I'm writing a DLL wrapper for my C++ library, to be called from C#. This wrapper should also have callback functions called from the library and implemented in C#. These functions have for instance std::vector<unsigned char> as output parameters. I don't know how to make this. How do I pass a buffer of unknown size from C# to C++ via a callback function?
Let's take this example
CallbackFunction FunctionImplementedInCSharp;
void FunctionCalledFromLib(const std::vector<unsigned char>& input, std::vector<unsigned char>& output)
{
// Here FunctionImplementedInCSharp (C# delegate) should somehow be called
}
void RegisterFunction(CallbackFunction f)
{
FunctionImplementedInCSharp = f;
}
How should CallbackFunction be defined and what is the code inside FunctionCalledFromLib?
One of the things that dumb me is: how do I delete a buffer created by C# inside C++ code?
As of Visual Studio 2013 at least, there is a safe way to pass callbacks from C# to C++ and have C++ store them and invoke them asynchronously later from unmanaged code. What you can do is create a managed C++/CX class (e.g., named "CallbackManager") to hold the callback delegate references in a map, keyed off an enum value for each. Then your unmanaged code can retrieve a managed delegate reference from the managed C++/CX CallbackManager class via the delegate's associated enum value. That way you don't have to store raw function pointers and so you don't have to worry about the delegate being moved or garbage-collected: it stays in the managed heap throughout its lifecycle.
On the C++ side in CallbacksManager.h:
#include <unordered_map>
#include <mutex>
using namespace Platform;
namespace CPPCallbacks
{
// define callback IDs; this is what unmanaged C++ code will pass to the managed CallbacksManager class to retrieve a delegate instance
public enum class CXCallbackType
{
cbtLogMessage,
cbtGetValueForSetting
// TODO: add additional enum values as you add more callbacks
}
// defines the delegate signatures for our callbacks; these are visible to the C# side as well
public delegate void LogMessageDelegate(int level, String^ message);
public delegate bool GetValueForSettingDelegate(String^ settingName, String^* settingValueOut);
// TODO: define additional callbacks here as you need them
// Singleton WinRT class to manage C# callbacks; since this class is marked 'public' it is consumable from C# as well
public ref class CXCallbacksManager sealed
{
private:
CXCallbacksManager() { } // this is private to prevent incorrect instantiation
public:
// public methods and properties are all consumable by C# as well
virtual ~CXCallbacksManager() { }
static property CXCallbacksManager^ Instance
{
CXCallbacksManager^ get();
}
bool UnregisterCallback(CXCallbackType cbType);
void UnregisterAllCallbacks();
Delegate^ GetCallback(CXCallbackType cbType);
// define callback registration methods
RegisterLogMessageCallback(LogMessageDelegate^ cb) { RegisterCallback(CXCallbackType::cbtLogMessage, cb); }
RegisterGetValueForSettingCallback(GetValueForSettingDelegate^ cb) { RegisterCallback(CXCallbackType::GetValueForSetting, cb); }
// TODO: define additional callback registration methods as you add more callbacks
private:
void RegisterCallback(CXCallbackType cbType, Delegate^ rCallbackFunc);
typedef unordered_map<CXCallbackType, Delegate^> CALLBACK_MAP;
typedef pair<CXCallbackType, Delegate^> CBType_Delegate_Pair;
// Note: IntelliSense errors shown for static data is a Visual Studio IntellSense bug; the code below builds fine
// See http://social.msdn.microsoft.com/Forums/windowsapps/en-US/b5d43215-459a-41d6-a85e-99e3c30a162e/about-static-member-of-ref-class?forum=winappswithnativecode
static mutex s_singletonMutex;
static CXCallbacksManager^ s_rInstance;
mutex m_callbackMapMutex;
CALLBACK_MAP m_callbacksMap; // key=CallbackType, value = C# delegate (function) pointer
};
}
In CallbacksManager.cpp we implement the managed C++/CX class accessed by both C# and our unmanaged C++ code:
#include <assert.h>
