How to declare variable to use like that variable["name1"] in C# - c#

I want to declare a variable like this in C#
public anyType variable;
and then I can use it like this
variable["name1"] = anyValue1;
variable["name2"] = anyValue2;
I cannot find out any solution to declare what type of variable is to use it that way.
Please help me.
I appreciate any comments
Additional information:
I have a class:
public class Template
{
public string Name {get; set; }
public string Content {get; set;}
}
I want to set value for Template Content and Template Name like this
Template t = new Template();
t["Name"] = "template1";
t["Content"] = "templatecontent1";
not:
Template t = new Template();
t.Name = "template1";
t.Content = "templatecontent1";
I mean like a table attribute. Here I have table Template, it has 2 columns Name and Content. So that I can query Template["Name"] and Template["Content"]
Thanks

The type you need is Dictionary<string, object>. You can substitute object for whatever the type of anyValue1 and anyValue2 is.
EDIT: To allow indexers to set properties, you'll almost certainly need reflection. Try this setter on your Template class:
public string this[string field]
{
get
{
PropertyInfo prop = GetType().GetProperty(field);
return prop.GetValue(this, null);
}
set
{
PropertyInfo prop = GetType().GetProperty(field);
prop.SetValue(this, value, null);
}
}
There's no error handling in the above example though, so it'll fail horribly if you try setting a property that doesn't exist, or isn't a string, or doesn't have a getter/setter. You will need to add using System.Reflection to your uses clauses.

You can see this tutorial on indexers.
public Foo this[string index]
{
get { /* ... */ }
set { /* ... */ }
}

I think you're looking for indexers: link1, link2, link3
public class MyType
{
public string this[int index]
{
get
{
//getter implementation
}
set
{
//setter implementation
}
}
}
public class Usage
{
public MyType usageType = new MyType();
public Usage()
{
usageType[0] = "xx";
}
}
If you need you can always define generic type: http://msdn.microsoft.com/en-us/library/6x16t2tx.aspx, indexing with string: http://www.java2s.com/Code/CSharp/Language-Basics/IndexingwithanStringIndex.htm

Use reflection techniques but be seriously cautious.
public class Template
{
public string Name { get; set; }
public string Content { get; set; }
public string this[string name]
{
get
{
return typeof(Template).GetProperty(name).GetValue(this, null).ToString();
}
set
{
typeof(Template).GetProperty(name).SetValue(this, value, null);
}
}
}

Related

Instance { get; } = new <class>() - Is this a C#7/8/9 feature? [duplicate]

