are bounded; there are infinite sequences, for example:
static IEnumerable<int> GetForever() {
while(true) yield return 42;
}
var thisWorks = GetForever().Take(10).ToList();
as until the ToList it is composing iterators, not generating an intermediate list. There are a few buffered operations, though, like OrderBy, which need to read all the data first. Most LINQ operations are streaming.
One of the design goals for LINQ is to allow composable queries on any supported data type, which is achieved by having return-types specified using generic interfaces rather than concrete classes (such as IEnumerable<T> as you noted). This allows the nuts and bolts to be implemented as needed, either as a concrete class (e.g. WhereEnumerableIterator<T> or hoisted into a SQL query) or using the convenient yield keyword.
Additionally, another design philosophy of LINQ is one of deferred execution. Basically, until you actually use the query, no real work has been done. This allows potentially expensive (or infinite as Mark notes) operations to be completed only exactly as needed.
If List<T>.Where returned another List<T> it would potentially limit composition and would certainly hinder deferred execution (not to mention generate excess memory).
So, looking back at your example, the best way to use the result of the Where operator depends on what you want to do with it!
// This assumes myList has 20,000 entries
// if .Where returned a new list we'd potentially double our memory!
var largeStrings = myList.Where(ss => ss.Length > 100);
foreach (var item in largeStrings)
{
someContainer.Add(item);
}
// or if we supported an IEnumerable<T>
someContainer.AddRange(myList.Where(ss => ss.Length > 100));
If you want to make a simple foreach over a list, you can do like this:
foreach (var item in myList.Where([Where clause]))
{
// Do something with each item.
}
You can't cast (as) IEnumerable<string> to List<string>. IEnumerable evaluates items when you access those. Invoking ToList<string>() will enumerate all items in the collection and returns a new List, which is a bit of memory inefficiency and as well as unnecessary. If you are willing to use ForEach extension method to any collection its better to write a new ForEach extension method that will work on any collection.
public static void ForEach<T>(this IEnumerable<T> enumerableList, Action<T> action)
{
foreach(T item in enumerableList)
{
action(item);
}
}
I have read in some blog some time ago (sorry for being vague) that i could use a linq like the following
var list = from c in xml
select new
{
foreach(XElement el in c.Elements())
{
}
}
Does anyone know is it possible or is it just my imagination??
Thanks.
You can't use a foreach loop directly in an anonymous type initialization expression, no.
If you could tell us what you're trying to achieve, we could probably help you find the best way of doing it.
You can use the ToList() function to convert the elements to a list of List then you can use the ForEach Method on it. FYI when using LinqToXml I find the Descendants() more useful as it will do a full dive into the object model.
xml.Elements().ToList().ForEach(ele => DoSomething(ele));
It's your imagination. You can use the results of a linq query in a foreach loop, but you can't use a foreach loop like that in the declaration for an anonymous type.
Ok, I have an xml with two parts, first declares the fields in the xml and second part has data associated with the declaration in the first part. So what I am trying to do is, read the first of the field definition and use that to create anonymous class of the data in the second section. Trying not to hard code in the program since we get data from different sources with different field definitions.
Inspired by another question asking about the missing Zip function:
Why is there no ForEach extension method on the IEnumerable interface? Or anywhere? The only class that gets a ForEach method is List<>. Is there a reason why it's missing, maybe performance?
There is already a foreach statement included in the language that does the job most of the time.
I'd hate to see the following:
list.ForEach( item =>
{
item.DoSomething();
} );
Instead of:
foreach(Item item in list)
{
item.DoSomething();
}
The latter is clearer and easier to read in most situations, although maybe a bit longer to type.
However, I must admit I changed my stance on that issue; a ForEach() extension method would indeed be useful in some situations.
Here are the major differences between the statement and the method:
Type checking: foreach is done at runtime, ForEach() is at compile time (Big Plus!)
The syntax to call a delegate is indeed much simpler: objects.ForEach(DoSomething);
ForEach() could be chained: although evilness/usefulness of such a feature is open to discussion.
Those are all great points made by many people here and I can see why people are missing the function. I wouldn't mind Microsoft adding a standard ForEach method in the next framework iteration.