#include "CXCallbacksManager.h"
using namespace Platform;
namespace CPPCallbacks
{
// define static class data
CXCallbacksManager^ CXCallbacksManager::s_rInstance;
mutex CXCallbacksManager::s_singletonMutex;
// Returns our singleton instance; this method is thread-safe
CXCallbacksManager^ CXCallbacksManager::Instance::get()
{
s_singletonMutex.lock();
if (s_rInstance == nullptr)
s_rInstance = ref new CXCallbacksManager(); // this lives until the application terminates
s_singletonMutex.unlock();
return s_rInstance;
}
// Register a C# callback; this method is thread-safe
void CXCallbacksManager::RegisterCallback(const CXCallbackType cbType, Delegate^ rCallbackFunc)
{
_ASSERTE(rCallbackFunc);
m_callbackMapMutex.lock();
m_callbacksMap.insert(CBType_Delegate_Pair(cbType, rCallbackFunc));
m_callbackMapMutex.unlock();
}
// Unregister a C# callback; this method is thread-safe
// Returns: true on success, false if no callback was registered for callbackType
bool CXCallbacksManager::UnregisterCallback(const CXCallbackType cbType)
{
m_callbackMapMutex.lock();
const bool bRemoved = (m_callbacksMap.erase(cbType) > 0);
m_callbackMapMutex.unlock();
return bRemoved;
}
// Unregister all callbacks; this method is thread-safe
void CXCallbacksManager::UnregisterAllCallbacks()
{
// must lock the map before iterating across it
// Also, we can't change the contents of the map as we iterate across it, so we have to build a vector of all callback types in the map first.
vector<CXCallbackType> allCallbacksList;
m_callbackMapMutex.lock();
for (CALLBACK_MAP::const_iterator it = m_callbacksMap.begin(); it != m_callbacksMap.end(); it++)
allCallbacksList.push_back(it->first);
for (unsigned int i = 0; i < allCallbacksList.size(); i++)
{
CALLBACK_MAP::const_iterator it = m_callbacksMap.find(allCallbacksList[i]);
if (it != m_callbacksMap.end()) // sanity check; should always succeed
UnregisterCallback(it->first);
}
m_callbackMapMutex.unlock();
}
// Retrieve a registered C# callback; returns NULL if no callback registered for type
Delegate^ CXCallbacksManager::GetCallback(const CXCallbackType cbType)
{
Delegate^ rCallbackFunc = nullptr;
m_callbackMapMutex.lock();
CALLBACK_MAP::const_iterator it = m_callbacksMap.find(cbType);
if (it != m_callbacksMap.end())
rCallbackFunc = it->second;
else
_ASSERTE(false); // should never happen! This means the caller either forgot to register a callback for this cbType or already unregistered the callback for this cbType.
m_callbackMapMutex.unlock();
return rCallbackFunc;
}
}
The delegate instances remain stored in the managed heap by our CXCallbacksManager class, so now it's easy and safe to store callbacks on the C++ side for unmanaged code to invoke later asynchronously. Here is the C# side registering two callbacks:
using CPPCallbacks;
namespace SomeAppName
{
internal static class Callbacks
{
// invoked during app startup to register callbacks for unmanaged C++ code to invoke asynchronously
internal static void RegisterCallbacks()
{
CPPCallbacks.CXCallbacksManager.Instance.RegisterLogMessageCallback(new LogMessageDelegate(LogMessageDelegateImpl));
CPPCallbacks.CXCallbacksManager.Instance.RegisterGetValueForSettingCallback(new GetValueForSettingDelegate(GetValueForSettingDelegateImpl));
// TODO: register additional callbacks as you add them
}
//-----------------------------------------------------------------
// Callback delegate implementation methods are below; these are invoked by C++
// Although these example implementations are in a static class, you could also pass delegate instances created
// from inside a non-static class, which would maintain their state just like any other instance method (i.e., they have a 'this' object).
//-----------------------------------------------------------------
private static void LogMessageDelegateImpl(int level, string message)
{
// This next line is shown for example purposes, but at this point you can do whatever you want because
// you are running in a normal C# delegate context.