How do you give a C# auto-property an initial value?
I either use the constructor, or revert to the old syntax.
Using the Constructor:
class Person
{
public Person()
{
Name = "Initial Name";
}
public string Name { get; set; }
}
Using normal property syntax (with an initial value)
private string name = "Initial Name";
public string Name
{
get
{
return name;
}
set
{
name = value;
}
}
Is there a better way?
In C# 5 and earlier, to give auto implemented properties an initial value, you have to do it in a constructor.
Since C# 6.0, you can specify initial value in-line. The syntax is:
public int X { get; set; } = x; // C# 6 or higher
DefaultValueAttribute is intended to be used by the VS designer (or any other consumer) to specify a default value, not an initial value. (Even if in designed object, initial value is the default value).
At compile time DefaultValueAttribute will not impact the generated IL and it will not be read to initialize the property to that value (see DefaultValue attribute is not working with my Auto Property).
Example of attributes that impact the IL are ThreadStaticAttribute, CallerMemberNameAttribute, ...
Edited on 1/2/15
C# 6 :
With C# 6 you can initialize auto-properties directly (finally!), there are now other answers that describe that.
C# 5 and below:
Though the intended use of the attribute is not to actually set the values of the properties, you can use reflection to always set them anyway...
public class DefaultValuesTest
{
public DefaultValuesTest()
{
foreach (PropertyDescriptor property in TypeDescriptor.GetProperties(this))
{
DefaultValueAttribute myAttribute = (DefaultValueAttribute)property.Attributes[typeof(DefaultValueAttribute)];
if (myAttribute != null)
{
property.SetValue(this, myAttribute.Value);
}
}
}
public void DoTest()
{
var db = DefaultValueBool;
var ds = DefaultValueString;
var di = DefaultValueInt;
}
[System.ComponentModel.DefaultValue(true)]
public bool DefaultValueBool { get; set; }
[System.ComponentModel.DefaultValue("Good")]
public string DefaultValueString { get; set; }
[System.ComponentModel.DefaultValue(27)]
public int DefaultValueInt { get; set; }
}
When you inline an initial value for a variable it will be done implicitly in the constructor anyway.
I would argue that this syntax was best practice in C# up to 5:
class Person
{
public Person()
{
//do anything before variable assignment
//assign initial values
Name = "Default Name";
//do anything after variable assignment
}
public string Name { get; set; }
}
As this gives you clear control of the order values are assigned.
As of C#6 there is a new way:
public string Name { get; set; } = "Default Name";
Sometimes I use this, if I don't want it to be actually set and persisted in my db:
class Person
{
private string _name;
public string Name
{
get
{
return string.IsNullOrEmpty(_name) ? "Default Name" : _name;
}
set { _name = value; }
}
}
Obviously if it's not a string then I might make the object nullable ( double?, int? ) and check if it's null, return a default, or return the value it's set to.
Then I can make a check in my repository to see if it's my default and not persist, or make a backdoor check in to see the true status of the backing value, before saving.
In C# 6.0 this is a breeze!
You can do it in the Class declaration itself, in the property declaration statements.
public class Coordinate
{
public int X { get; set; } = 34; // get or set auto-property with initializer
public int Y { get; } = 89; // read-only auto-property with initializer
public int Z { get; } // read-only auto-property with no initializer
// so it has to be initialized from constructor
public Coordinate() // .ctor()
{
Z = 42;
}
}
Starting with C# 6.0, We can assign default value to auto-implemented properties.
public string Name { get; set; } = "Some Name";
We can also create read-only auto implemented property like:
public string Name { get; } = "Some Name";
See: C# 6: First reactions , Initializers for automatically implemented properties - By Jon Skeet
In Version of C# (6.0) & greater, you can do :
For Readonly properties
public int ReadOnlyProp => 2;
For both Writable & Readable properties
public string PropTest { get; set; } = "test";
In current Version of C# (7.0), you can do : (The snippet rather displays how you can use expression bodied get/set accessors to make is more compact when using with backing fields)
private string label = "Default Value";
// Expression-bodied get / set accessors.
public string Label
{
get => label;
set => this.label = value;
}
In C# 9.0 was added support of init keyword - very useful and extremly sophisticated way for declaration read-only auto-properties:
Declare:
class Person
{
public string Name { get; init; } = "Anonymous user";
}
~Enjoy~ Use:
// 1. Person with default name
var anonymous = new Person();
Console.WriteLine($"Hello, {anonymous.Name}!");
// > Hello, Anonymous user!
// 2. Person with assigned value
var me = new Person { Name = "#codez0mb1e"};
Console.WriteLine($"Hello, {me.Name}!");
// > Hello, #codez0mb1e!
// 3. Attempt to re-assignment Name
me.Name = "My fake";
// > Compilation error: Init-only property can only be assigned in an object initializer
In addition to the answer already accepted, for the scenario when you want to define a default property as a function of other properties you can use expression body notation on C#6.0 (and higher) for even more elegant and concise constructs like:
public class Person{
public string FullName => $"{First} {Last}"; // expression body notation
public string First { get; set; } = "First";
public string Last { get; set; } = "Last";
}
You can use the above in the following fashion
var p = new Person();
p.FullName; // First Last
p.First = "Jon";
p.Last = "Snow";
p.FullName; // Jon Snow
In order to be able to use the above "=>" notation, the property must be read only, and you do not use the get accessor keyword.
Details on MSDN
In C# 6 and above you can simply use the syntax:
public object Foo { get; set; } = bar;
Note that to have a readonly property simply omit the set, as so:
public object Foo { get; } = bar;
You can also assign readonly auto-properties from the constructor.
Prior to this I responded as below.
I'd avoid adding a default to the constructor; leave that for dynamic assignments and avoid having two points at which the variable is assigned (i.e. the type default and in the constructor). Typically I'd simply write a normal property in such cases.
One other option is to do what ASP.Net does and define defaults via an attribute:
http://msdn.microsoft.com/en-us/library/system.componentmodel.defaultvalueattribute.aspx
My solution is to use a custom attribute that provides default value property initialization by constant or using property type initializer.
[AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited = true)]
public class InstanceAttribute : Attribute
{
public bool IsConstructorCall { get; private set; }
public object[] Values { get; private set; }
public InstanceAttribute() : this(true) { }
public InstanceAttribute(object value) : this(false, value) { }
public InstanceAttribute(bool isConstructorCall, params object[] values)
{
IsConstructorCall = isConstructorCall;
Values = values ?? new object[0];
}
}
To use this attribute it's necessary to inherit a class from special base class-initializer or use a static helper method:
public abstract class DefaultValueInitializer
{
protected DefaultValueInitializer()
{
InitializeDefaultValues(this);
}
public static void InitializeDefaultValues(object obj)
{
var props = from prop in obj.GetType().GetProperties()
let attrs = prop.GetCustomAttributes(typeof(InstanceAttribute), false)
where attrs.Any()
select new { Property = prop, Attr = ((InstanceAttribute)attrs.First()) };
foreach (var pair in props)
{
object value = !pair.Attr.IsConstructorCall && pair.Attr.Values.Length > 0
? pair.Attr.Values[0]
: Activator.CreateInstance(pair.Property.PropertyType, pair.Attr.Values);
pair.Property.SetValue(obj, value, null);
}
}
}
Usage example:
public class Simple : DefaultValueInitializer
{
[Instance("StringValue")]
public string StringValue { get; set; }
[Instance]
public List<string> Items { get; set; }
[Instance(true, 3,4)]
public Point Point { get; set; }
}
public static void Main(string[] args)
{
var obj = new Simple
{
Items = {"Item1"}
};
Console.WriteLine(obj.Items[0]);
Console.WriteLine(obj.Point);
Console.WriteLine(obj.StringValue);
}
Output:
Item1
(X=3,Y=4)
StringValue
little complete sample:
using System.ComponentModel;
private bool bShowGroup ;
[Description("Show the group table"), Category("Sea"),DefaultValue(true)]
public bool ShowGroup
{
get { return bShowGroup; }
set { bShowGroup = value; }
}
You can simple put like this
public sealed class Employee
{
public int Id { get; set; } = 101;
}
In the constructor. The constructor's purpose is to initialized it's data members.
private string name;
public string Name
{
get
{
if(name == null)
{
name = "Default Name";
}
return name;
}
set
{
name = value;
}
}
Have you tried using the DefaultValueAttribute or ShouldSerialize and Reset methods in conjunction with the constructor? I feel like one of these two methods is necessary if you're making a class that might show up on the designer surface or in a property grid.
Use the constructor because "When the constructor is finished, Construction should be finished". properties are like states your classes hold, if you had to initialize a default state, you would do that in your constructor.
To clarify, yes, you need to set default values in the constructor for class derived objects. You will need to ensure the constructor exists with the proper access modifier for construction where used. If the object is not instantiated, e.g. it has no constructor (e.g. static methods) then the default value can be set by the field. The reasoning here is that the object itself will be created only once and you do not instantiate it.
#Darren Kopp - good answer, clean, and correct. And to reiterate, you CAN write constructors for Abstract methods. You just need to access them from the base class when writing the constructor:
Constructor at Base Class:
public BaseClassAbstract()
{
this.PropertyName = "Default Name";
}
Constructor at Derived / Concrete / Sub-Class:
public SubClass() : base() { }
The point here is that the instance variable drawn from the base class may bury your base field name. Setting the current instantiated object value using "this." will allow you to correctly form your object with respect to the current instance and required permission levels (access modifiers) where you are instantiating it.
public Class ClassName{
public int PropName{get;set;}
public ClassName{
PropName=0; //Default Value
}
}
This is old now, and my position has changed. I'm leaving the original answer for posterity only.
Personally, I don't see the point of making it a property at all if you're not going to do anything at all beyond the auto-property. Just leave it as a field. The encapsulation benefit for these item are just red herrings, because there's nothing behind them to encapsulate. If you ever need to change the underlying implementation you're still free to refactor them as properties without breaking any dependent code.
Hmm... maybe this will be the subject of it's own question later
class Person
{
/// Gets/sets a value indicating whether auto
/// save of review layer is enabled or not
[System.ComponentModel.DefaultValue(true)]
public bool AutoSaveReviewLayer { get; set; }
}
I know this is an old question, but it came up when I was looking for how to have a default value that gets inherited with the option to override, I came up with
//base class
public class Car
{
public virtual string FuelUnits
{
get { return "gasoline in gallons"; }
protected set { }
}
}
//derived
public class Tesla : Car
{
public override string FuelUnits => "ampere hour";
}
I think this would do it for ya givng SomeFlag a default of false.
private bool _SomeFlagSet = false;
public bool SomeFlag
{
get
{
if (!_SomeFlagSet)
SomeFlag = false;
return SomeFlag;
}
set
{
if (!_SomeFlagSet)
_SomeFlagSet = true;
SomeFlag = value;
}
}