ForEach method was added before LINQ. If you add ForEach extension, it will never be called for List instances because of extension methods constraints. I think the reason it was not added is to not interference with existing one.
However, if you really miss this little nice function, you can roll out your own version
public static void ForEach<T>(
this IEnumerable<T> source,
Action<T> action)
{
foreach (T element in source)
action(element);
}
You could write this extension method:
// Possibly call this "Do"
IEnumerable<T> Apply<T> (this IEnumerable<T> source, Action<T> action)
{
foreach (var e in source)
{
action(e);
yield return e;
}
}
Pros
Allows chaining:
MySequence
.Apply(...)
.Apply(...)
.Apply(...);
Cons
It won't actually do anything until you do something to force iteration. For that reason, it shouldn't be called .ForEach(). You could write .ToList() at the end, or you could write this extension method, too:
// possibly call this "Realize"
IEnumerable<T> Done<T> (this IEnumerable<T> source)
{
foreach (var e in source)
{
// do nothing
;
}
return source;
}
This may be too significant a departure from the shipping C# libraries; readers who are not familiar with your extension methods won't know what to make of your code.
The discussion here gives the answer:
Actually, the specific discussion I witnessed did in fact hinge over functional purity. In an expression, there are frequently assumptions made about not having side-effects. Having ForEach is specifically inviting side-effects rather than just putting up with them. -- Keith Farmer (Partner)
Basically the decision was made to keep the extension methods functionally "pure". A ForEach would encourage side-effects when using the Enumerable extension methods, which was not the intent.
While I agree that it's better to use the built-in foreach construct in most cases, I find the use of this variation on the ForEach<> extension to be a little nicer than having to manage the index in a regular foreach myself:
public static int ForEach<T>(this IEnumerable<T> list, Action<int, T> action)
{
if (action == null) throw new ArgumentNullException("action");
var index = 0;
foreach (var elem in list)
action(index++, elem);
return index;
}
Example
var people = new[] { "Moe", "Curly", "Larry" };
people.ForEach((i, p) => Console.WriteLine("Person #{0} is {1}", i, p));
Would give you:
Person #0 is Moe
Person #1 is Curly
Person #2 is Larry
One workaround is to write .ToList().ForEach(x => ...).
pros
Easy to understand - reader only needs to know what ships with C#, not any additional extension methods.
Syntactic noise is very mild (only adds a little extranious code).
Doesn't usually cost extra memory, since a native .ForEach() would have to realize the whole collection, anyway.
cons
Order of operations isn't ideal. I'd rather realize one element, then act on it, then repeat. This code realizes all elements first, then acts on them each in sequence.
If realizing the list throws an exception, you never get to act on a single element.
If the enumeration is infinite (like the natural numbers), you're out of luck.
I've always wondered that myself, that is why that I always carry this with me:
public static void ForEach<T>(this IEnumerable<T> col, Action<T> action)
{
if (action == null)
{
throw new ArgumentNullException("action");
}
foreach (var item in col)
{
action(item);
}
}
Nice little extension method.
So there has been a lot of comments about the fact that a ForEach extension method isn't appropriate because it doesn't return a value like the LINQ extension methods. While this is a factual statement, it isn't entirely true.
The LINQ extension methods do all return a value so they can be chained together:
collection.Where(i => i.Name = "hello").Select(i => i.FullName);
However, just because LINQ is implemented using extension methods does not mean that extension methods must be used in the same way and return a value. Writing an extension method to expose common functionality that does not return a value is a perfectly valid use.
The specific arguement about ForEach is that, based on the constraints on extension methods (namely that an extension method will never override an inherited method with the same signature), there may be a situation where the custom extension method is available on all classes that impelement IEnumerable<T> except List<T>. This can cause confusion when the methods start to behave differently depending on whether or not the extension method or the inherit method is being called.
You could use the (chainable, but lazily evaluated) Select, first doing your operation, and then returning identity (or something else if you prefer)
IEnumerable<string> people = new List<string>(){"alica", "bob", "john", "pete"};
people.Select(p => { Console.WriteLine(p); return p; });
You will need to make sure it is still evaluated, either with Count() (the cheapest operation to enumerate afaik) or another operation you needed anyway.