Logger.WriteLine(level, message);
}
private static bool GetValueForSettingDelegateImpl(String settingName, out String settingValueOut)
{
// This next line is shown for example purposes, but at this point you can do whatever you want because
// you are running in a normal C# delegate context.
return Utils.RetrieveEncryptedSetting(settingName, out settingValueOut);
}
};
}
Lastly, here is how to invoke your registered C# callbacks from unmanaged C++ code:
#include <assert.h>
#include <atlstr.h> // for CStringW
#include "CXCallbacksManager.h"
using namespace CPPCallbacks;
// this is an unmanaged C++ function in the same project as our CXCallbacksManager class
void LogMessage(LogLevel level, const wchar_t *pMsg)
{
_ASSERTE(msg);
auto rCallback = static_cast<LogMessageDelegate^>(CXCallbacksManager::Instance->GetCallback(CXCallbackType::cbtLogMessage));
_ASSERTE(rCallback);
rCallback(level, ref new String(pMsg)); // invokes C# method
}
// this is an unmanaged C++ function in the same project as our CXCallbacksManager class
// Sets settingValue to the value retrieved from C# for pSettingName
// Returns: true if the value existed and was set, false otherwise
bool GetValueForSetting(const wchar_t *pSettingName, CStringW &settingValue)
{
bool bRetCode = false;
auto rCallback = static_cast<GetValueForSettingDelegate^>(CXCallbacksManager::Instance->GetCallback(CXCallbackType::cbtGetValueForSetting));
_ASSERTE(rCallback);
if (rCallback) // sanity check; should never be null
{
String^ settingValueOut;
bRetCode = rCallback(ref new String(pSettingName), &settingValueOut);
// store the retrieved setting value to our unmanaged C++ CStringW output parameter
settingValue = settingValueOut->Data();
}
return bRetCode;
}
This all works because although you cannot store a managed delegate reference as a member variable inside an unmanaged class, you can still retrieve and invoke a managed delegate from unmanaged code, which is what the above two native C++ methods do.
There are some things you should be aware of. The first is that if you are calling a .NET delegate from unmanaged code, then unless you follow some pretty narrow constraints, you will be in for pain.
Ideally, you can create a delegate in C# pass it into managed code, marshal it into a function pointer, hold onto it for as long as you like, then call it with no ill effects. The .NET documentation says so.
I can tell you that this is simply not true. Eventually, part of your delegate or its thunk will get garbage collected and when you call the function pointer from unmanaged code you will get sent into oblivion. I don't care what Microsoft says, I've followed their prescription to the letter and watched function pointers get turned into garbage, especially in server-side code behinds.
Given that, the most effective way to use function pointers is thus:
C# code calls unmanaged code, passing in delegate.
Unmanaged code marshals the delegate to a function pointer.
Unmanaged code does some work, possible calling the function pointer.
Unmanaged code drops all references to the function pointer.
Unmanaged code returns to managed code.
Given that, suppose we have the following in C#:
public void PerformTrick(MyManagedDelegate delegate)
{
APIGlue.CallIntoUnamangedCode(delegate);
}
and then in managed C++ (not C++/CLI):
static CallIntoUnmanagedCode(MyManagedDelegate *delegate)
{
MyManagedDelegate __pin *pinnedDelegate = delegate;
SOME_CALLBACK_PTR p = Marshal::GetFunctionPointerForDelegate(pinnedDelegate);
CallDeepIntoUnmanagedCode(p); // this will call p
}
I haven't done this recently in C++/CLI - the syntax is different - I think it ends up looking like this:
// This is declared in a class
static CallIntoUnamangedCode(MyManagedDelegate ^delegate)
{
pin_ptr<MyManagedDelegate ^> pinnedDelegate = &delegate;
SOME_CALLBACK_PTR p = Marshal::GetFunctionPointerForDelegate(pinnedDelegate);
CallDeepIntoUnmanagedCode(p); // This will call p
}
When you exit this routines, the pinning gets released.
When you really, really need to have function pointers hanging around for a while before calling, I have done the following in C++/CLI:
Made a hashtable that is a map from int -> delegate.
Made register/unregister routines that add new delegates into the hashtable, bumping up a counter for the hash int.
Made a single static unmanaged callback routine that is registered into unmanaged code with an int from the register call. When this routine is called, it calls back into managed code saying "find the delegate associated with <int> and call it on these arguments".