C# Dynamically assign a specific default value to all fields of a certain type in new object instances?

I have a class that contains multiple string fields. Whenever an object of this class is instantiated, I'd like those fields to be automatically assigned with the same specific default value (something like "Undefined"). The reason is:
If I have to serialize the object before all fields are populated with real data, I want those fields to display as this default value rather than being null or string.Empty.
String fields may be added/removed from this class as the project progresses. I'd like to not have to touch the constructor every time that occurs.
Is there any way to do this other than explicitly assigning the default value to each of the string fields one by one in the class constructor?
In C# 6.0 and above, you can use Auto-Property Initializer:
https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-6#auto-property-initializers
Basically:
public string Property { get; set; } = "UNDEFINED";
You would have to use reflection. Something like this
Type type = obj.GetType();
PropertyInfo[] properties = type.GetProperties();
foreach (PropertyInfo property in properties)
{
if (property.PropertyType == typeof(string)) property.setValue(obj, "UNDEFINED");
}
First of all: I don't see how it could be best practice to do what you want.
If you want something like this to show up in your code:
public string Property { get; set; } = "UNDEFINED";
You should probably look into creating custom snippets that simply write exactly that. e.g. https://msdn.microsoft.com/en-us/library/ms165394.aspx
If you don't want that, you could use reflection to find all fields (e.g. strings) in the constructor and set them.
C# Reflection - Get field values from a simple class
FieldInfo[] fields = data.GetType().GetFields(BindingFlags.Public |
BindingFlags.NonPublic |
BindingFlags.Instance);
Setting a property by reflection with a string value
Ship ship = new Ship();
string value = "5.5";
PropertyInfo propertyInfo = ship.GetType().GetProperty("Latitude");
propertyInfo.SetValue(ship, Convert.ChangeType(value, propertyInfo.PropertyType), null);
Well, why not have an extension method like
public static class MyClass
{
public static string GetDefault(this str, string defaultVal)
{
return string.IsNullOrEmpty(str) ? defaultVal : str;
}
}
For a type
public class SomeClass
{
public string str = string.Empty;
}
You can call
SomeClass s = new SomeClass();
s.str.GetDefault("UNDEFINED");
You can initialize values to fields directly instead of in the constructor.
private string myStringVariable = "UNDEFINED";
Perhaps you should reconsider the structure of your program though if it permits many fields to be initialized to undefined.
Maybe I am misunderstanding this but why not do word for word what you described in the question in your constructor?
public class Weee
{
public string name { get; set; }
public int order { get; set; }
public string whatever { get; set; }
public Weee()
{
foreach(var p in typeof(Weee).GetProperties().Where(a => a.PropertyType == typeof(string)))
{
p.SetValue(this, "wut");
}
}
}
You can create a property initializer and have a base class use it. Your classes can then inherit from the base and have their properties automatically initialized:
public class PropertyInitializer
{
public void Initialize<T>(object obj, T value)
{
PropertyInfo[] properties = obj.GetType().GetProperties();
foreach (PropertyInfo property in properties)
{
if (property.PropertyType == typeof(T))
{
property.SetValue(obj, value);
}
}
}
}
public class InitializedBase
{
protected InitializedBase()
{
var initializer = new PropertyInitializer();
//Initialize all strings
initializer.Initialize<string>(this, "Juan");
//Initialize all integers
initializer.Initialize<int>(this, 31);
}
}
//Sample class to illustrate
public class AutoInitializedClass : InitializedBase
{
public string Name { get; set; }
public int Age { get; set; }
public override string ToString()
{
return string.Format("My name is {0} and I am {1} years old", Name, Age);
}
}
Sample usage:
AutoInitializedClass sample = new AutoInitializedClass();
Console.WriteLine(sample);
Console output:
My name is Juan and I am 31 years old
Notice the base class is using the PropertyInitializer class to initialize fields. This is a simplified example. You can expand it as it fits you (it may not work out of the box with all types).
I personally don't recommend this. It's called a constructor for a reason but you asked a question and I provided an answer.
Here is a simple class from which you can inherit that does exactly what you want:
Example usage:
public class MyClass : DefaultedObject<string>
{
public string MyStringField;
protected override string Default => "UNDEFINED";
}
var myClass = new MyClass();
// myClass.MyStringField == "UNDEFINED"
Implementation:
public abstract class DefaultedObject<T>
{
protected DefaultedObject()
{
T defaultValue = Default;
FieldInfo[] fields = GetType().GetFields(BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance);
foreach(FieldInfo field in fields) {
if(field.FieldType == typeof(T)) {
field.SetValue(this, defaultValue);
}
}
}
protected abstract T Default { get; }
}
I appreciate all the feedback to this question. Here's what ended up working. First, for any string attributes in the class that I wanted to receive an automatic default value, I established as a property:
public string attribute1 {get; set;}
public string attribute2 {get; set;}
And so on. Then, in the class constructor, I included the following loop which iterates through each property of type string:
foreach(PropertyInfo property in GetType().GetProperties())
{
if (property.PropertyType == typeof(string))
property.SetValue(this, "UNDEFINED"));
}
This produced the desired outcome for me.

Strongly-typed Search functionality for class?