I would love to see it brought in to the standard library though:
static IEnumerable<T> WithLazySideEffect(this IEnumerable<T> src, Action<T> action) {
return src.Select(i => { action(i); return i; } );
}
The above code then becomes people.WithLazySideEffect(p => Console.WriteLine(p)) which is effectively equivalent to foreach, but lazy and chainable.
Note that the MoreLINQ NuGet provides the ForEach extension method you're looking for (as well as a Pipe method which executes the delegate and yields its result). See:
https://www.nuget.org/packages/morelinq
https://code.google.com/p/morelinq/wiki/OperatorsOverview
#Coincoin
The real power of the foreach extension method involves reusability of the Action<> without adding unnecessary methods to your code. Say that you have 10 lists and you want to perform the same logic on them, and a corresponding function doesn't fit into your class and is not reused. Instead of having ten for loops, or a generic function that is obviously a helper that doesn't belong, you can keep all of your logic in one place (the Action<>. So, dozens of lines get replaced with
Action<blah,blah> f = { foo };
List1.ForEach(p => f(p))
List2.ForEach(p => f(p))
etc...
The logic is in one place and you haven't polluted your class.
Most of the LINQ extension methods return results. ForEach does not fit into this pattern as it returns nothing.
If you have F# (which will be in the next version of .NET), you can use
Seq.iter doSomething myIEnumerable
Partially it's because the language designers disagree with it from a philosophical perspective.
Not having (and testing...) a feature is less work than having a feature.
It's not really shorter (there's some passing function cases where it is, but that wouldn't be the primary use).
It's purpose is to have side effects, which isn't what linq is about.
Why have another way to do the same thing as a feature we've already got? (foreach keyword)
https://blogs.msdn.microsoft.com/ericlippert/2009/05/18/foreach-vs-foreach/
You can use select when you want to return something.
If you don't, you can use ToList first, because you probably don't want to modify anything in the collection.
I wrote a blog post about it:
http://blogs.msdn.com/kirillosenkov/archive/2009/01/31/foreach.aspx
You can vote here if you'd like to see this method in .NET 4.0:
http://connect.microsoft.com/VisualStudio/feedback/ViewFeedback.aspx?FeedbackID=279093
In 3.5, all the extension methods added to IEnumerable are there for LINQ support (notice that they are defined in the System.Linq.Enumerable class). In this post, I explain why foreach doesn't belong in LINQ:
Existing LINQ extension method similar to Parallel.For?
Is it me or is the List<T>.Foreach pretty much been made obsolete by Linq.
Originally there was
foreach(X x in Y)
where Y simply had to be IEnumerable (Pre 2.0), and implement a GetEnumerator().
If you look at the MSIL generated you can see that it is exactly the same as
IEnumerator<int> enumerator = list.GetEnumerator();
while (enumerator.MoveNext())
{
int i = enumerator.Current;
Console.WriteLine(i);
}
(See http://alski.net/post/0a-for-foreach-forFirst-forLast0a-0a-.aspx for the MSIL)
Then in DotNet2.0 Generics came along and the List. Foreach has always felt to me to be an implementation of the Vistor pattern, (see Design Patterns by Gamma, Helm, Johnson, Vlissides).
Now of course in 3.5 we can instead use a Lambda to the same effect, for an example try
http://dotnet-developments.blogs.techtarget.com/2008/09/02/iterators-lambda-and-linq-oh-my/
I would like to expand on Aku's answer.
If you want to call a method for the sole purpose of it's side-effect without iterating the whole enumerable first you can use this:
private static IEnumerable<T> ForEach<T>(IEnumerable<T> xs, Action<T> f) {
foreach (var x in xs) {
f(x); yield return x;
}
}
My version an extension method which would allow you to use ForEach on IEnumerable of T
public static class EnumerableExtension
{
public static void ForEach<T>(this IEnumerable<T> source, Action<T> action)
{
source.All(x =>
{
action.Invoke(x);
return true;
});
}
}
No one has yet pointed out that ForEach<T> results in compile time type checking where the foreach keyword is runtime checked.
Having done some refactoring where both methods were used in the code, I favor .ForEach, as I had to hunt down test failures / runtime failures to find the foreach problems.