What happens is that the delegates don't have thunks that do transitions anymore since they're implied. They're free to hang around in limbo being moved by the GC as needed. When they get called, the delegate will get pinned by the CLR and released as needed. I have also seen this method fail, particularly in the case of code that statically registers callbacks at the beginning of time and expects them to stay around to the end of time. I've seen this fail in ASP.NET code behind as well as server side code for Silverlight working through WCF. It's rather unnerving, but the way to fix it is to refactor your API to allow late(r) binding to function calls.
To give you an example of when this will happen - suppose you have a library that includes a function like this:
typedef void * (*f_AllocPtr) (size_t nBytes);
typedef void *t_AllocCookie;
extern void RegisterAllocFunction(f_AllocPtr allocPtr, t_AllocCookie cookie);
and the expectation is that when you call an API that allocates memory, it will be vectored off into the supplied f_AllocPtr. Believe it or not, you can write this in C#. It's sweet:
public IntPtr ManagedAllocMemory(long nBytes)
{
byte[] data = new byte[nBytes];
GCHandle dataHandle = GCHandle.Alloc(data, GCHandleType.Pinned);
unsafe {
fixed (byte *b = &data[0]) {
dataPtr = new IntPtr(b);
RegisterPointerHandleAndArray(dataPtr, dataHandle, data);
return dataPtr;
}
}
}
RegisterPointerHandleAndArray stuffs the triplet away for safe keeping. That way when the corresponding free gets called, you can do this:
public void ManagedFreeMemory(IntPtr dataPointer)
{
GCHandle dataHandle;
byte[] data;
if (TryUnregister(dataPointer, out dataHandle, out data)) {
dataHandle.Free();
// do anything with data? I dunno...
}
}
And of course this is stupid because allocated memory is now pinned in the GC heap and will fragment it to hell - but the point is that it's doable.
But again, I have personally seen this fail unless the actual pointers are short lived. This typically means wrapping your API, so that when you call into a routine that accomplishes a specific task, it registers callbacks, does the task, and then pulls the callbacks out.
As it turns out, the answer to the original question is rather simple, once you know it, and the whole callback issue was no issue. The input buffer parameter is replaced with parameter pair unsigned char *input, int input_length, and the output buffer parameter is replaced with parameter pair unsigned char **output, int *output_length. The C# delegate should be something like this
public delegate int CallbackDelegate(byte[] input, int input_length,
out byte[] output, out int output_length);
And wrapper in C++ should be something like this
void FunctionCalledFromLib(const std::vector<unsigned char>& input, std::vector<unsigned char>& output)
{
unsigned char *output_aux;
int output_length;
FunctionImplementedInCSharp(
&input[0], input.size(), &ouput_aux, &output_length);
output.assign(output_aux, output_aux + output_length);
CoTaskMemFree(output_aux); // IS THIS NECESSARY?
}
The last line is the last part of the mini-puzzle. Do I have to call CoTaskMemFree, or will the marshaller do it for me automagically?
As for the beautiful essay by plinth, I hope to bypass the whole problem by using a static function.
There is no point to using C++/cli.
And here is a real world example from my project.
public ImageSurface(byte[] pngData)
: base(ConstructImageSurfaceFromPngData(pngData), true)
{
offset = 0;
}
private static int offset;
private static IntPtr ConstructImageSurfaceFromPngData(byte[] pngData)
{
NativeMethods.cairo_read_func_t func = delegate(IntPtr closure, IntPtr out_data, int length)
{
Marshal.Copy(pngData, offset, out_data, length);
offset += length;
return Status.Success;
};
return NativeMethods.cairo_image_surface_create_from_png_stream(func, IntPtr.Zero);
}
That is used to transfer PNG data from C# to the native cairo API.
You can see how the C function pointer cairo_read_func_t is implemented in C# and then used as a callback for cairo_image_surface_create_from_png_stream.
Here is a similar example.
Related
C#9 introduced unmanaged function pointers (e.g. delegate* unmanaged[Cdecl]<void>). I have been experimenting with these to learn how they work. After upgrading to .NET 5.0.201, I got a new warning:
error CS8909: Comparison of function pointers might yield an unexpected result, since pointers to the same function may be distinct.
According to this issue, taking the reference of a managed function more than once may not always yield the same pointer.