I am trying to figure out something with c# code, and I'm not 100% sure if it is possible, but I am trying to implement search functionality for several classes which is streamlined and overall easy to develop for. Right now I have the following code:
[DataContract(IsReference = true), Serializable]
public class ClassSearch
{
[DataMember]
public string Name { get; set; }
[DataMember]
public object Value { get; set; }
public override string ToString()
{
return String.Format("{0} = {1}", Name, Value);
}
... // additional logic
}
However, I would like to include strong typing for the object value so that it only can be set to the property that is passed in, I guess like similar (hypothetical, not sure if this would work)
[DataContract(IsReference = true), Serializable]
public class ClassSearch<TProperty>
{
[DataMember]
public TProperty Property {get; set; }
public override string ToString()
{
return String.Format("{0} = '{1}'", Property.Name, Property);
}
... // additional logic
}
public class MainClass
{
public void Execute()
{
SomeClass someClass = new Class{
Property = "Value";
};
ClassSearch search = new ClassSearch<SomeClass.Property>{
Property = someClass.Property
};
var retString = search.ToString(); // Returns "Property = 'Value'"
}
}
It seems you are trying to create a WCF service to be able to pass any type you like.
First of all, this is not WSDL-friendly. All WCF services needs to be able to be exposed in WSDL. WSDL is all about well-defined contracts hence the types need be all defined. So that generic approach would not work - mainly because of WSDL. Having said that, you still can use generics but then you have to use KnownType and actually define all the types possible - which for me defeats the object.
Yet, one thing you can do is to serialize the object yourself and pass around with its type name across the wire. On the other side, you can pick it up deserialize.
So something along the line of:
// NOTE: Not meant for production!
[DataContract]
public class GenericWcfPayload
{
[DataMember]
public byte[] Payload {get; set;}
[DataMember]
public string TypeName {get; set;}
}
If there are no easier answers I would try it with this one.
You could use expressions like so:
// Sample object with a property.
SomeClass someClass = new SomeClass{Property = "Value"};
// Create the member expression.
Expression<Func<object /*prop owner object*/, object/*prop value*/>> e =
owner => ((SomeClass)owner).Property;
// Get property name by analyzing expression.
string propName = ((MemberExpression)e.Body).Member.Name;
// Get property value by compiling and running expression.
object propValue = e.Compile().Invoke(someClass);
You hand over your property by the member expression owner => ((SomeClass)owner).Property. This expression contains both information you need: property name and property value. The last two lines show you how to get name and value.
Following a larger example:
class MainClass
{
public static void Execute()
{
SomeClass someClass = new SomeClass{
Property = "Value"
};
var search = new ClassSearch(s => ((SomeClass)s).Property);
Console.Out.WriteLine("{0} = '{1}'", search.Property.Name, search.Property.GetValue(someClass));
}
}
class Reflector
{
public static string GetPropertyName(Expression<Func<object, object>> e)
{
if (e.Body.NodeType != ExpressionType.MemberAccess)
{
throw new ArgumentException("Wrong expression!");
}
MemberExpression me = ((MemberExpression) e.Body);
return me.Member.Name;
}
}
class ClassSearch
{
public ClassSearch(Expression<Func<object, object>> e)
{
Property = new PropertyNameAndValue(e);
}
public PropertyNameAndValue Property { get; private set; }
public override string ToString()
{
return String.Format("{0} = '{1}'", Property.Name, Property);
}
}
class PropertyNameAndValue
{
private readonly Func<object, object> _func;
public PropertyNameAndValue(Expression<Func<object, object>> e)
{
_func = e.Compile();
Name = Reflector.GetPropertyName(e);
}
public object GetValue(object propOwner)
{
return _func.Invoke(propOwner);
}
public string Name { get; private set; }
}
class SomeClass
{
public string Property { get; set; }
}
The main part of that example is the method Reflector.GetPropertyName(...) that returns the name of a property within an expression. I.e. Reflector.GetPropertyName(s => ((SomeClass)s).Property) would return "Property".
The advantage is: This is type-safe because in new ClassSearch(s => s.Property) compiling would end with an error if SomeClass would not have a property 'Property'.
The disadvantage is: This is not type-safe because if you write e.g. new ClassSearch(s => s.Method()) and there would be a method 'Method' then there would be no compile error but a runtime error.