Here is an example of the kind of code that might trigger this warning:
// saves a function pointer in unmanaged code
[DllImport("mylib", CallingConvention = CallingConvention.Cdecl)]
static extern void set_func(delegate* unmanaged[Cdecl]<void> func);
// retrieves the function pointer that was saved above
[DllImport("mylib", CallingConvention = CallingConvention.Cdecl)]
static extern delegate* unmanaged[Cdecl]<void> get_func();
// unmanaged function implemented in C#
[UnmanagedCallersOnly(CallConvs = new[] { typeof(CallConvCdecl) })]
static void MyFunc() {
...
}
void Test() {
// pass our unmanaged callers only function to unmanaged code
set_func(&MyFunc);
...
// sometime later we want to check if unmanaged code still has the same function
// pointer or if it changed
if (get_func() == (delegate* unmanaged[Cdecl]<void>)&MyFunc) { // this line triggers CS8909 warning
...
}
}
I can see how the code would fail to work correctly if the first call to &MyFunc yielded a different function pointer than the second call to &MyFunc. So the warning makes sense.
What alternative could be used to perform the same sort of test that does not lead to the problem indicated by the CS8909 warning?
For example, is this safe?
// identical code from above is omitted for brevity, only Test() method is changed
static readonly delegate* unmanaged[Cdecl]<void> myFunc = &MyFunc;
void Test() {
// pass our unmanaged callers only function to unmanaged code
set_func(myFunc);
...
// sometime later we want to check if unmanaged code still has the same function
// pointer or if it changed
#pragma warning disable CS8909
if (get_func() == myFunc) { // would still trigger warning CS8909 if it was enabled
#pragma warning restore CS8909
...
}
Is there another alternative that could avoid having to disable the warning?
Split this into three parts.
Get an unmanaged pointer for a delegate and save the result in managed land
Call set_func with the result stored from 1.
Check the result of get_func against the result stored from 1.
This avoids the issue since the conversion of a delegate is not a bijection, but it is perfectly valid to compare IntPtr.
An example:
void Test()
{
// create a GC root to the delegate
var myFuncDelegate = new Action(myFunc);
var pMyFunc = Marshal.GetFunctionPointerForDelegate(myFuncDelegate);
set_func(pMyFunc);
// ...
if (get_func() == pMyFunc)
{
// ...
}
// Ensure we don't collect myFuncDelegate while unmanaged code has a reference
GC.KeepAlive(myFuncDelegate);
}
I have a set of C functions that I need to use on an ARM target, in C++ and in C#. I can successfully wrap up the C into a C++ DLL and then into a C# DLL and use all the C functions I've bound successfully. However, I have a debug function that I want to be able to print to the C# GUI and the delegate it uses is being garbage collected rather than left in place for the duration.
Managed Debugging Assistant 'CallbackOnCollectedDelegate' has detected a
problem in 'C:\utm\pc\utm_win32_app\bin\Debug\utm_win32_app.vshost.exe'.
Additional Information: A callback was made on a garbage collected delegate of
type
'utm_dll_wrapper_cs!MessageCodec.MessageCodec_dll+guiPrintToConsoleCallback::
Invoke'. This may cause application crashes, corruption and data loss. When
passing delegates to unmanaged code, they must be kept alive by the managed
application until it is guaranteed that they will never be called.
Here's the snippet of C code that uses and sets up the callback mp_guiPrintToConsole:
#ifdef WIN32
static void (* mp_guiPrintToConsole) (const char*) = NULL;
void logMsg (const char * pFormat, ...)
{
char buffer[MAX_DEBUG_MESSAGE_LEN];
va_list args;
va_start (args, pFormat);
vsnprintf (buffer, sizeof (buffer), pFormat, args);
va_end (args);
#ifdef WIN32
if (mp_guiPrintToConsole)
{
(*mp_guiPrintToConsole) (buffer);
}
#else
// Must be on ARM
printf (buffer);
#endif
}
void initDll (void (*guiPrintToConsole) (const char *))
{
#ifdef WIN32
mp_guiPrintToConsole = guiPrintToConsole;
// This is the signal to the GUI that we're done with initialisation
logMsg ("ready.\r\n");
#endif
}
Here's the C++ code, built into a DLL along with the C code, that can be called from C# and passes in the function pointer printToConsole:
void msInitDll (void (*printToConsole) (const char *))
{
initDll (printToConsole);
}
Here's the snippet code from the C# DLL that calls msInitDll(), passing in guiPrintToConsole(), and defines the delegate onConsoleTrace, which I guess is the thing that is disappearing:
[UnmanagedFunctionPointer (CallingConvention.Cdecl)]
public delegate void _msInitDll([MarshalAs (UnmanagedType.FunctionPtr)] guiPrintToConsoleCallback callbackPointer);
public _msInitDll msInitDll;
public delegate void ConsoleTrace(string data);
public event ConsoleTrace onConsoleTrace;
public void guiPrintToConsole(StringBuilder data)
{
if (onConsoleTrace != null)
{
onConsoleTrace (data.ToString ());
}
}
public void bindDll(string dllLocation)
{
IntPtr ptrDll = LoadLibrary (dllLocation);
if (ptrDll == IntPtr.Zero) throw new Exception (String.Format ("Cannot find {0}", dllLocation));
//...
// All the other DLL function bindings are here
//...
msInitDll = (_msInitDll)bindItem(ptrDll, "msInitDll", typeof(_msInitDll));
msInitDll(guiPrintToConsole);
}
I've looked at the various answers here and the most promising seemed to be to create a static variable in the C# code:
static GCHandle gch;
...and then use that to reference onConsoleTrace in the C# bindDll() function:
gch = GCHandle.Alloc(onConsoleTrace);
However, that doesn't do me any good. I've tried a few other attempts at declaring things static but nothing seems to get me where I want to be. Can anyone suggest another approach to fixing the problem? I have a bug that I need to fix and the lack of any debug is proving quite annoying.
Rob
The following line uses some syntactic sugar:
msInitDll(guiPrintToConsole);
The full syntax is:
msInitDll(new guiPrintToConsoleCallback(guiPrintToConsole));
Hopefully now you see why the delegate can get garbage-collected.
One simple workaround:
var callback = new guiPrintToConsoleCallback(guiPrintToConsole);
msInitDll(callback);
// ... some other code
GC.KeepAlive(callback);
Now the delegate is guaranteed to be alive up to the GC.KeepAlive call.
But you most probably need the delegate to stay alive for longer. As the error message says, simply keep a reference to it. If you need it for the full C# app lifetime duration, turn the callback local to a static field in your class. Static fields are treated as GC roots as their values are always reachable.
And the answer was, in the C# DLL code, add the static variable:
public static guiPrintToConsoleCallback debugCallback;
...and then, in C# bindDLL(), change:
msInitDll(guiPrintToConsole);
...to
debugCallback = new guiPrintToConsoleCallback(guiPrintToConsole);
msInitDll(debugCallback);
Simple when you know how.
I am trying to create a struct that contains a function and an object to be handled by that function. For example:
public delegate void MyFunc(object o);
public struct MyData
{
public object o;
public MyFunc func;
public MyData(object o, MyFunc func)
{
this.o = o;
this.func = func;
}
public HandleData()
{
func(o);
}
}
The purpose of this struct is to use any function to handle any data.
I wrap this struct into a IntPtr data type and send to another to handle this struct
private void PrepareData(object o, MyFunc func)
{
MyData md = new MyData(o, func);
int size = Marshal.SizeOf(md);
IntPtr wParam = Marshal.AllocHGlobal(size);
Marshal.StructureToPtr(md, wParam, false);
DoJob(wParam);
}
private void DoJob(IntPtr wParam)
{
if (wParam != IntPtr.Zero)
{
Type type = typeof(MyData);
MyData md = (MyData)Marshal.PtrToStructure(p,type);
md.HandleData();
}
}
Sometimes, I receive error like:
1) "[System.RuntimeType] = {Name = Cannot evaluate expression because the code of the current method is optimized. FullName = Cannot evaluate expression because the code of the current method is optimized.}"
2) in HanldeData function, the func instance variable has been Garbage Collected, and is not able to work properly.
like:
{Method = Cannot evaluate expression because a thread is stopped at a point where garbage collection is impossible, possibly because the code is optimized.}
Managed Debugging Assistant 'CallbackOnCollectedDelegate' has detected a problem
Note: I haven't check the "optimise code" in the property of the project.