How to create a property for a List<T>

private List<T> newList;
public List<T> NewList
{
get{return newList;}
set{newList = value;}
}
I want to create something like this, but this is won't work. it's just an example to demonstrate my goal as it's pretty common creating proprties for string and int and even T but I've never seen a List property
Is it even possible do such a thing, creating a property for type List ?
EDIT
I have a normal class that has normal properties (string properties, int properties, etc) but I have this property that stores user options, So on the presentation layer I had to convert them into a string so I could be able to store them in the Object. Now is it possible to have a property of type List to store the multivalues in a better and clean way, instead of converting information into one string and then split it and again join it! Thanks Again =D
EDIT2
private List<KeyValuePair<string, string>> _settings;
public List<KeyValuePair<string, string>> MySettings
{
get { return _settings; }
set { _settings = value; }
}
I used the exact code you posted but the property still won't appear in the object's instance, so I tried adding code in the get and set (I wonder why you left them empty or does it means something?) and also added a private variable in the class but still it doesn't appear in the properties of the object's instance!
I hope you could provide the exact code to implement this property and a simple code that assigns or retrieves from/to an instance of this class object
It's the first time to even hear about this KeyValuePair and all the tutorials are pretty simple and not for my case, sorry!
The Last Edit: After a lot of researching and the help of Mark Avenius I found the perfect answer. hope everyone can benefit from this.
NOW! HOW TO CREATE A PROPERTY FOR A LIST :
The Options Class
Public Class Options
{
private string id;
private int option;
public int ID
{
get { return id; }
set { id= value; }
}
public string Option
{
get { return option; }
set { option = value; }
}
}
The Users Class
public class Users
{
private int userId;
private string pass;
private List<Options> userOptions = new List<Options>();
public int ID
{
get { return userId; }
set { user = userId; }
}
public string Pass
{
get { return pass; }
set { pass = value; }
}
public List<Options> OptionsList
{
get { return userOptions; }
set { userOptions = value; }
}
}
The Presentation Layer
Users newUser = new Users ();
Options userOption = new Options ();
userOption.ID = int.Parse(txtBxID.Text);
userOption.Option = txtBxOption.Text;
Item.Options.Add(userOption);
T must be defined within the scope in which you are working. Therefore, what you have posted will work if your class is generic on T:
public class MyClass<T>
{
private List<T> newList;
public List<T> NewList
{
get{return newList;}
set{newList = value;}
}
}
Otherwise, you have to use a defined type.
EDIT: Per #lKashef's request, following is how to have a List property:
private List<int> newList;
public List<int> NewList
{
get{return newList;}
set{newList = value;}
}
This can go within a non-generic class.
Edit 2:
In response to your second question (in your edit), I would not recommend using a list for this type of data handling (if I am understanding you correctly). I would put the user settings in their own class (or struct, if you wish) and have a property of this type on your original class:
public class UserSettings
{
string FirstName { get; set; }
string LastName { get; set; }
// etc.
}
public class MyClass
{
string MyClassProperty1 { get; set; }
// etc.
UserSettings MySettings { get; set; }
}
This way, you have named properties that you can reference instead of an arbitrary index in a list. For example, you can reference MySettings.FirstName as opposed to MySettingsList[0].
Let me know if you have any further questions.
EDIT 3:
For the question in the comments, your property would be like this:
public class MyClass
{
public List<KeyValuePair<string, string>> MySettings { get; set; }
}
EDIT 4: Based on the question's edit 2, following is how I would use this:
public class MyClass
{
// note that this type of property declaration is called an "Automatic Property" and
// it means the same thing as you had written (the private backing variable is used behind the scenes, but you don't see it)
public List<KeyValuePair<string, string> MySettings { get; set; }
}
public class MyConsumingClass
{
public void MyMethod
{
MyClass myClass = new MyClass();
myClass.MySettings = new List<KeyValuePair<string, string>>();
myClass.MySettings.Add(new KeyValuePair<string, string>("SomeKeyValue", "SomeValue"));
// etc.
}
}
You mentioned that "the property still won't appear in the object's instance," and I am not sure what you mean. Does this property not appear in IntelliSense? Are you sure that you have created an instance of MyClass (like myClass.MySettings above), or are you trying to access it like a static property (like MyClass.MySettings)?
Simple and effective alternative:
public class ClassName
{
public List<dynamic> MyProperty { get; set; }
}
or
public class ClassName
{
public List<object> MyProperty { get; set; }
}
For differences see this post: List<Object> vs List<dynamic>
public class MyClass<T>
{
private List<T> list;
public List<T> MyList { get { return list; } set { list = value; } }
}
Then you can do something like
MyClass<int> instance1 = new MyClass<int>();
List<int> integers = instance1.MyList;
MyClass<Person> instance2 = new MyClass<Person>();
IEnumerable<Person> persons = instance2.MyList;
You could do this but the T generic parameter needs to be declared at the containing class:
public class Foo<T>
{
public List<T> NewList { get; set; }
}
It's possible to have a property of type List<T> but your class needs to be passed the T too.
public class ClassName<T>
{
public List<T> MyProperty { get; set; }
}
Either specify the type of T, or if you want to make it generic, you'll need to make the parent class generic.
public class MyClass<T>
{
etc

What is the best way to give a C# auto-property an initial value?

How do you give a C# auto-property an initial value?
I either use the constructor, or revert to the old syntax.
Using the Constructor:
class Person
{
public Person()
{
Name = "Initial Name";
}
public string Name { get; set; }
}
Using normal property syntax (with an initial value)
private string name = "Initial Name";
public string Name
{
get
{
return name;
}
set
{
name = value;
}
}
Is there a better way?
In C# 5 and earlier, to give auto implemented properties an initial value, you have to do it in a constructor.
Since C# 6.0, you can specify initial value in-line. The syntax is:
public int X { get; set; } = x; // C# 6 or higher
DefaultValueAttribute is intended to be used by the VS designer (or any other consumer) to specify a default value, not an initial value. (Even if in designed object, initial value is the default value).
At compile time DefaultValueAttribute will not impact the generated IL and it will not be read to initialize the property to that value (see DefaultValue attribute is not working with my Auto Property).
Example of attributes that impact the IL are ThreadStaticAttribute, CallerMemberNameAttribute, ...
Edited on 1/2/15
C# 6 :
With C# 6 you can initialize auto-properties directly (finally!), there are now other answers that describe that.
C# 5 and below:
Though the intended use of the attribute is not to actually set the values of the properties, you can use reflection to always set them anyway...
public class DefaultValuesTest
{
public DefaultValuesTest()
{
foreach (PropertyDescriptor property in TypeDescriptor.GetProperties(this))
{
DefaultValueAttribute myAttribute = (DefaultValueAttribute)property.Attributes[typeof(DefaultValueAttribute)];
if (myAttribute != null)
{
property.SetValue(this, myAttribute.Value);
}
}
}
public void DoTest()
{
var db = DefaultValueBool;
var ds = DefaultValueString;
var di = DefaultValueInt;
}
[System.ComponentModel.DefaultValue(true)]
public bool DefaultValueBool { get; set; }
[System.ComponentModel.DefaultValue("Good")]
public string DefaultValueString { get; set; }
[System.ComponentModel.DefaultValue(27)]
public int DefaultValueInt { get; set; }
}
When you inline an initial value for a variable it will be done implicitly in the constructor anyway.
I would argue that this syntax was best practice in C# up to 5:
class Person
{
public Person()
{
//do anything before variable assignment
//assign initial values
Name = "Default Name";
//do anything after variable assignment
}
public string Name { get; set; }
}
As this gives you clear control of the order values are assigned.
As of C#6 there is a new way:
public string Name { get; set; } = "Default Name";
Sometimes I use this, if I don't want it to be actually set and persisted in my db:
class Person
{
private string _name;
public string Name
{
get
{
return string.IsNullOrEmpty(_name) ? "Default Name" : _name;
}
set { _name = value; }
}
}
Obviously if it's not a string then I might make the object nullable ( double?, int? ) and check if it's null, return a default, or return the value it's set to.
Then I can make a check in my repository to see if it's my default and not persist, or make a backdoor check in to see the true status of the backing value, before saving.
In C# 6.0 this is a breeze!
You can do it in the Class declaration itself, in the property declaration statements.
public class Coordinate
{
public int X { get; set; } = 34; // get or set auto-property with initializer
public int Y { get; } = 89; // read-only auto-property with initializer
public int Z { get; } // read-only auto-property with no initializer
// so it has to be initialized from constructor
public Coordinate() // .ctor()
{
Z = 42;
}
}
Starting with C# 6.0, We can assign default value to auto-implemented properties.
public string Name { get; set; } = "Some Name";
We can also create read-only auto implemented property like:
public string Name { get; } = "Some Name";
See: C# 6: First reactions , Initializers for automatically implemented properties - By Jon Skeet
In Version of C# (6.0) & greater, you can do :
For Readonly properties
public int ReadOnlyProp => 2;
For both Writable & Readable properties
public string PropTest { get; set; } = "test";
In current Version of C# (7.0), you can do : (The snippet rather displays how you can use expression bodied get/set accessors to make is more compact when using with backing fields)
private string label = "Default Value";
// Expression-bodied get / set accessors.
public string Label
{
get => label;
set => this.label = value;
}
In C# 9.0 was added support of init keyword - very useful and extremly sophisticated way for declaration read-only auto-properties:
Declare:
class Person
{
public string Name { get; init; } = "Anonymous user";
}
~Enjoy~ Use:
// 1. Person with default name
var anonymous = new Person();
Console.WriteLine($"Hello, {anonymous.Name}!");
// > Hello, Anonymous user!
// 2. Person with assigned value
var me = new Person { Name = "#codez0mb1e"};
Console.WriteLine($"Hello, {me.Name}!");
// > Hello, #codez0mb1e!
// 3. Attempt to re-assignment Name
me.Name = "My fake";
// > Compilation error: Init-only property can only be assigned in an object initializer
In addition to the answer already accepted, for the scenario when you want to define a default property as a function of other properties you can use expression body notation on C#6.0 (and higher) for even more elegant and concise constructs like:
public class Person{
public string FullName => $"{First} {Last}"; // expression body notation
public string First { get; set; } = "First";
public string Last { get; set; } = "Last";
}
You can use the above in the following fashion
var p = new Person();
p.FullName; // First Last
p.First = "Jon";
p.Last = "Snow";
p.FullName; // Jon Snow
In order to be able to use the above "=>" notation, the property must be read only, and you do not use the get accessor keyword.
Details on MSDN
In C# 6 and above you can simply use the syntax:
public object Foo { get; set; } = bar;
Note that to have a readonly property simply omit the set, as so:
public object Foo { get; } = bar;