Without a complete code example and a clear description of what you are actually trying to achieve here, it's impossible to know for sure what the best answer. That said, frankly, the whole scheme seems nuts to me. IntPtr? Seriously?
I don't see anything in your question that describes a problem that can't be accomplished more easily simply by wrapping the delegate and object in a new delegate object.
E.g.:
private void PrepareData(object o, MyFunc func)
{
DoJob(() => func(o));
}
private void DoJob(Action wParam)
{
if (wParam != null)
{
wParam();
}
}
Note that in your original code, if the only references left to your object and delegate are in the unmanaged block you allocate, they may in fact be GC'ed, as they would then be unreachable via any managed reference (which is the only thing the GC cares about).
Note also that even if the objects are still reachable via a managed reference, that the GC may move the objects in memory (e.g. to compact the heap), rendering the values you've copied into your unmanaged block of memory useless.
If you stick to the use of managed code and objects in your program, you will avoid these problems.
(I also note that your code example doesn't even seem valid, as your DoJob() parameter name is wParam, but the variable you check and marshal back to a managed struct is named p).
I am not sure that the Unmanaged Code will be GC'ed. However, I follow the tutorial: link
and what I am missing in my code is just to forget free the allocated memory for the next use.
private void DoJob(IntPtr wParam)
{
if (wParam != IntPtr.Zero)
{
Type type = typeof(MyData);
MyData md = (MyData)Marshal.PtrToStructure(p,type);
md.HandleData();
// Free the unmanaged representation of MyData struct.
Marshal.FreeHGlobal(wParam);
}
}
It works very well until now after many tests.
Most of the code I have seen deletes the pointer in the finalizer/destructor:
public ref class CPPObjectWrapper
{
private:
CPPObject *_cppObject;
public:
CPPObjectWrapper()
{
_cppObject = new CPPObject();
}
CPPObjectWrapper(IntPtr ^ptr)
{
_cppObject = ptr->ToPointer();
}
~CPPObjectWrapper()
{
delete _cppObject;
_cppObject = 0;
}
!CPPObjectWrapper()
{
if (_cppObject != 0) delete _cppObject;
}
IntPtr^ GetPointer()
{
return gcnew IntPtr(_cppObject);
}
}
My question is what would be standard practice if the library your wrapping does something like this:
void AddObject(CPPObject *cppObject)
{
// adds to a std::list
}
CPPObject* FindObject(/* criteria */)
{
// return reference to std::list item based on criteria
}
If your c# wrapper does this:
void AddObject(CPPObjectWrapper ^cppObject)
{
_internal->addObject(cppObject->GetPointer()->ToPointer());
}
CPPObjectWrapper^ FindObject(/* criteria */)
{
CPPObject *cppObject = _internal->findObject(/* criteria */);
return gcnew CPPObjectWrapper(gcnew IntPtr(cppObjet));
}
You run into a memory issue because your managed object should not delete the pointer because its referenced in another object. The same is true when returning. Would you simply add functionality to tell your managed wrapper not to free the memory when ownership is transferred?
A classic situation when dealing with mixed mode projects, and your suggestion is OK!
It would make sense to have a bool in the constructor that tells it not to destroy the pointer if the same object is used in another non-wrapped object. The ideal case is that every object was wrapped, and the destruction would be done by the CLR.
You can make a generic base class out of this (using the code you already have there), setting the bool by default by the subclass. You are guaranteed to have this functionality many times over. Another tip is to have a virtual OnFinalize() method that is called from the CLR destructor (!) that can do special operations in the subclass, like calling some special free function provided by the native library.
The following code compile without errors. Basically, the C#2005 Console application calls VC++2005 class library which in turn calls native VC++6 code. I get the following error when I run the C#2005 application:
"Unhandled Exception: System.AccessViolationException: Attempted to read or write protected memory. This is often an indication that other memory is corrupt."
What is the cause of this error? And how to go about correcting it?
Edit1: It crashes at the line StdStringWrapper ssw = w.GetNext();
Edit2: I followed the advice of Naveen and used an integer index instead of iterators and there is no more errors now. A big thanks to all who commented as well!