You can also assign readonly auto-properties from the constructor.
Prior to this I responded as below.
I'd avoid adding a default to the constructor; leave that for dynamic assignments and avoid having two points at which the variable is assigned (i.e. the type default and in the constructor). Typically I'd simply write a normal property in such cases.
One other option is to do what ASP.Net does and define defaults via an attribute:
http://msdn.microsoft.com/en-us/library/system.componentmodel.defaultvalueattribute.aspx
My solution is to use a custom attribute that provides default value property initialization by constant or using property type initializer.
[AttributeUsage(AttributeTargets.Property, AllowMultiple = false, Inherited = true)]
public class InstanceAttribute : Attribute
{
public bool IsConstructorCall { get; private set; }
public object[] Values { get; private set; }
public InstanceAttribute() : this(true) { }
public InstanceAttribute(object value) : this(false, value) { }
public InstanceAttribute(bool isConstructorCall, params object[] values)
{
IsConstructorCall = isConstructorCall;
Values = values ?? new object[0];
}
}
To use this attribute it's necessary to inherit a class from special base class-initializer or use a static helper method:
public abstract class DefaultValueInitializer
{
protected DefaultValueInitializer()
{
InitializeDefaultValues(this);
}
public static void InitializeDefaultValues(object obj)
{
var props = from prop in obj.GetType().GetProperties()
let attrs = prop.GetCustomAttributes(typeof(InstanceAttribute), false)
where attrs.Any()
select new { Property = prop, Attr = ((InstanceAttribute)attrs.First()) };
foreach (var pair in props)
{
object value = !pair.Attr.IsConstructorCall && pair.Attr.Values.Length > 0
? pair.Attr.Values[0]
: Activator.CreateInstance(pair.Property.PropertyType, pair.Attr.Values);
pair.Property.SetValue(obj, value, null);
}
}
}
Usage example:
public class Simple : DefaultValueInitializer
{
[Instance("StringValue")]
public string StringValue { get; set; }
[Instance]
public List<string> Items { get; set; }
[Instance(true, 3,4)]
public Point Point { get; set; }
}
public static void Main(string[] args)
{
var obj = new Simple
{
Items = {"Item1"}
};
Console.WriteLine(obj.Items[0]);
Console.WriteLine(obj.Point);
Console.WriteLine(obj.StringValue);
}
Output:
Item1
(X=3,Y=4)
StringValue
little complete sample:
using System.ComponentModel;
private bool bShowGroup ;
[Description("Show the group table"), Category("Sea"),DefaultValue(true)]
public bool ShowGroup
{
get { return bShowGroup; }
set { bShowGroup = value; }
}
You can simple put like this
public sealed class Employee
{
public int Id { get; set; } = 101;
}
In the constructor. The constructor's purpose is to initialized it's data members.
private string name;
public string Name
{
get
{
if(name == null)
{
name = "Default Name";
}
return name;
}
set
{
name = value;
}
}
Have you tried using the DefaultValueAttribute or ShouldSerialize and Reset methods in conjunction with the constructor? I feel like one of these two methods is necessary if you're making a class that might show up on the designer surface or in a property grid.
Use the constructor because "When the constructor is finished, Construction should be finished". properties are like states your classes hold, if you had to initialize a default state, you would do that in your constructor.
To clarify, yes, you need to set default values in the constructor for class derived objects. You will need to ensure the constructor exists with the proper access modifier for construction where used. If the object is not instantiated, e.g. it has no constructor (e.g. static methods) then the default value can be set by the field. The reasoning here is that the object itself will be created only once and you do not instantiate it.
#Darren Kopp - good answer, clean, and correct. And to reiterate, you CAN write constructors for Abstract methods. You just need to access them from the base class when writing the constructor:
Constructor at Base Class:
public BaseClassAbstract()
{
this.PropertyName = "Default Name";
}
Constructor at Derived / Concrete / Sub-Class:
public SubClass() : base() { }
The point here is that the instance variable drawn from the base class may bury your base field name. Setting the current instantiated object value using "this." will allow you to correctly form your object with respect to the current instance and required permission levels (access modifiers) where you are instantiating it.
public Class ClassName{
public int PropName{get;set;}
public ClassName{
PropName=0; //Default Value
}
}
This is old now, and my position has changed. I'm leaving the original answer for posterity only.
Personally, I don't see the point of making it a property at all if you're not going to do anything at all beyond the auto-property. Just leave it as a field. The encapsulation benefit for these item are just red herrings, because there's nothing behind them to encapsulate. If you ever need to change the underlying implementation you're still free to refactor them as properties without breaking any dependent code.
Hmm... maybe this will be the subject of it's own question later
class Person
{
/// Gets/sets a value indicating whether auto
/// save of review layer is enabled or not
[System.ComponentModel.DefaultValue(true)]
public bool AutoSaveReviewLayer { get; set; }
}
I know this is an old question, but it came up when I was looking for how to have a default value that gets inherited with the option to override, I came up with
//base class
public class Car
{
public virtual string FuelUnits
{
get { return "gasoline in gallons"; }
protected set { }
}
}
//derived
public class Tesla : Car
{
public override string FuelUnits => "ampere hour";
}
I think this would do it for ya givng SomeFlag a default of false.
private bool _SomeFlagSet = false;
public bool SomeFlag
{
get
{
if (!_SomeFlagSet)
SomeFlag = false;
return SomeFlag;
}
set
{
if (!_SomeFlagSet)
_SomeFlagSet = true;
SomeFlag = value;
}
}

Categories