Code Written in C#2005 as Console Application:
class Program
{
static void Main(string[] args)
{
Class1 test= new Class1();
test.PerformAction();
test.PerformAction();
test.PerformAction();
test.PerformAction();
}
}
Code Written in VC++2005 as Class Library:
public ref class Class1
{
public:
void PerformAction();
};
void Class1::PerformAction()
{
DoSomethingClass d;
StdStringContainer w;
d.PerformAction(w);
for(int i=0; i<w.GetSize(); i++)
{
StdStringWrapper ssw = w.GetNext();
std::cout << ssw.CStr() << std::endl;
}
}
Code Written in VC++6 as Dynamic Link Library:
#ifdef NATIVECODE_EXPORTS
#define NATIVECODE_API __declspec(dllexport)
#else
#define NATIVECODE_API __declspec(dllimport)
#endif
class NATIVECODE_API StdStringWrapper
{
private:
std::string _s;
public:
StdStringWrapper();
StdStringWrapper(const char *s);
void Append(const char *s);
const char* CStr() const;
};
StdStringWrapper::StdStringWrapper()
{
}
StdStringWrapper::StdStringWrapper(const char *s)
{
_s.append(s);
}
void StdStringWrapper::Append(const char *s)
{
_s.append(s);
}
const char* StdStringWrapper::CStr() const
{
return _s.c_str();
}
//
class NATIVECODE_API StdStringContainer
{
private:
std::vector<StdStringWrapper> _items;
std::vector<StdStringWrapper>::iterator _it;
public:
void Add(const StdStringWrapper& item);
int GetSize() const;
StdStringWrapper& GetNext();
};
void StdStringContainer::Add(const StdStringWrapper &item)
{
_items.insert(_items.end(),item);
}
int StdStringContainer::GetSize() const
{
return _items.size();
}
StdStringWrapper& StdStringContainer::GetNext()
{
std::vector<StdStringWrapper>::iterator it = _it;
_it++;
return *it;
}
//
class NATIVECODE_API DoSomethingClass
{
public:
void PerformAction(StdStringContainer &s);
};
void DoSomethingClass::PerformAction(StdStringContainer &s)
{
StdStringWrapper w1;
w1.Append("This is string one");
s.Add(w1);
StdStringWrapper w2;
w2.Append("This is string two");
s.Add(w2);
}
The member _it in StdStringContainer is never initialized to point into the _items vector. This means it's an invalid iterator. When you assign _it to it in GetNext(), you've given it the invalid, uninitialized value that existed in _it. You then increment the uninitialized _it via _it++, which is what's triggering your fault.
As Stroustrup says in 19.2, an uninitialized iterator is an invalid iterator. This means that your uninitialized _it is invalid and that operations performed with it are undefined, and likely to cause dramatic failure.
Your problem is deeper, however. Iterators have a fundamentally different lifetime from the containers that they enumerate. There aren't really any "good" ways to do what you're trying to do with a single iterator member like this unless the container is immutable and initialized in the constructor.
If you can't expose the std:: namespace names, have you considered aliasing them via typedef's, e.g.? What about your organization or project makes it impossible to expose the template classes?
The main problem from my point of view is you are storing an iterator to a vector in your stdStringContainer class. Remember that whenever vector resizes all the existing iterators are invalidated. So whenever you do insert operation into the vector it may be possible that it resizes and your existing iterator becomes invalid. If you try to to dereference it in GetNext() then it will access invalid memory location. For checking whether this really the case try to reserve the initial vector size to some relatively big number so that the resizing doesn't happen. You can reserve the size using reserve() method, in which case it is guaranteed that the capacity() of the vector is greater than or equal to the reserved value.
Sounds like you have a memory leak. I would suggest looking anywhere where there is pointer arithmetic, writing to memory, or array usage. Check for the bounds conditions in the array accessing.
Another issue: The leak many not even be in your code. If this is the case you'll have to exclude the library from your project.
My guess is, that you have the crash because std::string and std::vector in the interface between two C++ modules were compiled with different compilers and runtime libraries.
The memory layout of vector and string maybe changed between VC6 and 2005.
When the 2005 DLL allocates objects of type StdStringContainer and StdStringWrapper, it does so based on the declarations of string and vector in the 2005 headers.
When member functions are called on these objects (which have been compiled with the VC6 compiler and libraries), they assume a different memory layout and fail with access violations.